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A rank-deficient design matrix of explanatory variables X is not of full-column rank
when there is one or more linear dependencies, meaning that X′X is singular and its
inverse does not exist; thus, there is no unique solution to b = (X′X)

−1
X′y. Rank

deficiency is sometimes referred to as “perfect collinearity”.

There are two ways to enable the use of X in regression analysis. If there is one linear
dependency, then the standard approach is to reduce the dimension of X by identifying
a zero-parameter constraint on one of its columns. This is the default treatment in
Stata and other software, that is, to arbitrarily remove one column of X.

The alternative approach is to expand X by adding an extra column through the
identification of a linear constraint across the parameters. Then, X can be used in
constrained least squares via the Stata command cnsreg. Both approaches yield the
same fully identified model, but the interpretation of their estimated coefficients depends
entirely on the imposed constraint.

Much of the relevant econometric literature focuses on the identification of rank-
deficient matrices of mutually exclusive binary variables and the interpretation of their
intercepts, a problem so ubiquitous and well understood that it has earned its collo-
quial moniker of “dummy variable trap”. The interpretation of constrained intercepts
is indeed elementary because it is a simple matter of weighted constants.

However, as I discuss in Christodoulou (2018), a more rigorous discussion on the
effect on slope coefficients of a rank-deficient X seems to evade the literature. When b
involves slope coefficients, the reduction of X by imposing zero-parameter constraints
or the expansion of X by imposing linear constraints amounts to an imposition of
a structural relation on the parameters to be estimated. The interpretation of the
constrained slopes then becomes conditional on the validity of the structural constraint.

Consider the question of how capital investment in operating assets affects sales
revenue in fixed asset-intensive firms. Companies with high stakes in tangible assets rely
on capital investment to boost revenue, but the more the assets are used in operations,
the more their value is depleted and needs to be replenished. The economic transactions
describing this relation are captured by the accounting identity

ppeit−1 + cpxit − depit ≡ ppeit (1)

or equivalently stated as ∆ppeit ≡ cpxit+1−depit+1, where ppet is the stock in property
plant and equipment, cpxt+1 is new capital expenditure, and dept+1 is depreciation plus
other events that may deplete assets, such as the sale of assets. Naturally, increases in
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capital stock are expected to bring more sales. Indeed, one could argue that the variation
in the period’s sales could be explained by the average capital investment used from t
to t+ 1.

The following simple simulation generates data that describe this scenario:

. set type double

. set seed 1234

. set obs 10000
number of observations (_N) was 0, now 10,000

. generate id = _n

. generate ppe0 = rnormal(4.5,1)

. generate cpx1 = ppe0*0.08 + rnormal(0.5,0.2)

. generate dep1 = (ppe0+cpx1)*0.06 + rnormal(0.3,0.1)

. generate ppe1 = ppe0 + cpx1 - dep1

. generate sales = 0.25 + ((ppe0+ppe1)/2)*0.1 + rnormal(0,0.1)

The parameters of the random normal distributions are selected so that they ap-
pear somewhat realistic, considering that these are a result of log-transformations from
originally log-normally distributed variables.

Let’s say that someone is interested in learning how much revenue would change if
a company decides to spend more in new capital expenditure and, at the same time,
how depletion would affect sales, conditional of course on the capital investment stock.
Then, the variation of sales revenue could be written as a function of the structural
relation of (1) plus a random-error term:

salesit = a+ b1ppeit−1 + b2cpxit + b3depit + b4ppeit + εit (2)

Given the rank deficiency in X, Stata will estimate this regression by imposing a
zero-parameter restriction to one of the explanatory variables and also issue a warning
that a variable was omitted because of perfect collinearity:

. regress sales ppe0 cpx1 dep1 ppe1, noheader
note: dep1 omitted because of collinearity

sales Coef. Std. Err. t P>|t| [95% Conf. Interval]

ppe0 .0500818 .0095262 5.26 0.000 .0314086 .068755
cpx1 .0073934 .0106667 0.69 0.488 -.0135154 .0283023
dep1 0 (omitted)
ppe1 .0470199 .0100562 4.68 0.000 .0273077 .0667321

_cons .2559735 .0060155 42.55 0.000 .2441819 .2677651

Stata decided to drop the variable dep1, but this could have been another explana-
tory variable; for example, changing the seed to 1235 would drop cpx1. The inter-
pretation of the remaining estimated slope parameters depends on the validity of the
zero-parameter restriction on b3 = 0 on dep1, a highly doubtful assumption even with
real data. Let’s see what happens when we estimate all competing specifications with
zero-parameter constraints, that is, each time omitting one explanatory variable:
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. quietly regress sales cpx1 dep1 ppe1

. estimates store ppe0_0

. quietly regress sales ppe0 dep1 ppe1

. estimates store cpx1_0

. quietly regress sales ppe0 cpx1 ppe1

. estimates store dep1_0

. quietly regress sales ppe0 cpx1 dep1

. estimates store ppe1_0

. estimates table ppe0_0 cpx1_0 dep1_0 ppe1_0, se(%5.4f) stats(rmse ll)

Variable ppe0_0 cpx1_0 dep1_0 ppe1_0

cpx1 -.04268835 .00739343 .05441336
0.0055 0.0107 0.0051

dep1 .05008178 .00739343 -.04701994
0.0095 0.0107 0.0101

ppe1 .09710171 .05441336 .04701994
0.0012 0.0051 0.0101

ppe0 .04268835 .05008178 .09710171
0.0055 0.0095 0.0012

_cons .25597348 .25597348 .25597348 .25597348
0.0060 0.0060 0.0060 0.0060

rmse .09990187 .09990187 .09990187 .09990187
ll 8848.2841 8848.2841 8848.2841 8848.2841

legend: b/se

Note how the magnitudes of the estimated slopes switch place depending on the vari-
able that is omitted from estimation. This is because each restriction sways estimation
so that the collection of all estimated slopes remains parallel to the null vector that de-
scribes the linear dependency (for an illustration, see figure 1 in Christodoulou [2018]).
This sort of behavior makes any discussion on marginal effects entirely meaningless.

Such ad hoc imposed constraints, whose only purpose is to enable mere estimation,
are dangerous practices when applied on rank-deficient design matrices involving slope
coefficients. A zero-parameter restriction on a slope suggests a zero marginal effect, and
in this case such restrictions are simply untenable.

Another way to enable estimation is to expand X by imposing a linear constraint
that specifies a structural relation across all parameters. For example, one could suggest
that (2) behaves like a homogeneous function of some degree. The structure of the data
does not allow us to estimate which degree this is, so we need to assume the degree
as a constraint. We could claim that the slope coefficients add to some fixed c, thus
effectively imposing a homogeneous function of degree c, meaning that a fixed change
in all independent variables would change the dependent variable by that value raised
to the power of c.

For example, for c = 0, a fixed change would result in no change in the dependent
variable. For c = 1, a fixed change would result in a linear change in the dependent
variable, or what the economists call a “constant return to scale” within the right
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context; for c < 1, we have decreasing returns to scale, and for c > 1 we have increasing
returns to scale. Consider the following examples:

. constraint define 1 ppe0 + cpx1 - dep1 - ppe1 = 0

. quietly cnsreg sales ppe0 cpx1 dep1 ppe1, collinear constraint(1)

. estimates store c0

. constraint define 1 ppe0 + cpx1 - dep1 - ppe1 = 0.75

. quietly cnsreg sales ppe0 cpx1 dep1 ppe1, collinear constraint(1)

. estimates store c0p75

. constraint define 1 ppe0 + cpx1 - dep1 - ppe1 = 1

. quietly cnsreg sales ppe0 cpx1 dep1 ppe1, collinear constraint(1)

. estimates store c1

. constraint define 1 ppe0 + cpx1 - dep1 - ppe1 = 1.25

. quietly cnsreg sales ppe0 cpx1 dep1 ppe1, collinear constraint(1)

. estimates store c1p25

. estimates table c0 c0p75 c1 c1p25, se(%5.4f) stats(rmse ll)

Variable c0 c0p75 c1 c1p25

ppe0 .04746796 .23496796 .29746796 .35996796
0.0028 0.0028 0.0028 0.0028

cpx1 .00477961 .19227961 .25477961 .31727961
0.0045 0.0045 0.0045 0.0045

dep1 .00261382 -.18488618 -.24738618 -.30988618
0.0073 0.0073 0.0073 0.0073

ppe1 .04963375 -.13786625 -.20036625 -.26286625
0.0031 0.0031 0.0031 0.0031

_cons .25597348 .25597348 .25597348 .25597348
0.0060 0.0060 0.0060 0.0060

rmse .09990187 .09990187 .09990187 .09990187
ll 8848.2841 8848.2841 8848.2841 8848.2841

legend: b/se

The option collinear tells Stata to keep perfectly collinear variables, thus ensuring
reporting of all estimated coefficients.

Note how the addition of all estimated slopes is always the same, at b̂1+ b̂2+ b̂3+ b̂4 =
0.10449514, regardless of the imposed constraint. This is the same constant to the
addition of the coefficients as with the estimates with zero-parameter constraints, as
above. Regardless of the constraint, the coefficients must add up to the same constant.

The coefficients are simply scaled up or down by a fixed amount as c changes.
This means that because the constraints are needed for identification, the rank-deficient
nature of the data does not allow one to say which structural constraint is most appro-
priate. One must assume it.

The model with the homogeneous function of degree zero, with c = 0, can also be
fit using the Moore–Penrose pseudoinverse (for example, see Mazumdar, Li, and Bryce
[1980]; Searle [1984]), using the pinv() Mata function as follows:
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. mata:
mata (type end to exit)

: y = st_data(.,("sales"))

: X = st_data(., ("ppe0" ,"cpx1", "dep1", "ppe1"))

: n = rows(X)

: X = X,J(n,1,1)

: XpXi = pinv(quadcross(X,X))

: b = XpXi*quadcross(X,y)

: end

. mata: transposeonly(b)
1 2 3 4 5

1 .0474679606 .0047796107 .0026138174 .0496337539 .2559734849

These are identical coefficients to those reported in the table just above under the
heading c0, in that order. Using the Moore–Penrose pseudoinverse, we can recover every
other solution that is parallel to the null vector. Given that there are four coefficients,
k = 4, then the imposition of an assumed degree for the homogeneous function c must
be equally allocated across the k coefficients. For instance, for k = 0.75, it holds that

. mata: b[1] + 0.75/4, b[2] + 0.75/4, b[3] - 0.75/4, b[4] - 0.75/4
1 2 3 4

1 .2349679606 .1922796107 -.1848861826 -.1378662461

and similarly for any other c. Similarly, because the Moore–Penrose pseudoinverse
gives the solution for c = 0, we could use this result to see what would be the set of
estimates for any given zero-parameter restriction. Here is the case of the zero-parameter
restriction on the coefficient of ppeit−1, which is the same as that reported in the first
column of the first estimates table above:

. mata: b[1] - b[1], b[2] - b[1], b[3] + b[1], b[4] + b[1]
1 2 3 4

1 0 -.0426883499 .050081778 .0971017145

Finally, an important note about standard errors—they remain the same across all
specifications. As shown in Greene and Seaks (1991), the individual standard errors
of regressions involving rank-deficient design matrices are no longer informative. We
cannot speak of coefficient-specific statistical significance. For example, in the first
table of estimates reported, the coefficient on cpx1 appears as statistically insignificant
with a p-value of 0.488. This standard-error estimate is of course nonsensical, given the
nature of the simulated data. In specifications with rank-deficient design matrices, we
can speak only about the fit of the overall model, as in the root mean squared error and
the estimated log likelihood, which remain identical regardless of the type of constraint.
There is no such thing as coefficient significance.
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In Christodoulou and McLeay (2014, 2019), we use Stata to explain how this lack of
insight has proven to be an acute problem in financial research that relies on inputs from
the rank-deficient accounting data matrix of articulated financial statements. Account-
ing data, governed by a double-entry data-generating process whereby a transaction
is recorded twice, is purposefully designed to be rank deficient of order one. This is
a matter of structural nonidentification and requires the additional specification of a
suitable constraint to enable estimation. If the constraint is arbitrarily imposed, then
inference is entirely useless.
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