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Abstract. In this article, we introduce the commands twexp and twgravity, which
implement the estimators developed in Jochmans (2017, Review of Economics
and Statistics 99: 478–485) for exponential regression models with two-way fixed
effects. twexp is applicable to generic n×m panel data. twgravity is written for
the special case where the dataset is a cross-section on dyadic interactions between
n agents. A prime example is cross-sectional bilateral trade data, where the model
of interest is a gravity equation with importer and exporter effects. Both twexp

and twgravity can deal with data where n and m are large, that is, where there
are many fixed effects. These commands use Mata and are fast to execute.
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1 Introduction

The exponential regression model finds wide application in the analysis of nonnegative
outcomes such as count data. This model has also shown itself to be an attractive
alternative to the log-linearized regression model. Indeed, following Santos Silva and
Tenreyro (2006), constant-elasticity models are now routinely fit from data in levels
rather than logarithms. In this article, we present two new commands to estimate
exponential regressions with two-way fixed effects.

We consider double-indexed data on a nonnegative outcome, yij , and a p-vector of
regressors, xij . The command twexp is designed to estimate the slope vector γ in the
n×m panel model

yij = e(αi + βj + x>
ijγ) εij E(εij |x11, . . . ,xnm) = 1 (1)

where i = 1, . . . , n and j = 1, . . . ,m, and we let e(a) := exp(a). Here αi and βj are
fixed effects, and εij is a latent disturbance. A slight variation to this is a cross-sectional
dataset in which we observe outcomes and regressors for the n× (n− 1) pairwise inter-
actions between agent i = 1, . . . , n and j 6= i. This is different from the panel-data case
because here we do not observe yii and xii. The command twgravity is designed to
handle this case. Its name is derived from the leading example of such an application
being the estimation of a gravity equation from a cross-section of bilateral trade flows.
Here the outcome is the directed trade flow from i to j, the regressors are measures of
distance or (dis)similarity between i and j, and αi and βj are exporter and importer
effects, respectively.
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The most popular estimator of (2) is the pseudo-maximum-likelihood estimator
(PMLE) that arises from treating the yij as conditionally independent Poisson variates.
If we introduce the shorthand

uij(αi, βj ,γ) := yij − e(αi + βj + x>
ijγ)

the PMLE solves the p first-order conditions for γ,

n∑
i=1

m∑
j=1

xij uij(αi, βj ,γ) = 0

jointly with the n+m first-order conditions for the effects α1, . . . , αn and β1, . . . , βm,

m∑
j=1

uij(αi, βj ,γ) = 0 i = 1, . . . , n

n∑
i=1

uij(αi, βj ,γ) = 0 j = 1, . . . ,m

Subject to a suitable normalization on the fixed effects, such as
∑n

i=1 αi =
∑m

j=1 βj .
Despite the presence of the growing number of nuisance parameters, the estimator of
γ is consistent and has a correctly centered limit distribution either when n is large
and m is small or when both n and m are large (and of a similar magnitude). Details
on the theoretical properties are available in Wooldridge (1999) and Fernández-Val and
Weidner (2016).

The pseudo-Poisson approach suffers from two drawbacks. The first is numerical.
Indeed, the large number of fixed effects implies that a simple approach that combines,
say, poisson with n + m dummy variables will be infeasible in many datasets. The
commands poi2hdfe (Guimarães 2016) and ppmlhdfe (Correia, Guimarães, and Zylkin
2019) are designed especially to deal with this problem and are useful alternatives
here. The second drawback is that the plug-in estimator of the covariance matrix of
the above moment conditions is severely biased. The origin of the problem is again
the estimation of the incidental parameters. Indeed, calculating the covariance matrix
requires estimating terms involving

uij(αi, βj ,γ)
2

which requires estimates of the fixed effects. These are both numerous and estimated
with low precision, creating an incidental parameter bias in the estimated covariance
matrix. The bias can be severe, as evidenced by the simulation results in Egger and
Staub (2016), Jochmans (2017), and Pfaffermayr (2019). The practical implication of
this is that the standard errors will usually not be an accurate reflection of the statistical
precision of the parameter estimates. Often, they will be too small. Consequently, the
reported confidence interval will be too narrow, and test procedures will overreject under
the null.
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Equation (2) is an important member of the class of multiplicative error models.
For such models, moment conditions have been derived that are free of fixed effects
(Charbonneau 2013; Jochmans 2017). They allow inference on γ to be separated from
estimation of α1, . . . , αn and β1, . . . , βm. twexp and twgravity implement estimators
based on these moments. Both commands are designed to be computationally efficient
and are fast to implement. Hence, our commands should be a useful addition to the
toolbox of empirical researchers working with count data and trade data. Furthermore,
because the whole problem is free of nuisance parameters, the standard errors do not
suffer from an incidental parameter bias.

2 Moment conditions and estimators

Consider (2) under the assumption that the errors are (conditionally) mutually inde-
pendent. Then, using

E

{
yij

e(x>
ijγ)

∣∣∣∣∣x11, . . . ,xnm

}
= e(αi + βj)

for all (i, j), we have

E

{
yij

e(x>
ijγ)

yi′j′

e(x>
i′j′γ)

− yij′

e(x>
ij′γ)

yi′j
e(x>

i′jγ)

∣∣∣∣∣x11, . . . ,xnm

}
= 0 (2)

for all i, i′ and j, j′. This (conditional) moment condition for γ is free of incidental
parameters. Equation (2) implies unconditional moment conditions that can form the
basis of a method of moment estimator of γ. Our commands implement two of these
estimators.

The first estimator, which we dub generalized method of moments (GMM1) below,
uses the levels of the covariates, xij , as instruments. It is the solution to

s1(γ) :=

n∑
i=1

n∑
i′=1

m∑
j=1

m∑
j′=1

xij

{
yij

e(x>
ijγ)

yi′j′

e(x>
i′j′γ)

− yij′

e(x>
ij′γ)

yi′j
e(x>

i′jγ)

}
= 0

This is a system of p equations and is therefore just identified.1 Consequently, the
estimator is

γ̂1 := argmin
γ

s1(γ)
>s1(γ)

1. As written here, the moment equations of GMM1 can be set arbitrarily close to zero when the
regressors are all nonnegative by setting one of the elements of γ to be arbitrarily large. This
can be resolved by transforming all regressors into deviations from their overall mean. Doing so
does not alter the roots of the original estimating equation. Both of our commands perform this
normalization by default.
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Under suitable regularity conditions, γ̂1 is consistent and asymptotically normal. Its
asymptotic variance has a sandwich form and can be estimated as Q−1

1 V 1Q
−>
1 , where

Q1 := −
n∑

i=1

n∑
i′=1

m∑
j=1

m∑
j′=1

xij

{
yijyi′j′(xij + xi′j′)

>

e(x>
ij γ̂1)e(x>

i′j′ γ̂1)
− yij′yi′j(xi′j + xij′)

>

e(x>
ij′ γ̂1)e(x

>
i′j γ̂1)

}

is the Jacobian of the empirical moments evaluated at the point estimator, and the
variance of the moments is estimated by

V 1 :=
n∑

i=1

n∑
j=1

vijv
>
ij

where we define the p-vector vij as

4
∑
i′ 6=i

∑
j′ 6=j

{(xij − xij′)−(xi′j − xi′j′)}

{
yij

e(x>
i′j γ̂1)

yi′j′

e(x>
ij′ γ̂1)

− yij′

e(x>
ij γ̂1)

yi′j
e(x>

i′j′ γ̂1)

}

The use of V 1 is needed to handle the fact that each observation appears in many of
the summands that make up s1(γ).

The second estimator we implement, GMM2, is

γ̂2 := argmin
γ

s2(γ)
>s2(γ)

which is of the same form as γ̂1 but solves the empirical moment equations

s2(γ) :=

n∑
i=1

n∑
i′=1

m∑
j=1

m∑
j′=1

xij

{
yij

e(−x>
i′jγ)

yi′j′

e(−x>
ij′γ)

− yij′

e(−x>
ijγ)

yi′j
e(−x>

i′j′γ)

}
= 0

The large-sample behavior of this estimator parallels that of γ̂1. The matrices Q2 and
V 2 needed to estimate the variance of the limit distribution are readily obtained. We
omit further details here for brevity. Other possible estimators can be derived from the
conditional moment conditions above. Motivations for the estimators considered here
are given in the supplementary material to Jochmans (2017).

The choice between the two estimators depends on the application at hand. The
simulation results in Jochmans (2017) show that GMM2 tends to be more efficient than
GMM1 in designs where the conditional variance increases with the conditional mean,
while GMM1 is relatively more precise in the other situations. In extensive numerical
work, we have found that GMM1 is extremely stable, making it reliable. When the linear
index x>

ijγ can take on large values, the objective function of GMM2 can have multiple
local maximums and regions over which it is fairly flat. This can be understood by noting
that s2(γ) can be obtained from s1(γ) by multiplying through the latter’s summand
with e{(xij + xi′j′ + xi′j + xij′)

>γ}. This complicates numerical optimization using
gradient-based methods such as the Newton algorithm that we use. Our code checks
whether a global optimum has been reached by verifying whether the empirical moments
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are (up to tolerance) equal to zero at the solution and gives a warning if not. If this
happens, we suggest to experiment with different starting values or to switch to GMM1

instead.

The large number of terms in s1(γ) and s2(γ) may suggest that evaluation of the
objective function is time consuming, making estimation and inference based on them
infeasible in large datasets (see, for example, the discussion in Egger and Staub [2016]).
This is not the case. Careful inspection and subsequent rearrangement of terms reveals
that evaluation of these equations is immediate in any matrix-based language (here,
Mata). Additional details on this are provided in the appendix. The same is true for
the Jacobian matrices Q1 and Q2 as well as for the variance estimators V 1 and V 2.
twexp and twgravity are written for balanced datasets. Implementation of our efficient
computations would require adjustment to deal with gaps in the data. The exact form
of the adjustment depends on the pattern of missingness of the data and is therefore
not easily programmed in a generic manner. Note that merely dropping observations
for which information is missing is not sufficient. This is because of the structure of the
empirical moments, where each summand depends on quadruples of observations. One
may, of course, decide to use brute force evaluation of the criterion in such cases.

3 The twexp and twgravity commands

3.1 Command: twexp

The command twexp is designed for (balanced) n×m panel datasets.

Syntax

twexp has the following syntax:

twexp varlist
[
if
] [

in
]
, indn(varname) indm(varname) model(option)[

initial(vec)
]

Options

indn(varname) declares the cross-sectional dimension of the panel. indn() is required.

indm(varname) declares the time-series dimension of the panel. indm() is required.

model(option) determines whether GMM1 or GMM2 is implemented. model() is required.

initial(vec) specifies the starting value for the numerical optimization; the default is
the zero vector.



K. Jochmans and V. Verardi 473

Output

A table in standard layout reports point estimates, standard errors, z statistics, p-values
for the null that the coefficient in question is equal to zero, and 95% confidence intervals
for each of the coefficients. The vector of point estimates and their estimated covari-
ance matrix can be recovered by typing matrix list e(b) and matrix list e(V),
respectively.

3.2 Command: twgravity

The command twgravity is designed for a cross-section on dyadic interactions between
n agents. Agents do not interact with themselves, so yii and xii are not defined. This is
like a panel model with m = n−1. In the vectors and matrices defined in section 2, this
requires modifying only the range over which the sums go. To evaluate the criterion
function efficiently, however, additional intervention is needed (see the discussion on
gaps in the previous section). Therefore, we provide a different command to deal with
this case.

Syntax

twgravity has the same syntax as twexp:

twgravity varlist
[
if
] [

in
]
, indn(varname) indm(varname) model(option)[

initial(vec)
]

Options

indn(varname) identifies the first agent in the dyad. indn() is required.

indm(varname) identifies the second agent in the dyad. indm() is required.

model(option) determines whether GMM1 or GMM2 is implemented. model() is required.

initial(vec) specifies the starting value for the numerical optimization; the default is
the zero vector.

Output

The screen output has the same form as before.
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4 Examples

4.1 Patents and R&D

We illustrate the use of twexp by looking at the relationship between the number of
patent applications and R&D expenditure. We use the data of Hall, Griliches, and
Hausman (1986). The data can be downloaded from the companion website of the
Cameron and Trivedi (2005) textbook;2 however, they are not in Stata format. We load
them into Stata by typing the following set of commands:

infile CUSIP ARDSSIC SCISECT LOGK SUMPAT LOGR70 LOGR71 LOGR72 LOGR73 ///
LOGR74 LOGR75 LOGR76 LOGR77 LOGR78 LOGR79 PAT70 PAT71 PAT72 ///
PAT73 PAT74 PAT75 PAT76 PAT77 PAT78 PAT79 ///
using "http://cameron.econ.ucdavis.edu/mmabook/patr7079.asc"

* Use observation number as an identifier, not just CUSIP
generate id = _n
label variable id "id"

reshape long PAT LOGR, i(id) j(year)

The dataset is a balanced panel on 346 firms and spans the period 1970–1979; note that
Cameron and Trivedi (2005) drop all observations for the period 1970–1974, but we do
not. For each firm, we have data on the number of patents applied to (PAT) in each year
(and were eventually granted) as well as the log of the amount (in 1972 U.S. dollars)
spent on R&D during each year (LOGR). A summary of these data is as follows:

. summarize PAT LOGR

Variable Obs Mean Std. Dev. Min Max

PAT 3,460 36.28439 74.46563 0 608
LOGR 3,460 1.229807 1.970524 -3.84868 7.06524

It is well established that it is important to control for firm-specific heterogeneity
by including firm fixed effects (Hausman, Hall, and Griliches 1984). It also seems
important to include a set of time dummies in the specification. These allow to control
for aggregate shocks that affect all firms, such as the state of the economy and overall
technological progress over time.

Estimating a two-way exponential regression of PAT on LOGR by means of GMM1 is
done by typing

. twexp PAT LOGR, indn(id) indm(year) model(GMM1)

which yields the following output:

Number of obs = 3460

PAT Coef. Std. Err. z P>|z| [95% Conf. Interval]

LOGR .4084421 .0457615 8.93 0.000 .3187521 .498133

2. http://cameron.econ.ucdavis.edu/mmabook/mmaprograms.html

http://cameron.econ.ucdavis.edu/mmabook/mmaprograms.html
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The estimator GMM2 is computed by changing the model() option. For efficiency, we
let the optimization start at the point estimate obtained by GMM1. To do so, we first
type matrix start = e(b) and next type

. twexp PAT LOGR, indn(id) indm(year) model(GMM2) initial(start)

The output for GMM2 is

Number of obs = 3460

PAT Coef. Std. Err. z P>|z| [95% Conf. Interval]

LOGR .3241356 .0635514 5.10 0.000 .1995772 .448694

4.2 International trade

We use the model and data of Santos Silva and Tenreyro (2006) to illustrate the use of
twgravity. The dataset can be downloaded from http://personal.lse.ac.uk/tenreyro/
lgw.html. The data are a cross-section on bilateral trade flows between 136 coun-
tries. The outcome variable is bilateral trade measured in thousands of U.S. dollars
(trade). The regressors are all measures of distances between the importing and ex-
porting country. They are (the logarithm of) geographical distance (ldist) and a set
of dummies that aim to capture other factors of relatedness. These indicators include
whether countries i and j share a common border (border), speak the same language
(comlang), have a colonial history (colony), and take part in a common free-trade
agreement (comfrt wto). For each observation, the variables s1 im and s2 ex identify
the importer and exporter, respectively.

. summarize trade ldist border comlang colony comfrt_wto

Variable Obs Mean Std. Dev. Min Max

trade 18,360 172129.5 1829058 0 1.01e+08
ldist 18,360 8.785508 .7416775 4.876723 9.898691

border 18,360 .0196078 .1386522 0 1
comlang 18,360 .209695 .407102 0 1
colony 18,360 .1704793 .3760636 0 1

comfrt_wto 18,360 .0250545 .1562948 0 1

Fitting this model by GMM1 is done by typing

. twgravity trade ldist border comlang colony comfrt wto,
> indn(s2 ex) indm(s1 im) model(GMM1)

http://personal.lse.ac.uk/tenreyro/lgw.html
http://personal.lse.ac.uk/tenreyro/lgw.html
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which completes in 0.81 seconds (using Stata/MP 15.1 on a MacBook 1.4 HGz Intel
Core i7 with 16 GB RAM). The following output is reported:

Number of obs = 18360

trade Coef. Std. Err. z P>|z| [95% Conf. Interval]

ldist -.8165761 .0629112 -12.98 0.000 -.9398798 -.6932725
border .4873677 .1361165 3.58 0.000 .2205844 .7541511

comlang .2594789 .1300016 2.00 0.046 .0046804 .5142773
colony .1648687 .1461561 1.13 0.259 -.121592 .4513294

comfrt_wto .3064196 .1250841 2.45 0.014 .0612592 .55158

Changing the estimator used to GMM2 is done by typing

. twgravity trade ldist border comlang colony comfrt wto, indn(s2 ex)
> indm(s1 im) model(GMM2)

which terminates after 1.85 seconds with the following output:

Number of obs = 18360

trade Coef. Std. Err. z P>|z| [95% Conf. Interval]

ldist -.7509313 .0567805 -13.23 0.000 -.8622191 -.6396436
border .1490604 .0771748 1.93 0.053 -.0021994 .3003202

comlang .4909294 .0929732 5.28 0.000 .3087052 .6731536
colony .2128996 .1212684 1.76 0.079 -.0247821 .4505813

comfrt_wto .3298556 .1249293 2.64 0.008 .0849987 .5747126

These results correspond to those reported in table 5 of Jochmans (2017). To appreciate
the computational speed, note that estimation by PMLE takes just under 16 seconds
when using poisson with dummies, 3.87 seconds when using poi2hdfe, and 1.65 seconds
when using ppmlhdfe.

5 Simulations

We use simulated data to further illustrate twgravity. The simulation design has two
binary regressors. They are independent and take on the value 1 with probability 0.05
and 0.50, respectively. This makes the first regressor sparse. The coefficient on each
regressor is set to unity. All fixed effects are set to zero, and errors are drawn from a
lognormal distribution such that their logs follow a standard normal distribution. The
regressors are drawn once and held fixed across the 5,000 Monte Carlo replications.
The errors are redrawn in each replication. The sample size was set to n = 25, yielding
25 × 24 = 600 observations at the dyad level. Simulation results for a variety of other
designs and different sample sizes are reported in Jochmans (2017).

The first table below contains summary statistics for the three point estimators
considered. BGMM11 refers to the GMM1 point estimator of the first coefficient, and
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BGMM12 refers to the GMM1 point estimator of the second coefficient. This naming
convention is also used for GMM2. BPPML1 and BPPML2 refer to the PMLE point estimates.

Variable Obs Mean Std. Dev. Min Max

BGMM11 5,000 .953764 .3346802 -.1216463 2.540329
BGMM12 5,000 1.003491 .1110953 .5393732 1.390769

BGMM21 5,000 .9460279 .36222 -.2998988 2.453766
BGMM22 5,000 1.001544 .1135412 .5496131 1.409317

BPPML1 5,000 .9445918 .3467463 -.2373147 2.217537
BPPML2 5,000 1.004687 .1137106 .5445971 1.429689

All estimators perform well. The average computational efforts for GMM1, GMM2, and
PMLE (each starting at a vector of zeros) were 0.1414 seconds, 0.1435 seconds, and
0.1780 seconds, respectively.

The next table provides corresponding summary statistics for the estimated standard
errors for each estimator.

Variable Obs Mean Std. Dev. Min Max

SEGMM11 5,000 .2984875 .0786237 .1422011 .8047855
SEGMM12 5,000 .1110947 .0141867 .0819313 .2545835

SEGMM21 5,000 .3194803 .0833841 .1409411 .7742554
SEGMM22 5,000 .1154775 .0177122 .0819291 .4200313

SEPPML1 5,000 .2365674 .0474963 .1213987 .5143403
SEPPML2 5,000 .1022817 .0124813 .0767165 .2225853

It is of interest to compare the Monte Carlo standard deviation (in the previous ta-
ble) with the average standard error (in the current table). The ratio of the latter
to the former is considerably below unity for PMLE. Thus, the standard errors for the
pseudo-Poisson estimator are too small, on average.

6 Conclusion

We have introduced two new commands, twexp and twgravity, for exponential regres-
sion models with two-way fixed effects. These estimators are based on Jochmans (2017).
They are fast to compute, even in large datasets, and yield reliable standard errors for
inference.
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8 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 20-2

. net install st0604 (to install program files, if available)

. net get st0604 (to install ancillary files, if available)

9 References
Cameron, A. C., and P. K. Trivedi. 2005. Microeconometrics: Methods and Applica-
tions. New York: Cambridge University Press.

Charbonneau, K. B. 2013. Multiple fixed effects in theoretical and applied econo-
metrics. PhD dissertation, Princeton University. http: // arks.princeton.edu / ark:
/88435/dsp015q47rn86j.

Correia, S., P. Guimarães, and T. Zylkin. 2019. ppmlhdfe: Stata module for Poisson
pseudo-likelihood regression with multiple levels of fixed effects. Statistical Software
Components S458622, Department of Economics, Boston College. https://ideas.repec.
org/c/boc/bocode/s458622.html.

Egger, P. H., and K. E. Staub. 2016. GLM estimation of trade gravity models with
fixed effects. Empirical Economics 50: 137–175. https: // doi.org / 10.1007 / s00181-
015-0935-x.

Fernández-Val, I., and M. Weidner. 2016. Individual and time effects in nonlinear panel
models with large N , T . Journal of Econometrics 192: 291–312. https://doi.org/10.
1016/j.jeconom.2015.12.014.
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A Appendix

Additional computational details for GMM1

Fix the value of γ and introduce the shorthands eij := e(x>
ijγ) and uij := yij/eij . First,

consider the pure panel-data case. The (symmetrized) moment conditions for GMM1 are

s1(γ) =

n∑
i=1

n∑
i′=1

m∑
j=1

m∑
j′=1

xij {uijui′j′ − uij′ui′j}

Note that
n∑

i=1

n∑
i′=1

m∑
j=1

m∑
j′=1

xij uijui′j′ =

n∑
i=1

m∑
j=1

xijuij

n∑
i′=1

m∑
j′=1

ui′j′ =

n∑
i=1

m∑
j=1

xij(uiju)

where u :=
∑n

i′=1

∑m
j′=1 ui′j′ is the grand mean of the uij . Likewise,

n∑
i=1

n∑
i′=1

m∑
j=1

m∑
j′=1

xij uij′ui′j =

n∑
i=1

m∑
j=1

xij

n∑
i′=1

ui′j

m∑
j′=1

uij′ =

n∑
i=1

m∑
j=1

xij(ui·u·j)

where ui· :=
∑m

j′=1 uij′ and u·j :=
∑m

i′=1 ui′j are the means taken with respect to each
of the two dimensions of the data. Consequently,

s1(γ) =

n∑
i=1

m∑
j=1

xij {uiju− ui·u·j}

which is fast to evaluate in any matrix-based language. Expressions for the Jacobian
matrix Q1 and for vij follow in the same manner. All these expressions are used in the
implementation of twexp.

In twgravity, self links are ruled out; that is, the observations yii,xii are not in the
data. In this case, the empirical moments for GMM1 become

s1(γ) =

n∑
i=1

∑
i′ 6=i

∑
j 6=i,i′

∑
j′ 6=i,i′,j

xij {uijui′j′ − uij′ui′j}
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Note the change in the range of the sums. It is convenient to define yii = 0 and xii = 0.
Then, in the same way as before,

n∑
i=1

∑
i′ 6=i

∑
j 6=i,i′

∑
j′ 6=i,i′,j

xijuijui′j′ =

n∑
i=1

n∑
j=1

xijuij(u− u·i − uj· + uji)

and
n∑

i=1

∑
i′ 6=i

∑
j 6=i,i′

∑
j′ 6=i,i′,j

xijui′juij′ =

n∑
i=1

n∑
j=1

xij(ui·u·j − ǔij)

where ǔij :=
∑n

i′=1 uii′ui′j . Consequently, in this case, we have

s1(γ) =
n∑

i=1

m∑
j=1

xij {uiju− ui·u·j} −
n∑

i=1

m∑
j=1

xij{uij(u·i + uj· − uji)− ǔij}

The additional term on the right-hand side compared with the corresponding expression
above is a correction term for the absence of self links in the data. The Jacobian matrix
and the covariance matrix of the moment conditions can again be obtained similarly.

Additional computational details for GMM2

Fix the value of γ and introduce the shorthand eij := e(x>
ijγ). First, consider the pure

panel-data case. The (symmetrized) moment conditions for GMM2 are

s2(γ) =

n∑
i=1

n∑
i′=1

m∑
j=1

m∑
j′=1

xij {yijyi′j′ei′jeij′ − yij′yi′jeijei′j′}

Here, defining the n×m matrices (Y )ij := yij and (E)ij := eij , we can compactly write

xijyij

n∑
i′=1

m∑
j′=1

ϕij′yi′j′ϕi′j = xijyij(EY >E)ij

xijeij

n∑
i′=1

m∑
j′=1

yij′ei′j′yi′j = xijeij(Y E>Y )ij

Note that the terms on the right-hand side here are quadratic forms in E and Y . Hence,

s2(γ) =

n∑
i=1

m∑
j=1

xij

{
yij (EY >E)ij − eij(Y E>Y )ij

}
which is again immediate to compute in any matrix-based language. When self links
are ruled out—again defining yii = 0 and xii = 0 and now also setting eii = 0—no
further modification is needed for GMM2.




