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Abstract. Errors-in-variables (EIV) regression is a standard method for consistent
estimation in linear models with error-prone covariates. The Stata commands
eivreg and sem both can be used to compute the same EIV estimator of the
regression coefficients. However, the commands do not use the same methods to
estimate the standard errors of the estimated regression coefficients. In this article,
we use analysis and simulation to demonstrate that standard errors reported by
eivreg are negatively biased under assumptions typically made in latent-variable
modeling, leading to confidence interval coverage that is below the nominal level.
Thus, sem alone or eivreg augmented with bootstrapped standard errors should
be preferred to eivreg alone in most practical applications of EIV regression.

Keywords: st0590, errors-in-variables regression, eivreg, sem, standard-error esti-
mation

1 Background

A common problem in many applied fields is estimating the coefficients of a linear
regression model in which one or more of the independent variables is not observed
directly but rather is measured with error. For example, in a traditional education
production function model that may be used to estimate the effects of an educational
policy on student achievement, current achievement is a function of the inputs of interest
and prior achievement (Todd and Wolpin 2003). However, prior achievement is not
observed; rather, it is measured with error by test scores (Lord 1980), often obtained
from standardized assessments given by states or school districts in the United States.
Fitting the model with error-prone measures used in place of their corresponding latent
variables generally will yield inconsistent estimators of all model parameters, not just the
regression coefficients corresponding to the variables measured with error (Buonaccorsi
2010; Carroll et al. 2006; Fuller 1987). This can lead, for example, to inconsistent
estimators of treatment effects in analysis of covariance models where nonexperimental
treatment groups have unequal distributions of confounders that are measured with
error (Culpepper and Aguinis 2011; Lockwood and McCaffrey 2014).

Two primary methods are commonly used to obtain consistent estimators in set-
tings where information about the magnitude of the measurement errors is known. The
first, often referred to as errors-in-variables (EIV) regression, uses method-of-moments
adjustment to account for the errors in measurement (Fuller 1987). This approach is im-
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plemented in the Stata command eivreg. The second common estimation method is via
path analysis or structural equation models (for example, Bollen [1989]). This method
commonly specifies a joint Gaussian distribution for the dependent and independent
variables in the regression model and the measurement errors and then uses maximum
likelihood to estimate the regression coefficients. This approach is implemented in the
Stata command sem.

It can be shown that these two estimation approaches yield identical point estimates
of regression coefficients, given the same data and same working values of the mea-
surement error variances (see, for example, Buonaccorsi [2010, 115]). However, despite
yielding common estimates of regression coefficients, eivreg and sem do not use the
same methods to estimate the standard errors of the estimated regression coefficients. In
this article, we use analysis and simulation to demonstrate that eivreg standard-error
estimators are negatively biased under assumptions typically made in latent-variable
modeling, leading to confidence interval coverage that is below the nominal level. Thus,
sem alone or eivreg augmented with bootstrapped standard errors should be preferred
to eivreg alone in most practical applications of EIV regression.

2 EIV regression

In this section, we first summarize the standard model assumptions for EIV regression,
and we then define the EIV regression estimator. We then discuss differences in how
eivreg and sem estimate standard errors for the estimated regression coefficients.

2.1 Model assumptions

We roughly follow the notation used in the Stata manual [R] eivreg.! Fori=1,..., N,
let (Y;, X7, X,;,U;,¢;) be independent and identically distributed (IID) from a distribu-
tion with finite fourth moments. The quantities X}, X;, and U; are each vectors of
1ength p, SO X: = (Xz?kl’ cee ,X;p)/, Xi = (Xila e 7Xip)/7 and Ui = (Uila ey U,'p)/. The
random variables Y; and ¢; are scalars. The observed data are {Yi,Xi}i]\Ll, whereas
{X¥,U;, €}, are unobserved. The model assumptions are

Y, = XYB+4e, E(e|X:,U;)=0, Var(e) =0 (1)
Xi = X: + Ui; E(Ul | Xr, Gi) = 0, Var(Uz) = EU (2)

Thus, the outcome of interest Y; depends on the latent covariates X through the linear
regression in (1) with coefficients 3 and residual variance 0. We refer to this regression
model as the “true” regression model, and the goal is consistent estimation of 8 from
this model. The challenge is that X} is measured with error by X;. As noted in (2),
the measurement errors U; are assumed to have mean zero and positive semidefinite
variance—covariance matrix ¥y. Some of the components of X} may be measured

1. The main exception is that we do not consider weights in this article to simplify the notation and
discussion. We have no reason to suspect that the basic issues described here do not carry over to
the case of weights, but treatment of that case is beyond the scope of this article.
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without error by the corresponding components of X;, in which case the corresponding
components of U; are identically zero and the corresponding elements of ¥ are zero.
Thus, X; may generally contain both error-free and error-prone covariates, including a
column of ones corresponding to an intercept.

Ignoring the fact that X; measures X} with error by using ordinary least squares
(OLS) in a regression of Y¥; on X; generally yields inconsistent estimates of 3 (Buonaccorsi
2010; Carroll et al. 2006; Fuller 1987). For example, consider the simple case where
X* = (1,X}) for a scalar latent predictor X; measured with error by X; and where
the coefficient on X in the true regression is 8. Then, the estimated coefficient on X;
from a regression of Y; on X; = (1, X;)" converges in probability to rS, where r is the
“reliability” of X, as a measure of X, equal to the ratio of the variance of X to the
variance of X;. Because 0 < r < 1, the estimated coefficient is said to be “attenuated”
because it converges to a value closer to zero than the true coefficient 5. In more
complex problems, the directions and magnitudes of the asymptotic bias in estimators
of B will depend on the true coefficients and the distribution of both X} and U;.

2.2 The EIV regression estimator

The EIV regression estimator uses method of moments to estimate 3, provided that
the variance—covariance matrix of the measurement errors Xy is known or can be es-
timated. Under the model assumptions in (1) and (2), the EIV regression estimator of
3 is consistent, provided other standard regularity conditions hold. In this section, we
summarize the EIV regression estimator.

We restrict attention to the case in which 3y is a diagonal matrix with elements
(0(2]1, . ,U%p), so the measurement errors in different components of X; are mutually
uncorrelated. We focus on this case because this assumption is commonly made in
applications and because this restriction is required by eivreg. The EIV regression
estimator is still well defined in cases where 3y is not diagonal (Fuller 1987), and in
such cases, Stata users could use sem rather than eivreg because the syntax for sem is
sufficiently general to allow nondiagonal specifications for Xy .

We further restrict attention to the case in which the measurement error variances

(015> 0%,) are not known, but rather the reliability of each component of X; is
known (or treated as known). For each component j = 1,...,p, the reliability is
Var(X;"j) Var(ij)

"= Var(X;;) - Var(X};) + oy,
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We focus on this case because, again, it is common in applications and because if
(015 -+ > 01r,) were known, Stata users would be likely to use sem rather than eivreg
because sem allows users to specify measurement error variances, whereas eivreg re-
quires users to specify reliabilities.? Note that 0 < r; <1 as long as Var(Xi*j) > 0, and
r; = 1 for any component j of X7 that is measured without error. We assume a?]j =0
if Var(X7};) = 0 (for example, the model intercept) and define 7; = 1 in that case.

Under the assumptions that 3y is diagonal and that the reliabilities (r1,...,7p)
are treated as known, the EIV regression estimator first defines a working value f]U
of ¥y. The matrix ¥y is set equal to a diagonal matrix with diagonal element j
equal to (1 — r;)Var(X;;), where Var(X;;) = (1/N) Y (X;; — X ;)% The quantity
(1- rj)\//a\r(Xij) is the maximum likelihood estimator (MLE) of the measurement error
variance o7;; under the assumptions that ; is known and that (X, Us;) have a bivariate
normal distribution and is a consistent estimator of O'?Jj under weaker distributional
assumptions.

Let Y = (Y1,...,Yn)’, let X be the (V X p) matrix with row ¢ equal to X}, let X*

be the (IV x p) matrix with row ¢ equal to X}, and define S = Ny, Then, the EIV
regression estimator of 3 is

b=(X'X-8)"'XY=A"'XY (3)

where A = X'X — S, as defined in the Stata manual [R] eivreg. The intuition for
the estimator is that under the assumptions to this point, the diagonal elements of
X’'X are inflated relative to the corresponding diagonal elements of X*'X* because of
the measurement errors, and subtraction of S corrects for this inflation in expectation.
Under standard regularity conditions, plim{(1/N)(X'X — S)~!} = E(X;X})~! and
plim{(1/N)X'Y} = E(X}Y;) = E(X:X!)3 so that b consistently estimates 3.

Note that b as defined by (3) requires A to be invertible. In addition, the estimator
in (3) is conventionally taken to be well defined only when the estimated variance-—
covariance matrix of (Y;, X7,..., X}) is positive semidefinite. Either of these condi-
tions may fail to hold for a given set of observations and working reliabilities, in which
case we say that b “does not exist”. Fuller and Hidiroglou (1978) present a modified
EIV regression estimator that is equal to b if b exists and otherwise is equal to an
alternative function of the data. This modified estimator has the same asymptotic dis-
tribution as b when the working reliabilities are correct (Fuller 1987, sec. 3.1.2), but we
do not consider this estimator further because it is not implemented in either eivreg
or sem. In cases where b does not exist, eivreg will return an error message, whereas
sem generally will fail to converge.

2. In cases where (0%,,..., a%p) are known, users could estimate r; by 7; = {\//.a}(Xij) —
o%j}/Var(Xij) and then use eivreg with 71,...,7p, provided that these values were all positive.

The basic results described here would still apply in this case.
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2.3 Standard-error estimation

As noted, under the assumptions to this point, the method-of-moments algorithm used
by eivreg and the maximum likelihood algorithm used by sem yield the same value
of b in theory. In practice, as long as b exists given the observed data and assumed
reliabilities, and as long as the iterative algorithm used by sem converges, then the two
commands will report the same value of b up to small numerical differences.> However,
the commands do not use the same methods to estimate the variance-covariance matrix
of b, and the methods used by eivreg will tend to understate the actual sampling
variance of the estimator under assumptions typically made in latent-variable modeling.
This section describes why this occurs.

The reason that method of moments as implemented by eivreg and maximum
likelihood estimation under a joint normality assumption as implemented by sem yield
the same value of b is that both algorithms yield an identical set of estimating equations
whose solution is b. The theory of estimating equations provides standard methods for
estimating the sampling variance Var(b) of b computed from 11D samples of observed
data {V;,X;}¥, (see, for example, Stefanski and Boos [2002]). These methods are
implemented by sem to compute an estimate @(b) of Var(b) but are not used by
eivreg. The methods used by eivreg essentially estimate only one of two nonnegative
terms in an additive decomposition for Var(b), thus providing an estimated variance
\m(b) that tends to be too small under the assumption that the observed data are
IID samples from a population distribution. The remainder of this section justifies this
claim.

Consider the decomposition*
Var(b) = Var{E(b | X, X*)} + E {Var(b | X, X")} (4)
For the first term on the right-hand side of (4),

Var{E(b | X,X*)} = Var{E(AT'X'Y|X,X")}
= Var (A7'X'X"*3)

3. This is true for the regression coefficients but not, by default, for the intercept. This is because,
by default, sem defines all latent variables to have mean zero, whereas eivreg puts no restrictions
on the means of the latent variables. The different assumptions generally will cause the intercepts
estimated by the two commands to differ. The discrepancy can be eliminated by using the means
option in sem to define each latent variable to have a mean equal to the sample mean of its
corresponding observed measure.

4. The decomposition does not account for the nonzero probability that b does not exist. When
the reliabilities are properly specified, this probability goes to zero as N increases under standard
regularity conditions, so the decomposition can be considered asymptotically correct.
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where the second equality follows from the fact that A~'X’ is a function of X conditional
on known reliabilities and the fact that E(Y | X,X*) = E(Y | X*) = X*3. For the
second term on the right-hand side of (4),

E{Var(b|X,X*)} = E{Var(A7'X'Y|X,X")}
= E{A'X'Var(Y | X,X*) XA}
= ¢’E(AT'X'XA™)

Thus, an alternate expression for Var(b) in (4) is
Var(b) = Var (A™'X'X*3) + 0*E (A"'X'XA™") (5)

The key issue is that the first term on the right-hand side of (5) is not zero in EIV
regression. This deviates from OLS regression. Specifically, OLS regression corresponds
to the case in which the reliabilities 7; = 1 so that X = X* and A = X*X*. In
this case, Var (A‘lX’ X*,@) = Var(8) = 0. Alternatively, when some predictors are
measured with error, Var (A‘1X' X*,@) is generally positive because A7!X'X* is a
random matrix rather than a fixed identity matrix.® Thus, A~!X’X*3 varies from
sample to sample and contributes to variability in b rather than being identically equal
to B.

The estimate \//EL}(b) of Var(b) computed by eivreg ignores this term and essentially
provides only an estimate of the second term on the right-hand side of (5), at least
as of Stata 14.1. Specifically, \f/a/r(b) computed by eivreg is a plugin estimator of
o’E (A‘1X' XA_l) because eivreg first computes an estimate of the residual variance
o2 of the true regression in (1) equal to

., Y'Y-bAb
o = N—p

It then estimates Var(b) using
Var(b) = 52A X' XA ! (6)

The estimator 52 consistently estimates o2 under standard regularity conditions because
Pl {Y'Y/(N - p)} = E(Y?) = B(3'X:X'8) + E(¢?) and plim{b'Ab/(N — p)} =
E(B'X:X}3). Thus, the difference consistently estimates E(e?) = 02. The estimated
variance in (6) then plugs the observed value of A~ X’X A ~! in as an estimator of its ex-
pected value, so that Var(b) can be viewed as a plugin estimator of 02 E (ATIX'XATY).
This is the second term on the right-hand side of (5), while the first term is implicitly
ignored.

The fact that o2E (A7'X'XA ') equals E{Var(b | X,X*)} means that Var(b)
reported by eivreg is appropriate only under the assumption that all covariates and
their corresponding measurement errors are fixed. This assumption generally would be

5. Under standard regularity conditions, A~1X’X* converges in probability to an identity matrix
because both plim{(1/N)A} and plim{(1/N)X'X*} equal E(X;X*).
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inconsistent with random sampling of units from a population and is particularly restric-
tive in applications with measurement error because it also conditions on fixed values
of unobserved measurement errors. Moreover, even in applications where these assump-
tions would be warranted, the variance estimator used by eivreg would be appropriate
for characterizing the sampling variability of the estimated regression coefficients but
would not be appropriate for characterizing the mean squared error of these estimators
because E(b | X, X*) generally does not equal 8. Alternatively, Var(b) as reported by
sem yields standard-error estimators that are consistent with random sampling of the
covariates, measurement errors, and outcomes from a population distribution, implicitly
accounting for both terms in (5).

2.4 Magnitude of bias for eivreg standard errors

It is difficult to evaluate the relative magnitude of the two terms in (5) in general,
but some basic results are evident. For fixed N and fixed o2, as r; — 1 for j =
1,...,p, Var (A‘1X’X*,8) converges to zero and o2?FE (A‘1X'XA_1) converges to
02E(X*'X*)717 the variance of the OLS estimator of 8 under random sampling of
all variables.

Note also that Var (A~'X'X*3) does not depend on o2. Thus, for fixed N and fixed
reliabilities that are less than 1, as 02 — 0, this term dominates the variance. Because
eivreg ignores this term, the standard errors reported by eivreg will tend to be more
negatively biased when o2 is small, or alternatively, when the R? of the true regression
is large. For fixed N and fixed o2, it is difficult to discern the relative magnitude of the
two terms as the reliabilities change because both terms are affected by the reliabilities.

A key consideration is the relative magnitude of the terms as N changes, for fixed
o? and fixed reliabilities. The general results from estimating equation theory indicate
that, under sufficient regularity conditions, b is consistent and asymptotically normal
with variance that is O(1/N). Thus, both terms in (5) must converge to zero as N goes
to infinity. However, it is unclear from the expressions under what conditions the two
terms will decrease at the same rate as a function of N. It can be shown that both
terms are O(1/N) in a simple case with a scalar, normally distributed latent predictor
X7 with known mean zero and normally distributed measurement errors U;. In this case,
\E(b) /Var(b) will generally remain less than 1 as N increases, where b is the estimated
coefficient on X. This would mean that eivreg standard errors will underestimate the
true standard errors in expectation, and the coverage rate of the associated confidence
intervals will be less than the nominal level, regardless of the sample size.

3 Simulation study

We conducted a simple simulation study to demonstrate the practical differences be-
tween the standard errors reported by eivreg and those reported by sem. We consider
the case where p = 2 (that is, an intercept and a scalar predictor) and focus only on the
estimated coefficient for the predictor. Our simulation varied three factors: the sample
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size N, the R? of the true regression, and the reliability r. Specifically, we considered
four sample sizes N of 100, 500, 1,000, and 5,000; five values of R? for the true re-
gression of 0.10, 0.30, 0.50, 0.70, and 0.90; and five reliabilities r of 0.50, 0.60, 0.70,
0.80, and 0.90, for a total of 100 simulation conditions. For each of the 100 simulation
conditions, we used 1,800 independent Monte Carlo replications.® For each replication,
the observed predictor X; for ¢ = 1,..., N was generated as X; = X + U;, where the
latent predictor X, was normally distributed with mean zero and variance one, and the
measurement error U; was normally distributed with mean zero and variance (1 —7)/r.
Then, Y; was set equal to 0.0+1.0X;" +¢;, where ¢; was normally distributed with mean
zero and variance (1 — R?)/R?. Thus, the coefficient 8 on X in the true regression was
equal to 1.0.

For each simulation condition and Monte Carlo replication, we used the simulated
data to compute the EIV regression estimate b of § and its associated standard-error
estimate, using both eivreg and sem.” For eivreg, we tracked both the reported
standard error for b and the standard error estimated using bootstrapping with 250 in-
dependent bootstrap replications. We used 250 bootstrap samples because that amount
should be more than sufficient in most cases per Efron and Tibshirani (1993, 52), but
the computational time was not prohibitive.

For each of the three standard-error estimation methods (sem-reported standard
errors, eivreg-reported standard errors, bootstrapped standard errors), we then com-
puted the 95% confidence interval for 3 and tracked whether the confidence interval
contained the true value of § = 1. For each of the 100 simulation conditions, we esti-
mated the coverage probability of the 95% confidence intervals by averaging over the
1,800 Monte Carlo replications. For each of the 100 simulation conditions, we also
computed the ratio of the mean standard error reported by eivreg across the 1,800
replications to the sample standard deviation of b across the replications. When this
ratio is less than 1, it indicates that the reported standard errors tend to be smaller
than the actual standard deviation of the sampling distribution of b. We computed the
analogous ratio using the bootstrapped standard errors and the standard errors reported
by sem. The simulation was run in Stata 14.1 for Linux, and the code is provided in
the appendix.

6. We selected 1,800 Monte Carlo replications because 1.96 X 1/0.95 x 0.05/1800 = 0.01, so a 95%
confidence interval for the probability of a Bernoulli random variable with p = 0.95, computed from
the Monte Carlo replications, will be approximately 4+0.01.

7. For some simulated datasets, the EIV regression estimator did not exist. We report summary
statistics from the simulation for the subset of cases in which the EIV estimator exists.
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In initial explorations of the simulation study, we found simulated datasets for which
the EIV regression estimator exists and was successfully computed by eivreg but for
which sem did not converge to this solution from its default starting values. Thus,
as demonstrated in the code in the appendix, we modified the call to sem to use the
MLEs of the model parameters as starting values. The MLE of the regression coefficient
for X was computed by eivreg, and MLEs of the required variance components were
computed using this regression coefficient, the reliability, and sample variances of Y;
and X; for i = 1,..., N. As expected, initializing the parameters in this way led to
rapid convergence of sem and estimated regression coefficients across sem and eivreg
that demonstrated only negligible numerical differences for all simulated datasets.

The simulation results were consistent with the analytical results regarding the neg-
ative bias in the standard-error estimators reported by eivreg. The 95% confidence
intervals for 3 using the standard errors reported by eivreg had less than 95% coverage.
Across the 100 simulation conditions, the coverage probabilities using the standard er-
rors reported by eivreg ranged from 0.58 to 0.95 with mean 0.87. Coverage was worse
when R? was large and r was small, regardless of sample size N. The coverage ap-
proached the nominal levels when R? was small and r was large, again regardless of N.
The ratio of the mean standard errors reported by eivreg to the estimated sampling
standard deviation of b ranged from 0.42 to 1.02 with mean 0.82, consistent with the
undercoverage of the confidence intervals.

Alternatively, confidence intervals computed using either the standard errors re-
ported by sem or the bootstrapped standard errors had closer to nominal coverage. For
sem, coverage ranged from 0.94 to greater than 0.99, with mean 0.97. The ratio of the
mean standard errors reported by sem to the estimated sampling standard deviation of
b ranged from 0.95 to 1.74, with mean 1.14, consistent with the confidence interval cov-
erage that somewhat exceeds the nominal level. For the bootstrapped standard errors,
coverage ranged from 0.92 to 0.96, with mean 0.95, and the ratios of mean standard er-
rors to estimated sampling standard deviation of b ranged from 0.95 to 1.05, with mean
0.99. Table 1 provides results from the three standard-error estimation methods for a
representative subset of the 100 simulation conditions, with rows ordered according to
the coverage for eivreg.
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Table 1. Estimated coverage of 95% confidence intervals for 8 and ratios of mean
reported standard errors to standard deviation of b for selected simulation conditions.
Each row is based on 1,800 independent simulation replications, and rows are ordered
by the estimated coverage for eivreg.

Design Coverage Ratio

N R? r eivreg bootstrap sem eivreg bootstrap sem
5,000 0.9 0.5 0.61 0.95 >0.99 0.43 1.01 1.64
100 0.9 0.5 0.68 0.94 0.99 0.55 1.01 1.74
100 0.9 0.7 0.68 0.95 0.98 0.55 0.99 1.31
5,000 0.9 0.7 0.71 0.95 0.99 0.53 1.03 1.31
100 0.9 0.9 0.82 0.94 0.95 0.70 0.97 1.01
5,000 0.9 0.9 0.85 0.95 0.96 0.72 1.00 1.05
100 0.5 0.5 0.88 0.94 0.98 0.81 0.99 1.29
5000 0.5 0.5 0.89 0.95 0.99 0.82 1.00 1.30
100 0.5 0.7 0.91 0.95 0.97 0.87 1.00 1.09
5,000 0.5 0.7 0.92 0.94 0.97 0.87 0.99 1.09
100 0.5 0.9 0.93 0.94 0.95 0.95 0.99 0.99
5,000 0.5 0.9 0.93 0.94 0.95 0.93 0.97 0.98
100 0.1 0.5 0.93 0.94 0.96 0.96 0.98 1.04
100 0.1 0.9 0.94 0.94 0.94 0.99 1.00 0.99
100 0.1 0.7 0.94 0.94 0.95 0.98 0.99 1.00
5,000 0.1 0.7 0.95 0.95 0.95 0.95 0.97 0.98
5,000 0.1 0.5 0.95 0.95 0.96 0.97 0.99 1.04
5,000 0.1 0.9 0.95 0.95 0.95 0.99 1.00 1.00

4 Conclusion

The findings of this article indicate that Stata provides at least two alternatives to
using eivreg with its reported standard errors that are likely to be preferable in most
applications with error-prone covariates: eivreg with bootstrapped standard errors and
sem. We discuss each alternative in turn.

Regarding bootstrapping, because the method-of-moments estimator implemented
by eivreg is fast and relatively robust, combining eivreg with bootstrapping may
be attractive in some applications. Although our simulation studies considered only a
simple case, it seems reasonable to expect that bootstrapping would perform well even in
more complicated settings (for example, multiple error-prone and error-free covariates).
As such, Stata could consider adding a vce(bootstrap) option to eivreg in future
releases to encourage eivreg users to consider this option in their applications.

Regarding the use of sem for EIV regression, this option is attractive not only because
sem provides standard errors consistent with random sampling of all relevant quantities,
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but also because it is more flexible than eivreg. For example, sem can handle missing
data when they are missing at random (whereas eivreg drops cases with incomplete
data); it provides several methods for standard-error estimation in more complicated
settings such as heteroskedasticity and clustering of residual errors (whereas eivreg
provides no such options); and it can accommodate nondiagonal variance—covariance
matrices for the measurement errors (whereas eivreg requires uncorrelated measure-
ment errors). The main disadvantages of sem relative to eivreg are that it is slower
and does not always converge from its default starting values even for datasets in which
the EIV estimator exists. The latter problem could be addressed by using eivreg to
generate starting values for sem to achieve convergence in difficult cases.

An additional limitation of sem is worth noting. When reliabilities are treated as
known, sem uses those reliabilities to compute estimates of the measurement error vari-
ances and then treats those estimated measurement error variances as known when
computing Var(b). Thus, there is a mismatch between what is actually fixed (the relia-
bilities) and what is treated as fixed (the measurement error variances) in the calculation
of @(b). This could explain why the reported standard errors from sem summarized
in table 1 were too large for some simulation conditions. We conducted an auxiliary
simulation study that supported this conjecture. Specifically, we ran a version of the
simulation study in which sem was invoked using a known measurement error variance
rather than a known reliability. That is, for a simulation condition with reliability r, our
modified simulation study applied sem by specifying the measurement error variance as
known and equal to (1 — r)/r, rather than by specifying the reliability as known and
equal to r. Across simulation conditions, the coverage of the 95% confidence intervals
averaged 0.95, and the ratio of the mean standard errors reported by sem to the esti-
mated sampling standard deviation of b averaged 1.00. These results suggest that the
overcoverage for sem demonstrated in table 1 will not occur in cases where sem is applied
with known measurement error variances rather than known reliabilities. The code for
this simulation study is available from the authors by request. The results also suggest
that it may be valuable to modify the sem standard-error calculations when reliabili-
ties rather than measurement error variances are specified by the user. One approach
to such modification is to include the estimation of the measurement error variances
from the marginal variances of the observed predictors and the assumed reliabilities as
additional equations in the system of estimating equations determining the MLE and
to use standard results from M estimation (for example, Stefanski and Boos [2002]) to
estimate the standard errors.

These considerations also suggest a possible advantage of bootstrapped standard
errors when the reliabilities are treated as known because the bootstrap distribution of
b is based on holding the reliabilities constant. Thus, the sampling distribution of b is
approximated under conditions that are consistent with what the analyst is treating as
known. The results of table 1 appear to provide an example of this possible advantage
of bootstrapping because it does not appear to be susceptible to overcoverage.

Finally, our simulation study considered only the simplest possible case of EIV re-
gression with a single error-prone covariate, no other covariates, and a joint Gaussian
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distribution for all quantities of interest. Given the theoretical considerations, we expect
that the deficiencies of the standard errors estimated by eivreg will carry over to more
general cases, but further study of these deficiencies and the performance of both sem
and bootstrapping would be warranted.
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A Appendix: Code for simulation

capture program drop simit

[% wokskskokskoskokskokokokskskok sk ks sk ok sk skok ok ko sk ok sk sk sk ko sksk ok okokokok ok /
/* program for running one iteration of simulation */
[% wkskskok sk ok kKoK ok Kk KKK kKoK KKK KKK kKKK R K/
program simit, rclass

syntax, nobs(integer) rsq(real) lambda(real)

preserve

set obs "nobs”

/* generate data */
generate double xstar = rnormal(0.0, 1.0)

generate double err = rnormal(0.0, sqrt( (1.0 - “rsq”) / “rsq”  ))
generate double u = rnormal(0.0, sqrt( (1.0 - “lambda”) / ~lambda”))
generate double xobs = xstar + u

generate y 0.0 + 1.0*xstar + err
/* proceed if EIV is possible given observed data and reliability */
quietly correlate y xobs
if (“lambda” > r(rho)~2) {
return scalar eiv_ok =1

/* run -eivreg- with reported standard errors ("eiv") */
eivreg y xobs, reliab(xobs ~lambda~)

local b_init = _b[xobs]

scalar cieiv_1l = _b[xobs]-1.96*_se[xobs]
scalar cieiv_u = _b[xobs]+1.96%_se[xobs]
return scalar b_eiv = _b[xobs]
return scalar se_eiv = _se[xobs]

return scalar cover_eiv = cond(cieiv_1<1 & cieiv_u>1,1,0)

/* run -eivreg- with bootstrapped standard errors ("beiv") */
bootstrap, reps(250): eivreg y xobs, reliab(xobs ~lambda’)

scalar cibeiv_1 = _b[xobs]-1.96%_se[xobs]
scalar cibeiv_u = _b[xobs]+1.96*_se[xobs]
return scalar b_beiv = _b[xobs]
return scalar se_beiv = _se[xobs]

return scalar cover_beiv = cond(cibeiv_1<1 & cibeiv_u>1,1,0)
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/* run -sem-, initializing regression coefficient at -eivreg- solution, */

/* and initializing var(X) and var(Y|X) to their MLEs
quietly summarize xobs

local vX_init = r(Var) * (("nobs” - 1)/ nobs”) * ~lambda”
quietly summarize y

local veY_init = (r(Var) * (("nobs” - 1)/ nobs”)) - ///
(Cb_init "* b_init "* vX_init")
capture sem (xobs <- X) (y <- (X, init( b_init"))), /17

var ((X, init("vX_init"))) var((e.y, init( veY_init~))) ///
reliab(xobs ~lambda”)

matrix B = e(b)

matrix vB = e(V)

scalar b_sem = B[1,3]

scalar se_sem = sqrt(vB[3,3])

scalar cisem_1 = b_sem -1.96%se_sem
scalar cisem_u = b_sem +1.96%se_sem

return scalar b_sem = b_sem
return scalar se_sem = se_sem
return scalar cover_sem = cond(cisem_1<1 & cisem_u>1,1,0)
return scalar sem_status = _rc
else {
return scalar eiv_ok = 0
restore
end

/% sokokokokokskok ok sksk ok ok sk sk ok ok sk sk ok sk sk sk sk sk sk sk ke ok sk sk sk sk s ksl sk ok sk sk sk ok sk sk sk sk ksksk ok kskokokok ok /
/* loop simulation over conditions and Monte Carlo replications */
/% soksrokokokskok ok skskok ok sksk ok sk sk ok sk ok ksl sk sk sk ok ok sk ok sksk sk ok sk sk ke sk sk ok skok ok ksl sk sk ok kskok ok ok ok /
set more off

set seed 1417

set linesize 140

local nobs_seq 100 500 1000 5000

local rsq_seq 0.10 0.30 0.50 0.70 0.90

local lambda_seq 0.50 0.60 0.70 0.80 0.90

local nsim 1800

local filename results_all

tempname simulation

postfile “simulation” numok numsemconv nobs rsq lambda 17/

b_eiv_mean b_eiv_sd se_eiv_mean cover_eiv ///
b_beiv_mean b_beiv_sd se_beiv_mean cover_beiv ///
b_sem_mean b_sem_sd se_sem_mean cover_sem ///
using “filename”, replace

display "$S_TIME $S_DATE"
foreach nobs of local nobs_seq {

foreach rsq of local rsq_seq {
foreach lambda of local lambda_seq {
simulate eiv_ok=r(eiv_ok) sem_status=r(sem_status)
b_eiv=r(b_eiv) se_eiv=r(se_eiv) cover_eiv=r(cover_eiv)

17/
11/

b_beiv=r(b_beiv) se_beiv=r(se_beiv) cover_beiv=r(cover_beiv) ///

b_sem=r (b_sem) se_sem=r (se_sem) cover_sem=r (cover_sem),

reps("nsim”): simit, nobs("nobs”) rsq( rsq”) lambda( lambda~)

quietly summarize eiv_ok
scalar numok = r(sum)

17/

*/
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generate tmp = (sem_status==0)
quietly summarize tmp

scalar numsemconv = r(sum)
drop tmp

/* compute summary statistics to save, */
/* keeping cases where EIV possible and -sem- converged. */
/* also check that estimated coefficients are the same */
keep if ((sem_status==0) & (eiv_ok==1))

generate d = b_sem - b_eiv
summarize d
drop d

foreach var of varlist ///
b_eiv se_eiv cover_eiv ///
b_beiv se_beiv cover_beiv ///
b_sem se_sem cover_sem {
quietly summarize “var’
scalar “var _mean=r (mean)

}

foreach var of varlist ///
b_eiv b_beiv b_sem {
quietly summarize “var’
scalar “var _sd=r(sd)

}
post “simulation~” ///
(numok) (numsemconv) (“nobs”) (“rsq”) (" lambda~) ///

(b_eiv_mean) (b_eiv_sd) (se_eiv_mean) (cover_eiv_mean) ///
(b_beiv_mean) (b_beiv_sd) (se_beiv_mean) (cover_beiv_mean) ///
(b_sem_mean) (b_sem_sd) (se_sem_mean) (cover_sem_mean)
clear

}
}
postclose “simulation”
display "$S_TIME $S_DATE"

use results_all

sort nobs rsq lambda

list

outsheet using results_all.csv, comma nolabel replace
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