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Abstract. In this article, I extend the theory of added-variable plots to three
panel-data estimation methods: fixed effects, between effects, and random effects.
An added-variable plot is an effective way to show the correlation between an
independent variable and a dependent variable conditional on other independent
variables. In a multivariate context, a simple scatterplot showing x versus y is not
adequate to show the relationship of x with y, because it ignores the impact of
the other covariates. Added-variable plots are also useful for spotting influential
outliers in the data that affect the estimated regression parameters. Stata can
display added-variable plots with the command avplot, but it can be used only
after regress. My new command, xtavplot, is a postestimation command that
creates added-variable plots after xtreg estimates. Unlike avplot, xtavplot can
display a confidence interval around the fitted regression line.

Keywords: gr0082, xtavplot, xtavplots, added-variable plot, panel data, postesti-
mation diagnostics, xtreg

1 Introduction

An added-variable plot displays a scatterplot of a transformation of an independent
variable (say, x1) and the dependent variable (y) that nets out the influence of all
the other independent variables. The fitted regression line between these transformed
variables has the same slope as the coefficient on x1 in the full regression model, which
includes all the independent variables.

An added-variable plot is a visually compelling method for showing a partial corre-
lation between x1 and y. A confidence interval shows how precisely the sample data fit
that correlation. An added-variable plot is the multivariate analogue of using a simple
scatterplot with a regression fit in a univariate context.

The main purpose of the panel-data estimation methods in xtreg is to control for in-
dividual effects. If it is important to control for them in regressions, it is also important
to control for them in graphs of the relationship of a covariate with the dependent vari-
able. xtavplot controls for the influence of individual effects as well as other covariates
on the partial correlation of x1 and y.

Outliers in a simple scatterplot of x1 versus y may no longer be outliers when other
covariates are included in the model. An added-variable plot is a handy visual diagnostic
for spotting influential outliers after conditioning on the other covariates in the model.
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2 Why do we need added-variable plots, and where do
they come from?

The purpose of multivariate regression is to assess the influence of each independent
variable on the dependent variable while accounting for the influence of all the other
independent variables. The regression coefficient quantifies the partial correlation of
an independent variable (x1) on the dependent variable (y), controlling for the other
independent variables (x). A simple scatterplot is an effective visual presentation of
the unconditional correlation of x1 with y, but an added-variable plot is needed to
display the partial correlation of x1 with y conditional on other x variables. The partial
correlation typically has a different magnitude and may even have a different sign than
the unconditional correlation.

For example, there is a positive correlation between the log of wages and worker age
in the National Longitudinal Study of Young Women Stata dataset. This is clear to the
eye from a scatterplot of the data with a regression line:
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However, in a fixed-effects regression that includes age as well as a quadratic in job
tenure and total years of labor market experience, age has a negative partial correlation
with log wages in this sample. We can graphically display this relationship—the partial
correlation of age with log wages controlling for the other independent variables—with
xtavplot:
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. xtreg ln_w age tenure c.tenure#c.tenure ttl_exp, fe
(output omitted )

. xtavplot age
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coef = −.0083194, se =  .0039658, t = −2.10

The added-variable plot provides a graphical representation of the relationship be-
tween age and wages when other regressors are also included in the model, which is
dramatically different from the unconditional relationship of age and wages. The pos-
itive unconditional correlation of age with wages becomes a negative correlation when
it is conditional on the other included regressors. The slope of the fitted regression line
in the added-variable plot is equal to the estimated coefficient on x1 in the fixed-effects
regression.1

The next subsections explain the statistical basis for added-variable plots. If that is
not your interest, please skip to section 3.1—the syntax of xtavplot—and to detailed
examples of its use in section 5.

2.1 Partial regression

The statistical basis for an added-variable plot is partial regression. Partial regression
shows that the partial correlation of x1, one of multiple independent variables, with
the dependent variable y can be found by “partialing out” the influence of the other
independent variables on both x1 and y first and then regressing the partialed x1 on
the partialed y.

1. Note that the added-variable plot is not a good method for evaluating the functional form of the
relationship between x1 and y, because its validity depends on the assumed linear relationship
between y and all the x’s, as shown in the next section.
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Take the standard linear regression equation relating the dependent variable, y, to
K − 1 independent variables x1, . . . , xK−1, and an intercept term and an error term ε:

yi = β1x1i + · · ·+ βK−1xK−1,i + βK + εi

The intercept term is placed after the x variables for notational convenience.

If we draw a sample of N observations of data that conform to this relationship, we
have n × 1 data vectors of the dependent variable y and the K independent variables
(including xK ≡ 1, a vector of 1s, for the intercept βK), x1, . . . ,xK . Combining all the
independent variables into an n×K matrix X, the data fit the equation

y = Xβ + ε

where β is a K × 1 vector of unknown parameters and ε is an n × 1 vector of the
unobserved errors.

The ordinary least-squares (OLS) estimator b is derived by minimizing the sum of
squared residuals (ε̂′ε̂, where ε̂ = y −Xb) and solving the first-order normal equation

X′Xb = X′y (1)

We can partition the X matrix into X = [x1X2], where X2 = [x2 . . .xK ]; partition b

into b =

[
b1
b2

]
, where b2 =

 b2...
bK

; and rewrite (1) as

[
x′
1x1 x′

1X2

X′
2x1 X′

2X2

] [
b1
b2

]
=

[
x′
1y

X′
2y

]

With some manipulation, we can solve for b1 = (x′
1M2x1)

−1x′
1M2y, where M2 =

(I−X2(X
′
2X2)

−1X′
2). Because M2 is symmetric and idempotent, we can rewrite b1 as

b1 = (x′
1M

′
2M2x1)

−1x′
1M

′
2M2y = (e′x1

ex1
)−1e′x1

ey (2)

where ex1
= M2x1 and ey = M2y.

By inspecting the equation for M2, we can see that ey = M2y is the vector of
residuals from the regression of y on X2, and likewise, ex1

= M2x1 is the vector of
residuals from the regression of x1 on X2.

ey and ex1
can be interpreted as y and x1 purged of the influence of theX2 variables.

ey = y − ŷ
X2

, where ŷ
X2

is the predicted value of y from the regression of y on X2.
That is, ey is what is left over when all the variation in y that can be predicted by X2

has been subtracted out. The process is similar for ex1 . So the correlation of ey and
ex1

is the partial correlation y and x conditional on X2.

This decomposition gives rise to the added-variable plot. A scatterplot of the values
in ex1

versus ey will show the correlation of the x1 variable with the y variable, con-
trolling for the influence of the other independent variables in the multiple regression.
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From (2), we can see that the OLS estimator b1 of β1 is the result of regressing ey on
ex1

(with no intercept term). Thus, the OLS linear fit of the data in the scatterplot of
ex1

versus ey is equal to b1, the estimated partial effect of x1 on y.

This is what we were seeking: a way of displaying the relationship between x1 and
y, controlling for the effect of the other independent variables in the regression. An
added-variable plot creates a scatterplot of ex1

versus ey and displays the linear fit line
with confidence interval boundaries above and below the regression line. The regression
line has a slope of b1.

2.2 Partial regression of transformed variables

The derivation of partial regression above applies only to OLS estimation because it
results from the OLS normal equation (1). However, we can derive a partial-regression
formula for non-OLS estimation methods if their estimating equations can be trans-
formed so that they meet OLS assumptions.2 The fixed-effects, between-effects, and
random-effects panel-estimation methods can each be represented as transformations of
the original model, which can then be fit by OLS yielding the β coefficient estimates we
are seeking.

If the transformed variables y∗, x∗
1, and X∗

2 conform to OLS assumptions, the equa-
tion

y∗ = x∗
1β1 +X∗

2β2 + ε∗

results in the OLS normal equation[
x∗′
1 x

∗
1 x∗′

1 X
∗
2

X∗′
2 x

∗
1 X∗′

2 X
∗
2

] [
b1
b2

]
=

[
x∗′
1 y

∗

X∗′
2 y

∗

]
As above,

b1 = (x∗′
1 M

∗
2x

∗
1)

−1x∗′M∗
2y

∗ = (e′x∗
1
ex∗

1
)−1e′x∗

1
ey∗

for M∗
2 = I−X∗

2(X
∗′
2 X

∗
2)

−1X∗′
2 ex∗

1
= M∗

2x
∗
1 and ey∗ = M∗

2y
∗ (3)

The next three subsections apply the partial-regression formula for a transformed
estimating equation to three panel-data estimation methods: fixed effects, between
effects, and random effects.

2.3 Fixed-effects estimation

Fixed-effects estimation is just a computationally efficient way of estimating OLS coeffi-
cients incorporating a separate intercept for each cross-sectional unit in the panel-data
sample. Direct computation using OLS with dummy variables for each unit is straight-
forward but cumbersome. In the typical situation, where the number of cross-sectional

2. This is the idea behind the typical proof of the properties of generalized least-squares (GLS)
estimation.
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units n is large and the number of time-series observations per unit Ti is small, unit-
specific intercepts result in many dummy variables, and their coefficients are usually
not of interest in themselves (or consistently estimated). Fixed-effects estimation trans-
forms the estimating equation to eliminate the numerous intercept terms. Estimating
the transformed equation via OLS still delivers the same coefficients and standard errors
(after a degrees-of-freedom adjustment) as direct computation, making the estimation
faster and more convenient.

Given panel data on individuals or units indexed by i ∈ {1, . . . , n} for multiple time
periods t ∈ {1, . . . , Ti}, consider the linear model

yit = xitβ + υi + εit (4)

where xit is a 1 × K row vector of independent variables and υi is an individual or
unit-specific intercept term that is assumed to be uncorrelated with the error term
εit. The advantage of including the individual intercepts is that they control for all
characteristics of the individual that do not change over time. Without panel data, one
could not control for fixed individual characteristics without gathering data on each of
the characteristics. This model can be fit using OLS by including dummy variables for
each individual in the sample. Because the individual intercepts are not typically of
interest, however, one can save time and effort by subtracting out their effects.

Taking the average of the observations over each individual, (4) becomes

yi = xiβ + υi + εi (5)

where yi = 1/Ti
∑

Ti
yit, xi = 1/Ti

∑
Ti

xit, and εi = 1/Ti
∑

Ti
εit. Subtracting (5)

from (4),

yit − yi = (xit − xi)β + εit − εi
which cancels out all the υi terms, dramatically reducing the dimensionality of the
estimation when n is large. This can be rewritten as

y∗it = x∗
itβ + ε∗it (6)

where y∗it = yit − yit, x∗
it = xit − xit, and ε

∗
it = εit − εit.

Fixed-effects estimation applies OLS to (6) to estimate the β coefficients efficiently.3

One could apply the partitioned regression formula in (3) to (6) to derive residuals
ey∗ and ex∗

1
. These could be plotted, and the slope of their linear fit would be b1.

However, the meaning of the residuals is not intuitive. ey∗ is a vector of y∗it controlling
for x∗

2it (where x∗
it = [x∗1it x

∗
2it]), not yit controlling for x2it. Similarly, ex∗

1
is a vector

of x∗1it controlling for x∗
2it, not x1it controlling for x2it.

3. Although not often mentioned, the fixed-effects transformation of the error terms ε∗it = εit − εi
violates OLS assumptions because it introduces both serial correlation and heteroskedasticity (if the
Ti are not identical) into the transformed error. Nonetheless, OLS estimation of the transformed
equation provides efficient estimates of β because the transformed x∗it cancel out the problem. See
Wooldridge (2010, 305).
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It is straightforward, however, to calculate the OLS ey and ex1
from the fixed-effects

ey∗ and ex∗
1
. ey∗ is the fixed-effects residual from the regression of x∗

2 on y∗, producing
the coefficient by∗|x∗

2
. An element of ey∗ is ey∗

it
= yit − yi − (x2it − x2i)by∗|x∗

2
. The

fixed-effects coefficient by∗|x∗
2
is exactly equal to the OLS coefficient by|x2

from regressing

x2it and υi on yit.
4 So, ey∗

it
= (yit − x2itby|x2

) − (yi − x2iby|x2
). The second term,

(yi − x2iby|x2
) = u(y|x2)i, is the OLS estimate of the individual effect. Hence, ey∗

it
=

eyit
− u(y|x2)i and ey = ey∗ + uy, where uy is an (N =

∑
i Ti) × 1 vector of u(y|x2)i.

Similarly, ex1 = ex∗
1
+ux1 . That means that one can readily calculate the more intuitive

OLS residuals ex1 and ey from the fixed-effects estimates.

So, in the case of fixed effects, the estimation of the transformed (6) produces b
coefficients identical to those from a direct OLS estimation of (4). The fixed-effects
estimates are used to transform the fixed-effects residuals ex∗

1
and ey∗ into the OLS

residuals of ex1
and ey to create an added-variable plot whose fitted regression line has

slope b1.

2.4 Between-effects estimation

Between-effects estimation applies OLS to the n unique individual mean values of (5),
taking υi as part of the error term because it is not separately identifiable.

The per-individual averages are transformations of the original y and x variables, so
we can apply the partial regression of transformed variables in (3), where

y∗ =

y1...
yn

 and X∗ =

x1

...
xn


Then, ey∗ and ex∗

1
provide the data points for the added-variable plot. In this case, ey∗

and ex∗
1
are rather intuitive. The plot shows the relationship of the individual means of

y versus the means of x1 controlling for the influence of the means of x2.

2.5 Random-effects estimation

Random-effects estimation considers the same model as fixed-effects estimation in (4)
but interprets the individual effects υi as belonging to the error term. This means
the error terms υi + εit are not independent and identically distributed as required for
efficient estimation by OLS. The model, however, reveals the structure of the errors, so it
can be estimated by generalized least squares (GLS). GLS is estimated by applying OLS

estimation to transformations of the observed variables, which renders the transformed
errors independent and identically distributed.

4. One can show that by∗|x∗
2

= by|x2
by applying the partial-regression formula in (2) because

y∗it = yit − yi and x∗
2it = x2it − x2i are the residuals from regressing the υi individual dummy

variables on yit and x2it. That is, fixed-effects regression itself is an application of partial regression.
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The appropriate transformation of the panel-data model in (4) for feasible GLS esti-
mation is

yit − θ̂iyi =
(
xit − θ̂ixi

)
β +

(
1− θ̂i

)
υi + εit − θ̂iεi

where θ̂i = 1 − {σ̂2
ε/(Tiσ̂

2
υ + σ̂2

ε)}. σ̂2
υ and σ̂2

ε are estimates of the variances of υi and
εit, respectively.

We can apply the partial regression of transformed variables in (3), where

y∗ =



y11 − θ̂1y1
...

y1T1 − θ̂1y1
...

yn1 − θ̂nyn
...

ynTn
− θ̂nyn


and X∗ =



x11 − θ̂1x1

...

x1T1 − θ̂1x1

...

xn1 − θ̂nxn

...

xnTn
− θ̂nxn


(7)

enabling us to construct ey∗ and ex∗
1
. Regressing ex∗

1
on ey∗ produces the coefficient

b1, but unlike fixed-effects estimates, the residuals cannot be converted into OLS resid-
uals ey and ex1 and still have a fitted regression slope of b1. Therefore, we make the
added-variable plot out of ey∗ and ex∗

1
, which have a somewhat intuitive interpretation

as heteroskedasticity-corrected residuals.5

The added-variable plot of ey∗ and ex∗
1
presents the contribution of each data point

(x1it, yit) to the estimated coefficient b1, so the plot is a good visual diagnostic for
outlier observations having a large influence on the estimated relationship, just as in
the OLS, fixed-effects, or between-effects cases.

2.6 Maximum-likelihood random-effects and population-averaged
model

The maximum likelihood estimation of neither the random-effects (xtreg, mle) nor the
population-averaged model (xtreg, pa) can be represented as a transformed partial-
regression in the form of (3) in the way OLS and GLS estimators can. xtavplot cannot
be used after these estimation methods. This may not be much of a loss in the case
of xtreg, mle. The Methods and formulas section of [XT] xtreg notes that it yields
“essentially the same results” as xtreg, re except when the sample is small (≤ 200
observations) and unbalanced.

5. The errors are not independently and identically distributed because of autocorrelation between
the errors for each individual caused by the individual effects (a clustering effect), as well as
heteroskedasticity across individuals if the time spans Ti vary across i.
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3 The xtavplot and xtavplots commands

3.1 Syntax

xtavplot indepvar
[
, options

]
xtavplots

[
, options

]
options Description

marker options change look of markers (color, size, etc.)
marker label options add marker labels; change look or position

rlopts(cline options) affect rendition of the regression line
nocoef turn off display of coefficient below graph

ciopts(cline options) affect rendition of the confidence interval line
noci turn off confidence interval
ciunder graph confidence interval underneath scatterplot
level(#) specify the confidence level
ciplot(plottype) how to plot confidence intervals;

default is ciplot(rline);
a common alternative is ciplot(rarea)

twoway options any options documented in [G-3] twoway options,
except for by()

addmeans rescale the residuals, regression line, and
confidence intervals to be centered on
the means of x and y instead of zero

xtavplot-only options

xlim(#
[
#
]
), ylim(#

[
#
]
) limit the ranges of the x and y residuals displayed

generate(exvar eyvar) save the values of x and y residuals in new variables

nodisplay suppress display of the plot
addplot(plot) add other plots to the generated graph

xtavplots-only option

combine options any of the options documented in
[G-2] graph combine
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3.2 Description of xtavplot and xtavplots

xtavplot creates an added-variable plot (also known as a partial-regression lever-
age plot, a partial-regression plot, or an adjusted partial-residual plot) after xtreg,

fe (fixed-effects estimation), xtreg, re (random-effects estimation), or xtreg, be

(between-effects estimation). xtavplot cannot be used after xtreg, mle or xtreg,

pa.

xtavplots creates a matrix of added-variable plots of all the indepvars.

indepvar is an independent (x) variable (also known as a predictor, carrier, or co-
variate) that may or may not have been included in the preceding estimation. The user
would choose an indepvar not already in the estimation to evaluate whether to include
it.

xtavplot shows the partial correlation between one indepvar and the depvar from
a multivariate panel regression.

Besides showing the relationship between the indepvar and the depvar controlling
for the other regressors, xtavplot is useful for visually identifying which outlier obser-
vations have a big effect on the estimated coefficient.

After fixed-effects estimation, the plotted e(x|X) values are the residuals from the
regression of x1 on the other x2 variables in the original regression, and the plotted
e(y|X) values are the residuals from the regression of y on the other x2 variables.

After between-effects estimation, e(av.x|av.X) and e(av.y|av.X) are the residuals
from the regression of per-unit means x1i and yi on the per-unit means x2i of the other
independent variables.

After random-effects estimation, e(x*|X*) and e(y*|X*) are the residuals from the
regression of heteroskedasticity-corrected x∗1 and heteroskedasticity-corrected y∗ on the
other heteroskedasticity-corrected independent x∗

2 variables.

The fitted line shown in the graph is the least-squares fit between the residuals. For
each of the three panel-data estimation methods, the fitted line has the same slope as
the estimated coefficient on the indepvar in the preceding regression.

Because of their construction, the residuals each have a mean of zero, and the regres-
sion line fit between them passes exactly through e(x|X)=0 and e(y|X)=0. At that
point, the confidence interval has zero width, giving it an unfamiliar shape.6

3.3 Options for xtavplot and xtavplots

marker options affect the rendition of markers drawn at the plotted points, including
their shape, size, color, and outline; see [G-3] marker options.

6. The confidence interval for a conventional regression with no constant term also has this shape at
the point where all the independent variables have a value of zero.
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marker label options specify if and how markers are to be labeled; see
[G-3] marker label options.

rlopts(cline options) affects the rendition of the regression (fitted) line; see
[G-3] cline options.

nocoef turns off the display below the graph of the values of the regression coefficient,
standard error, and t statistic.

ciopts(cline options) affects how the upper and lower confidence interval lines are
rendered; see [G-3] cline options. If you specify ciplot(), then rather than using
cline options, you should specify what options are appropriate for the plottype.

noci turns off the display of the confidence interval on the graph.

ciunder causes the confidence interval to be graphed underneath the scatterplot (that
is, the scatter points are visible on top of the confidence interval). This is mainly
useful when graphing a solid confidence interval with the option ciplot(rarea).

level(#) specifies the confidence level, as a percentage, for confidence intervals
around the regression line. The default is level(95) or as set by set level; see
[U] 20.8 Specifying the width of confidence intervals.

ciplot(plottype) specifies how the confidence interval is to be plotted. The default
is ciplot(rline), meaning that the prediction will be plotted by graph twoway

rline.

A common alternative is ciplot(rarea), which will substitute shading around the
prediction line. See [G-2] graph twoway for a list of plottype choices. You may
choose any plottypes that expect two y variables and one x variable.

twoway options are any of the options documented in [G-3] twoway options, excluding
by(). These include options for titling the graph (see [G-3] title options) and saving
the graph to disk (see [G-3] saving option).

addmeans rescales the scatterplot values, the regression line, and the confidence inter-
vals to be centered on the mean values of the x and y variables instead of being
centered on zero by default. This may make the plot more visually intuitive, but it
is important to make clear to viewers that the graph is showing conditioned values
rather than the original data.

3.4 Options only for xtavplot

xlim(#
[
#
]
) and ylim(#

[
#
]
) constrain the range of the indepvar and depvar resid-

uals displayed. If only one number is specified, residuals with a value below that
number will not be displayed in the scatterplot. If two numbers are specified, resid-
uals below the first number and above the second number will not be displayed.

Excluding observations of the residuals does not affect the slope of the regression line
in the graph. The purpose of these options is to avoid a few outlying observations
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dramatically extending the range of the x or y axis, thus obscuring the display of the
relationship between the variables. Because panel datasets are typically large, it is
common to have a few distant outliers that do not significantly affect the estimates.
Make sure that the undisplayed observations are not important to the estimated
relationship and that their exclusion is noted in the text.

generate(exvar eyvar) saves the values of the x and y residuals in variables named
by the user. The user must specify two variable names for exvar and eyvar. These
residuals can be used for subsequent calculations or graphing commands. See sec-
tions 3.6 and 4 below for how to access the estimate b1 and its standard error and
how to calculate the regression fit and confidence intervals.

nodisplay suppresses display of the plot. This is mainly useful for users creating their
own plots from variables created with generate().

addplot(plot) provides a way to add other plots to the generated graph; see
[G-3] addplot option.

3.5 Options only for xtavplots

combine options are any of the options documented in [G-2] graph combine for ar-
ranging a matrix of plots in a single image.

3.6 Stored results

xtavplot stores the following in r():

Scalars
r(coef) estimated coefficient of the added variable
r(se) standard error of the estimated coefficient

After the addmeans option:

Scalars
r(ybar) (possibly weighted) mean of the depvar y
r(xbar) (possibly weighted) mean of the added variable x1

4 Methods and formulas

Because xtavplot is an xtreg postestimation command, the preceding xtreg command
will have the form

xtreg y x1 x2, model (8)

where y is the depvar, x1 is one of the indepvars, x2 is a vector of the other indepvars,
and model is a choice of fe, be, or re. This will be followed by the command

xtavplot x1, options
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xtavplot allows for x1 not to be included in the preceding xtreg indepvars. In that
case, there is some adjustment to these formulas, principally to fit the full xtreg model
including x1.

4.1 After xtreg, fe

xtavplot calculates residuals ey and ex1 in (2) from

xtreg y x2, fe

predict ey, xbu

xtreg x1 x2, fe

predict ex1 , xbu

using the same weights and sample restrictions as (8).

4.2 After xtreg, be

xtavplot forms the n individual means y, x1, and x2 as defined in (5). Residuals ey∗

and ex∗
1
in (3) are calculated from

regress y x2

predict ey∗ , residuals

regress x1 x2

predict ex∗
1
, residuals

using the weights and sample of (8).

4.3 After xtreg, re

xtavplot forms the weighted deviations from the mean variables y∗, x∗
1, and X∗

2 as

defined in (7), where X∗ =
[
x∗
1 X∗

2

]
. The weights θ̂i = 1 − (σ̂2

ε)/(Tiσ̂
2
υ + σ̂2

ε) are
calculated from σ̂2

ε = e(sigma e)^2 and σ̂2
υ = e(sigma u)^2 from the preceding xtreg,

re command. Define the (N =
∑

i Ti)× 1 vector

(1− θ) =



1− θ̂1
...

1− θ̂1
...

1− θ̂n
...

1− θ̂n


where each 1− θ̂i is repeated Ti times.
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ey∗ and ex∗
1
are calculated from

regress y∗ (1− θ) X∗
2, noconstant

predict ey∗ , residuals

regress x∗
1 (1− θ) X∗

2, noconstant

predict ex∗
1
, residuals

using the sample of (8) (weights are not allowed in xtreg, re estimation).

Note that it does not work to use xtreg y x2, re and xtreg x1 x2, re to generate
residuals, because they will estimate different values for σ̂2

ε and σ̂
2
υ, which vary depending

on the included indepvars.

4.4 Confidence interval

The preceding subsections explain how to calculate the residuals ey and ex1 (or ey∗ and
ex∗

1
, as appropriate throughout this section). It is not necessary to regress one residual

on the other to calculate the coefficient b1 and its standard error σ̂b1 , because they are
already available from the preceding xtreg command.7

By default, xtavplot displays a confidence interval around the predicted fit from
the regression of ex1 on ey. The fitted values of ey are êy = ex1b1. The confidence
interval boundaries are êy ± tα/2ex1 σ̂b1 for fixed-effects and between-effects estimates
and êy±zα/2ex1 σ̂b1 for random-effects estimates, where tα/2 is the α/2 percentile of the
cumulative t distribution, zα/2 is the α/2 percentile of the cumulative standard normal
distribution, and α = 1− level/100.

4.5 The addmeans option

The addmeans option recenters the graph on the mean values of y and x1, instead of
the default of zero. The mean y of y and x1 of x1 are calculated using the weights
and sample restrictions in the preceding xtreg command. x1 is added to the residuals
ex1 , and y is added to ey, the predicted values, and the confidence interval boundaries

7. This also eliminates the need to worry about heteroskedasticity corrections that may have been im-
plemented in the preceding regression because they affect only the standard errors of the estimates,
not the values of the residuals ex1 and ey. If the user is interested in verifying that the residuals
are calculated correctly (consistent with the coefficient b1 in the preceding regression), there is an
otherwise undocumented xtavplot option, debug, that calculates b1 as the coefficient on ex1 from

regress ey ex1 , noconstant

and stores the result in r(b check). This regression does not calculate the correct standard error
for b1, which requires an adjustment for the additional degrees of freedom taken up by controlling
for the influence of the other covariates. The correct standard errors can be calculated using the
undocumented regress option dof() to change the degrees of freedom:

regress ey ex1 , noconstant dof(df)

where df = e(N)− e(df m)− 1 after xtreg, fe and xtreg, re and df = e(df r) after xtreg, be.
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before the graph is displayed. The means are not added to the values of ex1 and ey
saved by the generate() option, but y and x1 are saved as r(ybar) and r(xbar) in
the return values.

5 Examples of xtavplot and xtavplots in use

Because xtavplot and xtavplots are xtreg postestimation commands, we first load an
example Stata panel dataset, nlswork.dta. We keep only the first 1,000 observations of
the large dataset so that the graphs display more quickly. Use xtreg to fit a fixed-effects
model of the correlates of wages. The specification of the model is discussed in help

xtreg.

. webuse nlswork
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. keep in 1/1000
(27,534 observations deleted)

. xtreg ln_w tenure c.tenure#c.tenure ttl_exp not_smsa south, fe

Fixed-effects (within) regression Number of obs = 989
Group variable: idcode Number of groups = 163

R-sq: Obs per group:
within = 0.1840 min = 1
between = 0.2753 avg = 6.1
overall = 0.2004 max = 15

F(5,821) = 37.03
corr(u_i, Xb) = 0.1490 Prob > F = 0.0000

ln_wage Coef. Std. Err. t P>|t| [95% Conf. Interval]

tenure .0379093 .0076476 4.96 0.000 .0228981 .0529206

c.tenure#c.tenure -.0014394 .0004394 -3.28 0.001 -.0023018 -.000577

ttl_exp .0203816 .0035609 5.72 0.000 .013392 .0273712
not_smsa -.0450833 .0707906 -0.64 0.524 -.1840351 .0938685

south -.0727986 .0986778 -0.74 0.461 -.2664892 .1208919
_cons 1.626667 .0202064 80.50 0.000 1.587005 1.666329

sigma_u .34239623
sigma_e .27343844

rho .61058793 (fraction of variance due to u_i)

F test that all u_i=0: F(162, 821) = 7.68 Prob > F = 0.0000

Invoking the command xtavplot ttl exp will display a graph of the partial cor-
relation between ttl exp and ln wage, giving a sense of how closely the individual
observations fit this relationship. The slope of the regression of residuals e(ttl exp|X)

on e(ln wage|X) is shown as a solid line, and the limits of its confidence interval are
shown as dashed lines.
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. xtavplot ttl_exp
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coef =  .0203816, se =  .0035609, t =  5.72

The graph has excessive white space to the left of the data because of one observation
with a value of e(ttl exp|X) equal to −6.2. When we add the option xlim(-6), the
graph is better situated:

. xtavplot ttl_exp, xlim(-6)
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coef =  .0203816, se =  .0035609, t =  5.72

In this particular case, the source of the problem is the label algorithm, which
could be better solved with the option xlabel(-5(5)10), causing no observations to
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be omitted, as in the graph below. However, if the value of this outlier had been −10,
the xlim() option would be helpful because the problem could not be solved with an
xlabel() option. Omitting the value of −10 would probably warrant a footnote.

The confidence interval can be displayed as an area plot with the ciplot(rarea)

option, as displayed in the command lfitci. The ciunder option causes the confidence
interval to appear underneath the scatterplot. By default, the confidence interval would
be above the scatter, obscuring some of the data points.

. // With solid confidence interval area

. xtavplot ttl_exp, ciplot(rarea) ciunder xlabel(-5(5)10)
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The graph below changes the scatterplot marker symbol to triangles, does not dis-
play a confidence interval around the fitted line, and removes the value of the ttl exp

coefficient, standard error, and t statistic from the bottom of the graph.
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. xtavplot ttl_exp, msymbol(t) noci nocoef xlabel(-5(5)10)
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The addmeans option rescales the graph to be centered on the actual means of y and
x1 instead of the zero means of the residuals ey and ex1 . This may be more intuitive
for the reader by conveying the central values of y and x1. Note that the graph shows
the conditional values ey and ex1 , not the actual values y and x1.

The graph below shows the added-variable plot of south centered on its mean value
of 0.02 and the mean ln wage of 1.83. The mean value of south, close to 0, shows that
there are few southerners in the sample.

Note that added-variable plots can be an intuitive way of graphing the relationship
of dummy variables like south to the dependent variable because the values of the
residuals ex1 are continuous even though the unconditional values of south are 0 or 1.
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. xtavplot south, addmeans
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coef = −.0727986, se =  .0986778, t = −0.74

5.1 xtavplots

The command xtavplots with an s on the end creates all possible added-variable plots
of the indepvars in a matrix as a single image.

. keep in 1/500
(500 observations deleted)

. xtreg ln_w tenure c.tenure#c.tenure ttl_exp not_smsa south, fe
(output omitted )
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. xtavplots
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Adding a title and shifting the position of the plots with the holes() option make
the image look better.

. xtavplots, title(Added-variable plots) holes(2)
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Added−variable plots

The examples above have focused on graphing options to change the appearance of
the graphs created by xtavplot after fixed-effects estimation. xtavplot can also be
employed after between-effects and random-effects estimation. The conceptual issues
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involved in creating added-variable plots after these other estimation methods are dis-
cussed in previous sections, but the visual considerations when creating these graphs
are the same as after fixed-effects estimation.

6 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 20-1

. net install gr0082 (to install program files, if available)

. net get gr0082 (to install ancillary files, if available)
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