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Abstract. Cluster randomized trials, where clusters (for example, schools or
clinics) are randomized to comparison arms but measurements are taken on indi-
viduals, are commonly used to evaluate interventions in public health, education,
and the social sciences. Analysis is often conducted on individual-level outcomes,
and such analysis methods must consider that outcomes for members of the same
cluster tend to be more similar than outcomes for members of other clusters.
A popular individual-level analysis technique is generalized estimating equations
(GEE). However, it is common to randomize a small number of clusters (for ex-
ample, 30 or fewer), and in this case, the GEE standard errors obtained from the
sandwich variance estimator will be biased, leading to inflated type I errors. Some
bias-corrected standard errors have been proposed and studied to account for this
finite-sample bias, but none has yet been implemented in Stata. In this article, we
describe several popular bias corrections to the robust sandwich variance. We then
introduce our newly created command, xtgeebcv, which will allow Stata users to
easily apply finite-sample corrections to standard errors obtained from GEE mod-
els. We then provide examples to demonstrate the use of xtgeebcv. Finally, we
discuss suggestions about which finite-sample corrections to use in which situations
and consider areas of future research that may improve xtgeebcv.

Keywords: st0599, xtgeebcv, cluster randomized trials, bias-corrected variances,
sandwich variance, generalized estimating equations, finite-sample correction

1 Introduction

The cluster randomized trial (CRT) is a study design used in many fields of research.
In a CRT, randomization to intervention arms is carried out at the cluster level (for
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example, schools or clinics) and outcomes are assessed for each member of each cluster.
The cluster randomization design is typically chosen when there is a high chance of
treatment spillover across study arms, when the intervention is group based, or when
individual randomization is not feasible (Turner et al. 2017a). For example, a recent
trial in Ghana is evaluating an intervention designed to assist mothers with children
that are under two years old to become more resilient and more effectively manage
daily stress (Baumgartner 2018). The trial adopts a cluster randomized design because
the intervention is designed to be delivered to groups of women. As another example,
in the Thinking Healthy Program Peer-Delivered Plus study, the researchers recruited
depressed women in their third trimester of pregnancy from 40 villages in Pakistan,
with each village then being randomized to receive either the intervention or enhanced
usual care (Sikander et al. 2015; Turner et al. 2016). Because this was a public health
intervention delivered by community health workers, the risk of contamination (that is,
the intervention being transmitted to women in the control group) would be too high if
individual women were randomized, given that many of the women within each village
live relatively close to one another.

Randomizing clusters instead of individuals poses unique challenges to the data anal-
yses because the outcomes for members of the same cluster tend to be more similar than
those for members of different clusters. The intraclass correlation coefficient (ICC) is a
quantity that measures the degree of similarity for within-cluster observations and plays
a central role in the design and analysis of CRTs (Murray 1998). Appropriate statistical
methods used for trial analyses should properly reflect the within-cluster correlation and
mainly include two classes of regression models: the cluster-specific (conditional) model
and the population-averaged (marginal) model (Fitzmaurice, Laird, and Ware 2011).
Although each modeling strategy has its own advantages, an important distinction be-
tween them is the difference in interpretation of the regression parameters (Preisser et al.
2003). A conditional model, such as the generalized linear mixed model, induces the
within-cluster correlation through the latent random effects. Thus, the interpretation
of the treatment effect is the average change in outcomes from control to intervention,
conditional on the unobserved random effect. By contrast, marginal models separately
specify a mean structure and a “working” correlation structure, and the interpretation
of the corresponding treatment effect is the average change in outcomes due to inter-
vention among the population defined by all participating clusters. Because CRTs are
often conducted to evaluate public health intervention and inform policy decision, the
marginal model carries a straightforward population-averaged interpretation and may
be preferred (Li, Turner, and Preisser 2018). Furthermore, the estimation and infer-
ence of marginal models are often conducted through generalized estimating equations
(GEE) (Liang and Zeger 1986), a multivariate extension of the quasilikelihood inference
(Wedderburn 1974).

In addition to straightforward interpretation of estimated model parameters, GEE

maintains a robustness property in that the treatment-effects estimates are consistent
even if the working correlation model deviates from the true correlation model. In this
case, the sandwich variance estimator (Liang and Zeger 1986) remains consistent to
the true variance. However, the approximate unbiasedness of the sandwich variance
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holds only when there are many clusters (a rule of thumb is ≥ 30, although this rule is
sometimes given as ≥ 40 or even ≥ 50), whereas a frequent practical limitation of CRTs
is that few clusters are available, because of resource constraints. In fact, a recent review
by Fiero et al. (2016) found that, of the 86 studies included, about 50% randomized 24
or fewer clusters. In CRTs related to cancer published between 2002 and 2006, Murray
et al. (2008) found similar results, with about 50% randomizing 24 or fewer clusters.
Additionally, in their review of 300 CRTs published between 2000 and 2008, Ivers et al.
(2011) found that, of the 285 studies reporting the number of clusters randomized, at
least 50% randomized 21 or fewer clusters. Often, randomizing such few clusters is
done because every cluster included in the study adds strain to limited financial and
human resources. For example, in a study examining an intervention targeted at early
childhood development among HIV-exposed children in Cameroon, only 10 total clusters
were randomized because of resource and practical limitations (Baumgartner 2017).

When fewer than 30 to 40 clusters are randomized, the GEE sandwich variance esti-
mator tends to be biased toward zero, leading to inflated type I error rates when testing
for the intervention effect (Hayes and Moulton 2009). Proper analyses of CRTs should
account for such finite-sample bias in variance estimation and adopt the bias-corrected
variance estimator (Turner et al. 2017b). Several proposals for correcting such finite-
sample bias have appeared in the statistical literature; see, for example, Mancl and
DeRouen (2001); Kauermann and Carroll (2001); Fay and Graubard (2001) among oth-
ers. These proposals have existed for over 15 years, but to our knowledge none has yet
been implemented in Stata. Introducing the bias-corrected variance estimators to Stata
has significant practical implications because Stata is a popular software tool for CRT

analysts. The availability of this routine will help promote better statistical practice by
allowing future analysts to report appropriate p-values and confidence intervals.

The remainder of this article is organized into four sections. In section 2, we in-
troduce the theory of bias-corrected sandwich variance estimators for GEE analyses of
CRTs. In section 3, we present our newly created command, xtgeebcv, which computes
parameter estimates and bias-corrected variance in GEE models. In section 4, we present
two examples of its use. We conclude in section 5 with recommendations to xtgeebcv

users and ideas for future additions to the functionality of the program.

2 Statistical methods

2.1 GEE

We consider a parallel-arm CRT consisting of n clusters allocated into two intervention
arms and note that the methods are generalizable to CRTs with more than two inter-
vention arms. The outcome of each participant is typically measured at the end of the
study and represented by Yij (i = 1, . . . , n, j = 1, . . . ,mi), where mi is the number
of individuals in cluster i. We denote the p × 1 design vector by Xij , which includes
1 (intercept), the cluster-level binary indicator for treatment assignment, and possibly
additional p− 2 baseline covariates. Note that, for CRTs with more than two arms, one
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could include additional dummy variables in the design vector Xij , and the following
discussions remain unchanged. The marginal model parameterizes the marginal mean
through a generalized linear model, E(Yij |Xij) = µij = g−1(X ′

ijβ), where g is the link
function and β is the p-vector of coefficients. The intervention effect is the component of
β that corresponds to the treatment indicator. To characterize the similarity between
individual responses within each cluster, we often employ the exchangeable working
correlation so that corr(Yij , Yij′) = α for j 6= j′. The parameter α is interpreted as
the ICC, a quantity that is vitally important for both the design and analysis of CRTs
(Murray 1998). The exchangeable correlation structure is assumed for observations
within the same cluster, while the observations from different clusters are assumed to
be uncorrelated.

Let Yi = (Yi1, . . . , Yimi
)′ and µi = (µi1, . . . , µimi

)′ be the mi × 1 vector of outcomes
and marginal means for cluster i, respectively, where mi is the ith cluster size. The GEE

method is used to estimate the parameter β from the marginal mean model with a speci-
fied working correlation matrix (Liang and Zeger 1986). We defineDi = ∂µi/∂β

′ and let

Vi = A
1/2
i RiA

1/2
i be a working covariance matrix for Yi, whereAi is themi-dimensional

diagonal matrix with elements φν(µij), φ is the dispersion parameter, and ν is the vari-
ance function; Ri(α) is a working correlation matrix whose dimension may vary across
clusters but is specified by the common parameter α. With the exchangeable work-
ing correlation structure, we can succinctly write Ri(α) = (1 − α)Imi

+ αJmi
, where

Imi
is the mi × mi identity matrix and Jmi

is an mi × mi matrix of ones. From the
results given in Li, Turner, and Preisser (2018) and Li et al. (2019), Ri(α) has two
distinct eigenvalues, λ1 = 1−α and λi2 = 1+ (mi − 1)α. Valid values of α guarantee a
positive definite correlation matrix and can be easily determined from the set of linear
constraints given by min{λ1, λ12, . . . , λn2} > 0. In other words, the plausible range of
ICC is provided by −(maxni=1{mi} − 1)−1 < α < 1 ∀ mi ≥ 2.

The GEE estimators β̂, α̂, and φ̂ are jointly obtained by solving the set of estimating
equations

n∑
i=1

D′
iV

−1
i (Yi − µi) = 0

with a Newton-type algorithm implemented in the xtgee command. Furthermore, when

the number of clusters is sufficiently large (n ≥ 30), the variance–covariance of β̂ can
be consistently estimated by

Σ̂ = Ω̂

(
n∑

i=1

D′
iV

−1
i rir

′
iV

−1
i Di

)
Ω̂ (1)

where Ω̂ = (
∑n

i=1D
′
iV

−1
i Di)

−1 is the model-based variance (what Stata terms the
“conventional” variance) and ri = Yi − µ̂i is the residual vector of cluster i. Equation
(1) is referred to as the robust sandwich variance. Under mild regularity conditions, the
sandwich variance estimator is consistent even if the correlation structure is misspecified
(Liang and Zeger 1986). In practice, the sandwich variance is often preferred over the
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model-based variance (whose consistency is dictated by the correct specification of the
working correlation) because of this robustness property.

2.2 Bias-corrected sandwich variance estimators

A practical limitation of CRTs is that fewer than 30 to 40 clusters are often randomized,
mainly because of availability or resource constraints (Ivers et al. 2011; Fiero et al. 2016).
When the number of clusters is small, it is known that the residuals, ri, tend to be too
small, and therefore the sandwich variance tends to underestimate the true variability of
β̂ (Mancl and DeRouen 2001). One simple correction is known as the degrees-of-freedom

(DF) correction, defined as Σ̂DF = KΣ̂/(K− p), where K is the number of clusters and
p is the number of parameters. Such an ad hoc correction lacks theoretical motivation
and does not provide satisfactory performance in empirical simulation studies designed
to reflect characteristics expected in cluster randomized designs (Li and Redden 2015).1

To improve finite-sample variance estimation, we consider four additional bias-corrected
sandwich variance estimators that facilitate the implementation of the state-of-the-art
recommendations for the analysis of CRTs (Li and Redden 2015; Ford and Westgate
2017).

Define the cluster leverage to be Hi = DiΩ̂D′
iV

−1
i (Preisser and Qaqish 1996).

Kauermann and Carroll (2001) used the cluster-leverage-adjusted residuals to estimate
the sandwich variance given by

Σ̂KC = Ω̂

{
n∑

i=1

D′
iV

−1
i (Imi

−Hi)
−1/2rir

′
i(Imi

−H ′
i)

−1/2V −1
i Di

}
Ω̂ (2)

Because elements of Hi are between zero and one, Σ̂KC is expected to inflate the
uncorrected sandwich variance Σ̂. In practice, because the calculation of (I −Hi)

−1/2

tends to be unstable compared with (I−Hi)
−1, we approximate the summation within

the curly brackets of (2) by{
n∑

i=1

D′
iV

−1
i (Imi

−Hi)
−1rir

′
iV

−1
i Di +

n∑
i=1

D′
iV

−1
i rir

′
i(Imi

−H ′
i)

−1V −1
i Di

}/
2

Mancl and DeRouen (2001) devised a similar bias correction by using

Σ̂MD = Ω̂

{
n∑

i=1

D′
iV

−1
i (Imi

−Hi)
−1rir

′
i(Imi

−H ′
i)

−1V −1
i Di

}
Ω̂ (3)

1. We note that Stata allows a somewhat similar correction in xtgee but only for Gaussian distribu-
tions (that is, when the family(gaussian) option is specified) through the use of the rgf option.
However, this correction multiplies the robust standard error by (n − 1)/(n − p), where n is the
number of individual observations rather than the number of clusters. So this “correction” does
not match the DF correction as defined by Li and Redden (2015), or as implemented in our newly
created command.
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Because elements of the cluster leverage Hi are less than one, Σ̂MD further inflates
Σ̂KC. Fay and Graubard (2001) corrected the finite-sample bias in variance estimation
by scaling the contribution from each cluster to the empirical variance

Σ̂FG = Ω̂

(
n∑

i=1

CiD
′
iV

−1
i rir

′
iV

−1
i DiCi

)
Ω̂ (4)

whereCi = diag([1−min{r, (Qi)jj}]−1/2) andQi = D′
iV

−1
i DiΩ̂. The bound parameter

r < 1 can be specified by the user but usually takes the default value 0.75 to avoid
overcorrection of the bias. Finally, we implement the bias correction proposed by Morel,
Bokossa, and Neerchal (2003). Their bias-corrected variance is given by

Σ̂MBN =
(N − 1)n

(N − p)(n− 1)
Ω̂

(
n∑

i=1

D′
iV

−1
i rir

′
iV

−1
i Di

)
Ω̂+ δnϕΩ̂ (5)

where N =
∑n

i=1mi is the total sample size, δn = min{0.5, p/(n− p)} is the correction
factor that converges to zero as n increases to infinity, and

ϕ = max

[
1, tr

{(
n∑

i=1

D′
iV

−1
i rir

′
iV

−1
i Di

)
Ω̂

}/
p

]

quantifies the design effect (Morel 1989). Of note, the additive bias correction (5)
ensures a positive-definite covariance matrix, while the multiplicative bias corrections
(2), (3), and (4) do not guarantee the positive definiteness of the estimated covariance
(Morel, Bokossa, and Neerchal 2003), which was argued to be an additional benefit of
(5). Once the variance estimator for the intervention effect is obtained using one of
these bias-corrected variance formulas, we could conduct a test of no intervention effect
by using the standard Wald z test or the Wald t test with DF n− p.

2.3 Computations with large cluster sizes

When the cluster sizes mi become large (greater than 1,000), calculation of the bias-
corrected variance estimators may become computationally inefficient because of nu-
merical inversion of large matrices. To alleviate such a concern, we first note that a
closed-form expression is available for the inverse of the exchangeable correlation struc-
ture (Li, Turner, and Preisser 2018; Li et al. 2019) and is given by

R−1(α) =
1

1− α
Imi

− α

(1− α){1 + (mi − 1)α}
Jmi

Furthermore, Preisser, Qaqish, and Perin (2008) noted that inverting the asymmet-
ric matrix Imi

− Hi is computationally demanding with large cluster sizes. Instead,

they recommend working with its equivalent form (Vi − DiΩ̂D′
i)V

−1
i and efficiently

calculate the inverse of the symmetric matrix Vi −DiΩ̂D′
i by iteratively applying the

Sherman–Morrison–Woodbury formula (Sherman and Morrison 1950; Henderson and
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Searle 1981). Preisser, Qaqish, and Perin (2008) demonstrated huge computational
advantage of their algorithm over standard numeric inversions, and therefore we imple-
ment their algorithm in obtaining the multiplicative bias-correction factor (Imi

−Hi)
−1

for Σ̂KC and Σ̂MD. See Preisser, Qaqish, and Perin (2008) for additional computational
details.

3 The xtgeebcv command

The xtgeebcv command was created to provide easy computation of finite-sample bias-
corrected variances (hence the “bcv” in xtgeebcv) in Stata. In this section, we explain
the available options in detail and examine the inner workings of the command.

The user should first specify a variable list (varlist) with an outcome (dependent)
variable followed by predictor (independent) variables, just as one would do with the
xtgee command. The user must tell xtgeebcv what the outcome variable and cluster
indicator variable are by using the options outcome() and cluster(), respectively.
Options are also available to specify the distribution family, link function, and type of
finite-sample correction, as described in section 3.2.

Inside the command, the user-supplied data are passed to the xtgee command, with
the command running xtset on the variable provided in the cluster() option before
running xtgee. The xtgee command is specified with the option nmp. The nmp option
tells xtgee to divide the scale parameter by n − p, where n is the number of clusters
and p is the number of coefficients estimated. Although without the nmp option, Stata
defaults to dividing only by n, n− p is the form of the divisor used in Liang and Zeger
(1986), so we use this option by default for the first set of output produced by xtgee,
which reports the conventional (model-based) standard errors.

xtgeebcv allows use of either the independence or exchangeable working correlation
matrices using the corr() option. Exchangeable is usually the most appropriate corre-
lation structure to characterize the similarity between individual responses within each
cluster in a cluster randomized design.

The design matrix, coefficient estimates, and variance–covariance matrix of the pa-
rameters output by the xtgee command are then passed to a mata command, which is
used to compute and output the desired finite-sample corrected standard errors of the
parameter estimates. As described below, the option stderr() is used to specify which
of five finite-sample bias-corrected standard errors (Σ̂DF, Σ̂MD, Σ̂FG, Σ̂KC, or Σ̂MBN)
to use for the output of standard errors, confidence intervals, and p-values.
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3.1 Syntax

xtgeebcv varlist, outcome(varname) cluster(varname)
[
family(string)

link(string) stderr(string) statistic(string) corr(string) xtgee options
]

varlist contains the regression specification: the dependent variable (outcome) followed
by independent variables (predictors). Note that all categorical variables with more
than two levels will need to be dummy coded by the user before supplying them to the
command.

3.2 Options

outcome(varname) specifies the name of the outcome variable. outcome() is required.

cluster(varname) specifies the name of the cluster indicator variable. cluster() is
required.

family(string) specifies the distributional family. The default is family(binomial).

link(string) specifies the link function. The following table gives more information
on the available family() and link() combinations. The default depends on the
specification of family(). The default for Gaussian, binomial, and Poisson are
link(identity), link(logit), and link(log), respectively.

family() link()

binomial logit

binomial log

binomial identity

poisson log

poisson identity

gaussian identity

stderr(string) gives the standard error to compute; the default is Kauermann–Carroll
(stderr(kc)). The table below gives a complete list of specifications. Note that the
robust standard errors provided by xtgeebcv will differ from Stata’s default robust
standard errors by a factor of (K−1)/K, where K is the number of clusters. This is
because Stata automatically applies a correction of K/(K−1) to the robust standard
errors produced by xtgee when using the vce(robust) option. We do not follow
this Stata-specific convention of applying this correction in this command, because
1) the robust sandwich variance of Liang and Zeger (1986) does not involve this
correction; 2) this robust variance of Liang and Zeger (1986) is the one upon which
the literature on bias-corrected sandwich variances is built (Mancl and DeRouen
2001; Kauermann and Carroll 2001; Fay and Graubard 2001); and 3) other statistical
software programs do not apply this K/(K − 1) correction to their robust standard
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errors. Thus, all the bias-corrected standard errors we implement in this command
are based on the robust standard error without the K/(K − 1) correction.

string Description

rb Robust (sandwich) standard errors
df DF correction
md Mancl and DeRouen (2001) correction
fg Fay and Graubard (2001) correction
kc Kauermann and Carroll (2001) correction
mbn Morel, Bokossa, and Neerchal (2003) correction

statistic(string) specifies the test. Specifying statistic(t) requests the Wald t test
(the default). Alternatively, the user may specify statistic(z) to report the Wald
z test instead of the Wald t test.

corr(string) specifies the type for the working correlation. The default is corr(exch)
(the exchangeable correlation). The user may instead specify ind (the independent
correlation matrix).

xtgee options are any of the options documented in [XT] xtgee. For example, the
option eform will provide exponentiated coefficients. Note that invoking the Stata
command xtset (used to declare the clustering variable) is not necessary, because
the command will automatically run xtset based on the variable supplied to the
cluster() option.

4 Illustrative examples

In this section, we illustrate the use of xtgeebcv with two example datasets that are
available to download along with the command. In the first example, we analyze syn-
thetic data simulated from a CRT with clusters of equal size; in the second example,
we analyze a real CRT evaluating the effect of a sexual health intervention on outcomes
related to HIV.

4.1 Equal-sized clusters

First, we simulated correlated binary data using the method of Lunn and Davies (1998).
We created a dataset with 80 clusters, 2 treatment arms (treatment and control), and
exactly 14 individuals per cluster. The data were simulated so that the probability of
outcome in the treatment group would be approximately 65%, while the probability in
the control group would be 45%. This corresponds to a risk ratio of 1.44 or an odds
ratio of 2.08, comparing treatment with control. After this, 20 clusters were randomly
sampled from the dataset, 10 in treatment and 10 in control, to mimic a CRT with few
clusters. To obtain an estimate of the risk ratio with Mancl–DeRouen finite-sample
correction to the standard error, we use a log-binomial regression model by specifying
a binomial distribution with a log-link function.
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. use dat_sim

. xtgeebcv yij t, family(binomial) link(log) outcome(yij) cluster(cluster)
> stderr(md) statistic(z) eform nolog

Note: Family is binomial and link is log
Using exchangeable working correlation
with scale parameter divided by K - p

GEE population-averaged model Number of obs = 280
Group variable: cluster Number of groups = 20
Link: log Obs per group:
Family: binomial min = 14
Correlation: exchangeable avg = 14.0

max = 14
Wald chi2(1) = 4.62

Scale parameter: 1 Prob > chi2 = 0.0316

yij exp(b) Std. Err. z P>|z| [95% Conf. Interval]

treatment 1.460317 .257182 2.15 0.032 1.034044 2.062318
_cons .45 .0663456 -5.42 0.000 .3370667 .6007713

Mancl-DeRouen bias-corrected standard errors

exp(b) Std. Err. z P>|z| [95% Conf. Interval]

treatment 1.460317 .3027435 1.83 0.068 .9727063 2.192365
_cons .45 .0840296 -4.28 0.000 .3120797 .6488726

The first set of estimates comes from the GEE model with the scale parameter
estimated using the n − p DF, as discussed in section 3, and uses the conventional
(model-based) standard errors. The second table gives the parameter estimates and
Mancl–DeRouen corrected standard errors. We chose this bias correction because Lu
et al. (2007) suggested that it performs adequately along with a z test if the number of
clusters is in the range of 10 to 20.

The variance–covariance matrix of the parameter estimates for the chosen finite-
sample correction is stored in e(V). All other variance–covariance matrices are stored
in e(varname), where name is the name of the correction. Names of matrices can be
retrieved using ereturn list.

. matrix list e(V)

symmetric e(V)[2,2]
treatment _cons

treatment .04297887
_cons -.034869 .034869

. matrix list e(varfg)

symmetric e(varfg)[2,2]
c1 c2

r1 .04054132
r2 -.03236501 .03148758
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. matrix list e(varkc)

symmetric e(varkc)[2,2]
c1 c2

r1 .03868099
r2 -.0313821 .0313821

Below, we also output the robust standard errors not multiplied by K/(K − 1),
where K is the number of clusters.2 Because the bias corrections are applied to this
robust (sandwich) variance, we want to compare the standard-error estimates of the
Mancl–DeRouen finite-sample correction with this robust variance, rather than with
the conventional (model-based) standard-error estimates output from xtgee by default.

. xtgeebcv yij t, family(binomial) link(log) outcome(yij) cluster(cluster)
> stderr(rb) statistic(z) eform nolog

(output omitted )

Robust standard errors not multiplied by K/(K-1)

exp(b) Std. Err. z P>|z| [95% Conf. Interval]

treatment 1.460317 .2724691 2.03 0.042 1.013044 2.105069
_cons .45 .0756266 -4.75 0.000 .3237131 .6255539

In this instance, if the researchers were using a strict 0.05 cutoff for significance,
their conclusion about the statistical significance of the treatment effect would change
if using the bias-corrected standard errors compared with the robust standard-error
estimates.

4.2 Unequal-sized clusters

In this section, we use data from the MEME kwa Vijana (MKV) CRT in Tanzania,
which is described in Hayes and Moulton (2009, 23) and is also published in Ross et al.
(2007). The data are publicly available online (Hayes and Moulton 2016). In brief,
the goal of the trial was to evaluate the impact of a sexual health intervention on
various HIV-related outcomes. The publicly available dataset includes data from male
participants at follow-up, with the main outcome provided being “good knowledge of
HIV acquisition”, a binary variable. In this dataset, there are 20 communities that
were randomized to receive either intervention or “standard activities”. The number of
participants per community ranges from 169 to 257, with a mean of 205 and a standard
deviation of 26.3. The coefficient of variation of cluster sizes is 0.128. In this dataset,
65.3% of the intervention group has good knowledge of HIV acquisition at follow-up
versus 44.9% in control, corresponding to an (unadjusted) odds ratio of 2.32 and risk
ratio of 1.46.

The goal of the analysis is to estimate the odds ratio comparing intervention with
control, while demonstrating the use of the Kauermann–Carroll finite-sample correction.

2. Multiplying by K/(K − 1) is the default in Stata when requesting robust standard errors in xtgee

through the vce(robust) option. Please see the discussion of this point in section 3.2.
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In addition to including intervention group (arm) in the statistical model, we adjust for
strata defined based on community HIV risk (three levels: high, medium, and low)
on which the randomization was stratified (stratum, a community-level covariate with
three levels, which is dummy coded before being included in the list of variables) and
ethnic group (ethnicgp, a binary individual-level covariate).

. use mkvtrial, clear

. quietly tabulate stratum, generate(stratum)

. xtgeebcv know arm stratum2 stratum3 ethnicgp, family(binomial) link(logit)
> outcome(know) cluster(community) stderr(kc) eform nolog

Note: Family is binomial and link is logit
Using exchangeable working correlation
with scale parameter divided by K - p

GEE population-averaged model Number of obs = 4,100
Group variable: community Number of groups = 20
Link: logit Obs per group:
Family: binomial min = 169
Correlation: exchangeable avg = 205.0

max = 257
Wald chi2(4) = 43.75

Scale parameter: 1 Prob > chi2 = 0.0000

know Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

arm 2.286608 .338949 5.58 0.000 1.710079 3.057506
stratum2 1.051687 .1885727 0.28 0.779 .7400511 1.494552
stratum3 1.133454 .2181231 0.65 0.515 .7773161 1.652761
ethnicgp .737854 .0648754 -3.46 0.001 .6210536 .8766209

_cons .9892138 .1624665 -0.07 0.947 .7169527 1.364865

Note: _cons estimates baseline odds (conditional on zero random effects).

Kauermann-Carroll bias-corrected standard errors
t-statistic with K - p degrees of freedom

exp(b) Std. Err. t P>|t| [95% Conf. Interval]

arm 2.286608 .3808982 4.97 0.000 1.603225 3.261287
stratum2 1.051687 .2259479 0.23 0.818 .6652899 1.662501
stratum3 1.133454 .2373591 0.60 0.559 .7253637 1.771136
ethnicgp .737854 .0759666 -2.95 0.010 .5924699 .9189134

_cons .9892138 .1957989 -0.05 0.957 .6487352 1.508387
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. xtgeebcv know arm stratum2 stratum3 ethnicgp, family(binomial) link(logit)
> outcome(know) cluster(community) stderr(rb) eform nolog

(output omitted )

Robust standard errors not multiplied by K/(K-1)
t-statistic with K - p degrees of freedom

exp(b) Std. Err. t P>|t| [95% Conf. Interval]

arm 2.286608 .3406765 5.55 0.000 1.664475 3.141277
stratum2 1.051687 .2018406 0.26 0.796 .6986018 1.583227
stratum3 1.133454 .2094824 0.68 0.508 .7644029 1.680681
ethnicgp .737854 .0728592 -3.08 0.008 .5978122 .9107016

_cons .9892138 .1760339 -0.06 0.952 .6769598 1.445498

In this case, with 20 clusters and many participants per cluster, although the finite-
sample correction inflates the standard error by about 12% above the robust standard
errors, any conclusion about significance of the effect based on the p-value would not
change.

To see the potential impact of finite-sample corrections, suppose the researchers are
interested in the intervention effect only in stratum 2. To this end, we subset the dataset
to the 8 communities in stratum 2. This dataset has cluster sizes ranging from 187 to
243, with a mean of 214 and standard deviation of 21.1, which gives a coefficient of
variation of cluster sizes of 0.099. In this dataset, 63.2% of the intervention group has
good knowledge of HIV acquisition at follow-up versus 45.7% in control. Because we
have subset on the stratum, we no longer adjust for this variable.

. keep if stratum == 2
(2,388 observations deleted)

. xtgeebcv know arm ethnicgp, family(binomial) link(logit) outcome(know)
> cluster(community) stderr(kc) eform nolog

Note: Family is binomial and link is logit
Using exchangeable working correlation
with scale parameter divided by K - p

GEE population-averaged model Number of obs = 1,712
Group variable: community Number of groups = 8
Link: logit Obs per group:
Family: binomial min = 187
Correlation: exchangeable avg = 214.0

max = 243
Wald chi2(2) = 18.07

Scale parameter: 1 Prob > chi2 = 0.0001

know Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

arm 1.870034 .4094975 2.86 0.004 1.217459 2.872397
ethnicgp .6190309 .0988164 -3.00 0.003 .4527249 .8464285

_cons 1.337813 .2828975 1.38 0.169 .8838899 2.02485

Note: _cons estimates baseline odds (conditional on zero random effects).
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Kauermann-Carroll bias-corrected standard errors
t-statistic with K - p degrees of freedom

exp(b) Std. Err. t P>|t| [95% Conf. Interval]

arm 1.870034 .4815623 2.43 0.059 .964633 3.625241
ethnicgp .6190309 .1072287 -2.77 0.039 .3965803 .9662591

_cons 1.337813 .4277156 0.91 0.404 .588128 3.043121

. xtgeebcv know arm ethnicgp, family(binomial) link(logit) outcome(know)
> cluster(community) stderr(rb) eform nolog

(output omitted )

Robust standard errors not multiplied by K/(K-1)
t-statistic with K - p degrees of freedom

exp(b) Std. Err. t P>|t| [95% Conf. Interval]

arm 1.870034 .4214707 2.78 0.039 1.047698 3.337819
ethnicgp .6190309 .0959661 -3.09 0.027 .4155684 .9221089

_cons 1.337813 .3798498 1.03 0.352 .6447855 2.77572

From the GEE model with robust standard errors, we estimate an adjusted odds ratio
of 1.87 (95% confidence interval [1.05, 3.34]). This estimate is significant at the 0.05 level.
After we apply the Kauermann–Carroll bias correction to the robust standard errors,
inflating the standard error of the intervention effect by 14.3%, the 95% confidence
interval widens to [0.96, 3.63]. The Kauermann–Carroll correction and the t-test statistic
were chosen in this case given that Li and Redden (2015) suggested that they maintain
close to the nominal type I error rate when the coefficient of variation of cluster sizes
is less than 0.6. Compared with the p-value associated with the robust standard errors
(p = 0.039), this estimate is not significant at the 0.05 level (p = 0.059).

5 Discussion

Many CRTs randomize fewer than 40 clusters, and cluster size is often highly variable.
Many researchers use Stata to analyze their CRTs. Current GEE routines in Stata may
not properly account for the small-sample bias in the robust standard errors and so
may risk an inflated type I error rate when used in the analysis of small CRTs. We
have introduced the xtgeebcv command to facilitate the analysis of CRTs with few
clusters. This command is simple to use and does not require advanced programming
skills, making it accessible to many researchers.

Although we have enabled the implementation of bias-corrected sandwich variance
estimators in Stata, we have not attempted to make specific recommendations as to
which correction works best in small CRTs. Several suggestions have been put forward
in the statistical literature. For example, Li et al. (2017) found that the Wald t test

with Σ̂KC carries the nominal type I error rate under both simple and constrained
randomization designs with binary outcomes and equal cluster sizes. Lu et al. (2007)

showed in a simulation study that the 95%Wald z confidence interval with Σ̂MD provides
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close to the nominal coverage when cluster sizes are balanced and the number of clusters
is small to moderate (for example, 10 to 20). Li and Redden (2015) found that a

Wald t test with Σ̂KC maintains the correct test size (that is, a type I error rate)
when the coefficient of variation of cluster sizes is below 0.6, while a Wald t test with
Σ̂FG maintains the nominal test size otherwise in small CRTs with binary outcomes.
Ford and Westgate (2017) further demonstrated that the t test based on the average

of Σ̂MD and Σ̂KC achieves the nominal test size in CRTs with both continuous and
binary outcomes. These specific recommendations may be informative for analyzing
small CRTs. In any case, as the bias-corrected sandwich variance becomes closer to the
uncorrected variance with increasing numbers of clusters, it should preferably always
be reported along with the uncorrected sandwich variance as a sensitivity check. The
investigation of finite-sample corrections in various small CRT settings is currently an
area of active research, and our programs may also facilitate future simulation studies
to generate recommendations specific to a research study.

There are some limitations to xtgeebcv. We have specifically designed xtgeebcv to
accommodate the exchangeable working correlation structure most commonly used in
parallel CRTs while also allowing for the simpler independent working correlation matrix.
In more complex cluster randomization designs with multiple levels of clustering, nested
exchangeable working correlation structures may be more appropriate (Li, Turner, and
Preisser 2018; Li et al. 2019; Teerenstra et al. 2010), and we may extend our command
accordingly as a next step. In terms of variance estimation in small CRTs, these authors
have found that a z test with Σ̂MD or a t test with Σ̂KC carries a correct type I
error rate in CRTs, although the former generally requires many clusters (at least 20)
to work well. On the other hand, the extension requires additional efforts because
estimating more than one correlation parameter requires an additional set of estimating
equations (Prentice 1988; Preisser, Qaqish, and Perin 2008) and is not accommodated
by standard xtgee routines. Another future extension of our command is to incorporate
the first-order autoregressive correlation structure to enable the appropriate analysis of
longitudinal studies with a limited number of subjects. The GEE analysis of longitudinal
data is generally similar to the analysis of CRTs, although the cluster size (defined as the
number of repeated measurements per individual) is frequently much smaller than that
in CRTs, and finite-sample corrections may require additional considerations. Recent
empirical studies (Ford and Westgate 2018; Wang et al. 2016) have already found that
bias-corrected variance works reasonably well in this setting, so such an extension is an
important avenue for future research.
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7 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 20-2

. net install st0599 (to install program files, if available)

. net get st0599 (to install ancillary files, if available)
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