

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

DOI: 10.1177/1536867X20909691

Fast Poisson estimation with high-dimensional fixed effects

Sergio Correia Federal Reserve Board Washington, DC sergio.a.correia@frb.gov Paulo Guimarães
Banco de Portugal
Porto, Portugal
pfguimaraes@bportugal.pt

Tom Zylkin
University of Richmond
Richmond, VA
tzylkin@richmond.edu

Abstract. In this article, we present ppmlhdfe, a new command for estimation of (pseudo-)Poisson regression models with multiple high-dimensional fixed effects (HDFE). Estimation is implemented using a modified version of the iteratively reweighted least-squares algorithm that allows for fast estimation in the presence of HDFE. Because the code is built around the reghdfe package (Correia, 2014, Statistical Software Components S457874, Department of Economics, Boston College), it has similar syntax, supports many of the same functionalities, and benefits from reghdfe's fast convergence properties for computing high-dimensional least-squares problems. Performance is further enhanced by some new techniques we introduce for accelerating HDFE iteratively reweighted least-squares estimation specifically. ppmlhdfe also implements a novel and more robust approach to check for the existence of (pseudo)maximum likelihood estimates.

Keywords: st0589, ppmlhdfe, reghdfe, Poisson regression, high-dimensional fixed effects

1 Introduction

Poisson regression is now well established as the standard approach to model count data. However, it is also gaining popularity as a viable alternative for estimation of multiplicative models where the dependent variable is nonnegative. Commonly, these models are fit by linear regression applied to a log-transformed dependent variable. But, as with ordinary least squares (OLS), the only assumption required for consistency of the Poisson regression estimator is the correct specification of the conditional mean of the dependent variable (Gourieroux, Monfort, and Trognon 1984). In this setting, Poisson regression becomes Poisson pseudomaximum likelihood (PPML) regression. Gourieroux, Monfort, and Trognon's (1984) results greatly extend the realm of application of Poisson regression because there is no need to specify a distributional assumption for the dependent variable. Therefore, application is no longer restricted to count data, so PPML can be applied to any dependent variable with nonnegative values without having to explicitly specify a distribution for the dependent variable. Moreover, unlike the log-linear model, PPML regression provides a natural way to deal with zero values on the dependent variable. Yet another advantage of PPML regression versus log-linear regression is that in the presence of heteroskedasticity, the parameters of log-linearized models fit by OLS are inconsistent (Santos Silva and Tenreyro 2006). In this context, using robust standard errors to mitigate concerns about heteroskedasticity will lead to incorrect inference because OLS estimators are not consistent in the first place.

The potential of PPML regression was recognized early in the spatial sciences by Davies and Guy (1987), who recommended using pseudolikelihood methods instead of the more popular Poisson regression for the modeling of spatial flows. However, it was not until Santos Silva and Tenreyro (2006) that PPML really took off, particularly in the international trade literature. In that article, the authors made an excellent case for the PPML model and posited it as the ideal estimator for gravity equations. Around the same time, Blackburn (2007) questioned the use of the traditional OLS approach for estimation of the Mincerian wage regression and proposed the use of pseudomaximum likelihood estimators such as PPML regression. His basic point was essentially the same—labor economists routinely estimate wage regressions on microdatasets using log-linear regression, disregarding the fact that heteroskedasticity may undermine the validity of the results. A similar critique has also taken hold in the health economics literature, where the usage of log-linear regression to model healthcare expenditures and utilization has been questioned (for example, Manning and Mullahy [2001]). Here the more obvious reason for the adoption of PPML is the inadequacy of the log transformation to deal with the large number of zeros that is typical in these areas.

In sum, in the presence of nonnegative data with possibly many zeros, if one wants to make minimal assumptions about the distribution of the data, then PPML seems like the safest bet. This situation is likely to occur across many areas of research, particularly when working with highly granular data (for example, when modeling firm R&D expenditures, patent citation counts, daily product store sales, number of doctor visits, firm credit volumes, number of auction bidders, and number of commuters across regions).

Nevertheless, in applied work many researchers still resort to log-linear regressions in contexts where PPML would be better justified. One possible explanation is the ease with which researchers can estimate linear regressions that control for multiple fixed effects. The increasing availability of larger panel-type datasets, coupled with advances in estimation techniques for linear regression models with high-dimensional fixed effects (HDFE), has allowed researchers to control for multiple sources of heterogeneity. Stata users are familiar with the community-contributed package reghtfe (Correia 2016), programmed by one of the authors, which has become Stata's standard tool for fitting linear models with multiple HDFE.

In this article, we show that PPML with HDFE can be implemented with almost the same ease as linear regression with HDFE. To this end, we present ppmlhdfe, a new command for fast estimation of Poisson regression models with HDFE. The ppmlhdfe command is to Poisson regression what reghdfe represents for linear regression in the Stata world—a fast and reliable command with support for multiple fixed effects. Moreover, ppmlhdfe takes great care to verify the existence of a maximum likelihood solution, adapting the innovations and suggested approaches described in Correia, Guimarães, and Zylkin (2019). It also introduces some novel acceleration techniques relative to existing algorithms for HDFE nonlinear estimation that eliminate some unnecessary steps and lead to faster computation of the parameters of interest.

2 Commands for estimation of models with HDFE

The Stata community has been particularly active in developing and implementing methods to handle regression models that include more than one HDFE. The first such command, a2reg, was coded by Amine Ouazad and was made available in 2008. The command was basically a port of the Fortran code written by Robert Creecy for estimation of a linear regression model with two HDFE. The approach is detailed in Abowd, Creecy, and Kramarz (2002) and involves solving the least-squares system of normal equations directly by application of the iterative conjugate gradient algorithm. The command provided the exact solution for the coefficients of the regression, but it lacked basic functionalities such as the calculation of the associated standard errors and data checks for multicollinearity. At around the same time, Cornelissen (2008) introduced the command felsdvreg that, like a2reg, was meant for estimation of a linear regression with two HDFE. Cornelissen used a clever decomposition of the design matrix to simplify estimation. His command could produce estimates of the standard errors, but his approach was successful only for particular data configurations and likely to break for larger datasets. Two years later, Guimarães and Portugal (2010) discussed an alternative algorithm for estimation of models with HDFE. Used in conjunction with the Frisch-Waugh-Lovell (FWL) theorem, the algorithm could fit these models using a minimum amount of memory and facilitated the calculation of regular or one-way clustered standard errors. Following the publication of Guimarães and Portugal (2010), Johannes Schmieder produced the gpreg command, while Guimarães produced the reg2hdfe command. Both commands used the general algorithm proposed in Guimarães and Portugal (2010) along with the FWL transformation. While gpreg was generally faster, reg2hdfe was able to handle larger datasets.

Later, Correia (2016) developed what is currently the state-of-the-art estimation command for linear regression models with HDFE. This command, reghdfe, offered several major improvements over existing commands. First, the convergence algorithm at the core of reg2hdfe was improved and written in Mata, making it faster and improving its convergence properties. Second, it supported multiple HDFE and their interactions, allowing for the full usage of factorial variable notation to control for the fixed effects. Other relevant improvements consisted of support for instrumental-variables and different variance specifications, including multiway clustering, support for weights, and the ability to use all postestimation tools typical of official Stata commands such as predict and margins.¹ By all accounts, reghdfe is the current state-of-the-art command for estimation of linear regression models with HDFE, and the package has been well accepted by the academic community.²

^{1.} For a complete set of features of the command, see http://scorreia.com/software/reghdfe/.

^{2.} As of December 2018, it had more than 7,000 hits at SSC, making it the 14th most downloaded Stata package. Google Scholar shows more than 200 citations.

98 Poisson with HDFE

The fact that reghdfe offers a fast and reliable way to fit linear regression models with HDFE has opened up the way for estimation of other nonlinear regression models with HDFE. This is because many nonlinear models can be fit by recursive application of linear regression. An obvious example is the nonlinear models that can be fit by the nonlinear least-squares algorithm. Another example is the iteratively reweighted least-squares (IRLS) algorithm that was developed for estimation of generalized linear models (GLMs). This was the approach implemented by Guimarães in the community-contributed command poi2hdfe, developed for estimation of PPML regression with two HDFEs. The poi2hdfe command is basically a "wrapper" around reghdfe that implements estimation of a Poisson regression model with two HDFE. Because structural gravity applications often require PPML models with three sets of fixed effects, Tom Zylkin also made a specialized command called ppml_panel_sg, which extended an earlier algorithm described in Figueiredo, Guimarães, and Woodward (2015) and also built on the capabilities of reghdfe (Larch et al. 2019).

The command ppmlhdfe discussed in this article implements PPML estimation with multiple HDFE, offering the full functionality of factorial variables to control for fixed effects. Thus, it can fit the same models as poi2hdfe and ppml_panel_sg as well as more sophisticated models with multiple or interacted fixed effects, including models with heterogeneous slopes.⁴

To our knowledge, there are currently three other packages recently made available in R that also permit the estimation of Poisson regressions with multiple levels of fixed effects—alpaca (Stammann 2018), FENmlm (Bergé 2018), and glmhdfe (Hinz, Hudlet, and Wanner 2019). Of these, alpaca is the most similar to ppmlhdfe in that it combines a within-transformation step with a Newton–Raphson estimation algorithm roughly equivalent to the IRLS method used here. FENmlm also involves a combination of these two steps but uses a nonlinear Gauss–Seidel method to update the fixed effects à la Figueiredo, Guimarães, and Woodward (2015).⁵ glmhdfe, meanwhile, does not use within-transformation and instead opts to embed Gauss–Seidel updating within IRLS similarly to the command ppml_panel_sg. One conceptual advantage our approach has over the former two methods is that we devise a way to solve the model without completely within-transforming the data from scratch in each iteration, thereby enabling us to realize significant speed gains. In addition, a general advantage of using a within-transformation approach over Gauss–Seidel is that it allows us to easily handle models with heterogeneous slopes as noted above.

^{3.} For a discussion of this estimation method, see Davidson and MacKinnon (1993).

^{4.} The command can be installed directly from the Statistical Software Components (SSC) archive. The development version, as well as complementary material, may be found at the dedicated GitHub repository: https://github.com/sergiocorreia/ppmlhdfe.

^{5.} To put the comparison another way, our method consists of within-transforming the data to take care of the fixed effects, using weighted least squares to update the remaining non-fixed-effects coefficients (that is, " β " in what follows), updating the weights, and repeating. In Bergé (2018), the within-transformation step is used to construct a concentrated Hessian for use in updating β . A version of the concentrated Hessian appears in the weighted least-squares step used here; thus, while the two algorithms are presented in different ways, they still share much in common.

3 Estimation approach

3.1 The IRLS algorithm

GLMs are a class of regression models based on the exponential family of distributions that were introduced by Nelder and Wedderburn (1972). GLMs include popular nonlinear regression models such as logit, probit, cloglog, and Poisson. Following chapter 12 of Hardin and Hilbe (2018), the exponential family is given by

$$f_y(y; \theta, \phi) = \exp\left\{\frac{y\theta - b(\theta)}{a(\phi)} + c(y, \phi)\right\}$$

where $a(\cdot)$, $b(\cdot)$, and $c(\cdot)$ are specific functions and ϕ and θ are parameters. For these models,

$$E(y) = \mu = b'(\theta)$$

and

$$V(y) = b''(\theta)a(\phi)$$

Given a set of n independent observations, each indexed by i, we can relate the expected value to a set of covariates (\mathbf{x}_i) by means of a link function g(.). More specifically, it is assumed that

$$E(y_i) = \mu_i = g^{-1}(\mathbf{x}_i \boldsymbol{\beta})$$

and the likelihood for the GLM may be written as

$$L(\theta, \phi; y_1, y_2, \dots, y_n) = \prod_{i=1}^n \exp\left\{\frac{y_i \theta_i - b(\theta_i)}{a(\phi)} + c(y_i, \phi)\right\}$$

Estimates for β are obtained by solving the first-order conditions for maximization of the (pseudo)likelihood. Application of the Gauss–Newton algorithm with the expected Hessian leads to the updating equation

$$\boldsymbol{\beta}^{(r)} = \left(\mathbf{X}'\mathbf{W}^{(r-1)}\mathbf{X}\right)^{-1}\mathbf{X}'\mathbf{W}^{(r-1)}\mathbf{z}^{(r-1)}$$
(1)

where **X** is the design matrix of explanatory variables, $\mathbf{W}^{(r-1)}$ is a weighting matrix, $\mathbf{z}^{(r-1)}$ is a transformation of the dependent variable, and r is an index for iteration (for details, see Hardin and Hilbe [2018]). Equation (1) makes it clear that the estimates of $\boldsymbol{\beta}$ are obtained by recursive application of weighted least squares. This approach is known as IRLS.

3.2 The Poisson regression model

In the case of Poisson regression, we have

$$E(y_i) = \mu_i = \exp(\mathbf{x}_i \boldsymbol{\beta})$$

and the regression weights to implement IRLS simplify to

$$\mathbf{W}^{(r-1)} = \operatorname{diag}\left\{\exp\left(\mathbf{x}_{i}\boldsymbol{\beta}^{(r-1)}\right)\right\}$$
 (2)

while the dependent variable for the intermediary regression becomes

$$z_i^{(r-1)} = \left\{ \frac{y - \exp(\mathbf{x}_i \boldsymbol{\beta}^{(r-1)})}{\exp(\mathbf{x}_i \boldsymbol{\beta}^{(r-1)})} + \mathbf{x}_i \boldsymbol{\beta}^{(r-1)} \right\}$$
(3)

Implementation of the IRLS updating regression in (1) requires only computation of the vector of fitted values $\mathbf{x}_i \boldsymbol{\beta}^{(r-1)}$ obtained in the previous iteration.

Dealing with HDFE

The difficulty of implementing IRLS in the presence of HDFE comes from the fact that \mathbf{X} may contain many fixed effects, which renders the direct calculation of $(\mathbf{X}'\mathbf{W}^{(r-1)}\mathbf{X})$ impractical, if not impossible. The solution is to use an alternative updating formula that estimates only the coefficients of the non-fixed-effects covariates (say, δ), thus reducing the dimensionality of the problem. This is because (1) is a weighted linear regression, so we can rely on the FWL theorem to expurgate the fixed effects. This means that instead of (1), we can use the updating equation

$$\boldsymbol{\delta}^{(r)} = \left(\widetilde{\mathbf{X}}'\mathbf{W}^{(r-1)}\widetilde{\mathbf{X}}\right)^{-1}\widetilde{\mathbf{X}}'\mathbf{W}^{(r-1)}\widetilde{\mathbf{z}}^{(r-1)} \tag{4}$$

where $\widetilde{\mathbf{X}}$ and $\widetilde{\mathbf{z}}$ are weighted within-transformed versions of the main covariate matrix \mathbf{X} and working dependent variable \mathbf{z} , respectively. Moreover, the FWL theorem also implies that the residuals computed from (4) are the same as those from (1). This observation has two useful implications for our purposes. First, it implies we can perform the needed updates to \mathbf{W} and \mathbf{z} using

 $\mathbf{X}\boldsymbol{\beta}^{(r)} = \mathbf{z}^{(r-1)} - \mathbf{e}^{(r)}$

where $\mathbf{e}^{(r)}$ is a vector collecting the residuals computed using (4). New values for $\mathbf{W}^{(r)}$ and $\mathbf{z}^{(r)}$ then directly follow from (2) and (3), as in the original IRLS loop.⁶ Second, it also means that once $\boldsymbol{\delta}^{(r)}$ converges to the correct estimate $\hat{\boldsymbol{\delta}}$, the estimated variance–covariance matrix for the weighted least-squares regression in (4) will be the correct variance–covariance matrix for $\hat{\boldsymbol{\delta}}$, and standard adjustments for heteroskedasticity and clustering similarly require no further special steps.

Accelerating HDFE-IRLS

The community-contributed command poi2hdfe implemented (4) using reghtfe as the workhorse for running the HDFE weighted least-squares regressions. This is a computa-

^{6.} A similar principle is also used in Stammann (2018). Her formulation of the weighted least-squares step differs in that she differences out the $\mathbf{x}_i \beta^{(r-1)}$ term from the traditional IRLS dependent variable. This approach should nonetheless be roughly equivalent to IRLS computationally. Another difference between her algorithm and ours comes from the special acceleration techniques we have programmed into ppmlhdfe, as we discuss next.

tionally intensive procedure requiring estimation of an HDFE regression model in every IRLS iteration. However, there are several workarounds in ppmlhdfe that make it much more efficient. For instance, ppmlhdfe directly embeds the Mata routines of reghdfe, thus taking advantage of the fact that some of the computations need to be done only once because they remain the same for every IRLS iteration. But the most significant speed improvements come from the modifications we have introduced to the standard HDFE—IRLS algorithm aimed at reducing the number of calls to reghdfe. These modifications are as follows:

First, we within-transform (or "partial out") the original untransformed variables \mathbf{z} and \mathbf{X} only in the first IRLS iteration. From the second iteration onward, we exploit the fact that, given an arbitrary linear combination of the fixed effects \mathbf{d} , partialing out $\mathbf{z} - \mathbf{d}$ is numerically equivalent to partialing out \mathbf{z} . Hence, if the eventual solution to the partial-out step is $\tilde{\mathbf{z}} = \mathbf{z}^{(r)} - \mathbf{d}^{(r)}$, it is often much faster to partial out $\mathbf{z}^{(r)} - \mathbf{d}^{(r-1)}$ than it is to start from the untransformed \mathbf{z} variable (because $\mathbf{d}^{(r-1)}$ is generally a reasonable initial guess for $\mathbf{d}^{(r)}$). In practice, we progressively update $\tilde{\mathbf{z}}$ by starting each within-transformation step using the new starting value $\tilde{\mathbf{z}}^{*(r)} = \tilde{\mathbf{z}}^{(r-1)} + \mathbf{z}^{(r)} - \mathbf{z}^{(r-1)}$, where $\mathbf{z}^{(r)}$ and $\mathbf{z}^{(r-1)}$ are computed as in (1).⁷ We can similarly progressively within-transform \mathbf{X} by starting from the last values of $\tilde{\mathbf{X}}$ in each iteration rather than starting over again from the original untransformed \mathbf{X} variables.

Second, another artifact that helps speed up convergence involves the choice of the criterion for the inner loops of reghdfe. In our implementation, this criterion becomes tighter as we approach convergence, thus avoiding unnecessary reghdfe iterations. In sum, we can progressively within-transform both \mathbf{X} and \mathbf{z} while simultaneously updating the weights and \mathbf{z} needed for the IRLS step, requiring only the within-transformation procedure to reach completion as the full algorithm converges. In practice, these innovations can reduce the total number of calls to reghdfe by 50% or more, leading to substantial speed gains in computation.

Existence of maximum likelihood estimates

Santos Silva and Tenreyro (2010, 2011) noted that for some data configurations, maximum likelihood estimates (MLEs) for the Poisson regression may not exist. As a result, estimation algorithms may be unable to converge or may converge to the incorrect estimates. This situation bears some resemblance to the well-known problem of separation in the binary-choice model. In the case of Poisson regression, this happens if the log likelihood increases monotonically as one or more coefficients tends to infinity. As shown by Santos Silva and Tenreyro (2010), this may occur if there is multicollinearity among the

^{7.} Note that if $\mathbf{d}^{(r)} \approx \mathbf{d}^{(r-1)}$, then $\widetilde{\mathbf{z}}^{(r)} = \mathbf{z}^{(r)} - \mathbf{d}^{(r)} \approx \mathbf{z}^{(r-1)} - \mathbf{d}^{(r-1)} + \mathbf{z}^{(r)} - \mathbf{z}^{(r-1)} = \widetilde{\mathbf{z}}^{(r-1)} + \mathbf{z}^{(r)} - \mathbf{z}^{(r-1)}$. Moreover, because \mathbf{X} is the same in every iteration, it needs to be partialed out only in the initial iteration.

^{8.} For example, in the trade data example that follows, ppmlhdfe by default reaches convergence after 36 calls to reghdfe. If we instead disable these features (by adding the options start_inner_tol(1e-08) and use_exact_partial(1)), the total number of calls increases to 98 (effectively an 170% increase in computing time). The exact same answer is achieved in either case.

regressors for the subsample of positive values of the dependent variable. To overcome this problem, they suggest identifying and dropping problematic regressors. However, which regressor or regressors to drop is an ambiguous decision with implications for the identification of the remaining parameters. Moreover, in Poisson models with multiple HDFEs, this strategy may not even be feasible.

In a recent article (Correia, Guimarães, and Zylkin 2019), we discuss the necessary and sufficient conditions for the existence of estimates in a wide class of GLM models and show that, in the case of Poisson regression, it is always possible to find MLE estimates if some observations are dropped from the sample. These observations—separated observations—do not convey relevant information for the estimation process and thus can be safely discarded. After dropping these observations, some regressors will become collinear and thus must also be dropped. Additionally, in the same article, we propose a method to identify separated observations that will succeed even in the presence of HDFEs. By default, ppmlhdfe implements this method (the ir method) plus three other methods to identify separated observations.¹⁰

4 The ppmlhdfe command

ppmlhdfe requires the installation of the latest versions of ftools and reghdfe.

4.1 Syntax

The syntax for ppmlhdfe is similar to that of reghdfe:

```
ppmlhdfe depvar [indepvars] [if] [in] [weight] [, absorb(absvars [, savefe])
    exposure(varname) offset(varname) d(newvar) d vce(vcetype) verbose(#)
    nolog tolerance(#) guess(string) eform irr separation(string)
    maxiteration(#) keepsingletons version display_options]
```

depvar is the dependent variable. It must be nonnegative, but it is not restricted to integer values. Use of time-series operators or factor variables (if they specify one level of the group) is allowed.

indepvars represents the set of explanatory variables in the regression. Both factor and time-series operators are allowed.

pweights and fweights are allowed; see [U] 11.1.6 weight.

^{9.} This approach is implemented in their community-contributed package ppml.

^{10.} For a better understanding of the methods implemented in ppmlhdfe, see our primer on separation available on ppmlhdfe's GitHub repository.

4.2 Options

absorb(absvars [, savefe]) contains a list of all categorical variables that identify the fixed effects to be absorbed. Each variable represents one set of fixed effects. Factor-variable notation can be used. If you want to save the estimates of the fixed effects, you can either assign a name to the new variable when specifying absvars, as in newvar=absvar, or use the option savefe, in which case all fixed-effects estimates are saved using _hdfe#__.

exposure(varname) includes ln(varname) in the model with the coefficient constrained to 1.

offset (varname) includes varname in the model with the coefficient constrained to 1.

d(newvar) creates a new variable with the sum of the fixed effects. This option is required if you are absorbing fixed effects and planning on running predict afterward.

d works as above but automatically names the variable _ppmlhdfe_d.

vce(vcetype) specifies the variance—covariance matrix, where vcetype may be <u>robust</u> (default) or <u>cluster</u> fvvarlist (allowing two-way and multiway clustering).

verbose(#) controls the amount of debugging information to show. The default is
 verbose(0), but higher integer values will present increasing detail. verbose(-1)
 will prevent the displaying of any messages.

nolog hides the iteration output.

tolerance(#) specifies the criterion for convergence. The default is tolerance(1e-8).

guess(string) specifies the rule for setting initial values; valid options are simple (the default) and ols.

eform reports exponentiated coefficients (incidence-rate ratios).

irr is a synonym for eform.

separation(string) specifies the set rules for dropping separating observations; valid options are fe, ir, simplex, and mu (or any combination of those). The default is separation(fe simplex ir). To disable all separation checks, set the option to none.

maxiteration(#) specifies the maximum number of iterations. The default is maxiteration(10000).

keepsingletons does not drop singleton groups.

version reports the current version and installed dependencies. This option should not be used with any arguments.

More specialized options can be found in the documentation available on the GitHub repository.

4.3 Stored results

ppmlhdfe stores the following in e():

```
Scalars
                           number of observations
   e(N)
   e(num_singletons)
                           number of dropped singleton observations
   e(num_separated)
                           number of separated observations
   e(N full)
                           number of observations, including dropped singleton and separated
                                observations
                           number of absorbed fixed effects
   e(N_hdfe)
   e(N_hdfe_extended)
                           number of absorbed fixed effects plus fixed slopes
   e(df)
                           residual degrees of freedom
                           model degrees of freedom
   e(df_m)
                           degrees of freedom lost because of the fixed effects
   e(df_a)
   e(df_a_initial)
                           number of categories in the fixed effects: e(df_a) - e(df_a_redundant)
   e(df_a_redundant)
                           number of redundant fixed-effects categories
   e(11)
                           log likelihood
   e(11_0)
                           log likelihood of fixed-effects-only regression
   e(N_clustervars)
                           number of cluster variables; if vce() is set to use clustered standard
   e(N_clust#)
                           number of clusters in the #th cluster variable
   e(N_clust)
                           number of clusters; minimum of all the e(N_clust#)
   e(chi2)
   e(rank)
                           rank of e(V)
                           number of iterations
   e(ic)
                           number of iterations when partialing out fixed effects
   e(ic2)
   e(rss)
                           residual sum of squares
   e(rmse)
                           root mean squared error
                           pseudo-R^2
   e(r2_p)
   e(converged)
                           1 if converged, 0 otherwise
   e(drop_singletons)
                           1 if singleton observations were searched for and dropped
Macros
   e(cmd)
                           ppmlhdfe
   e(cmdline)
                           command as typed
   e(depvar)
                           name of dependent variable
   e(indepvars)
                           name of independent variables
                           title in estimation output
   e(title)
   e(clustvar)
                           name of cluster variable
                           name of the #th cluster variable
   e(clustvar#)
                           linear offset variable
   e(offset)
                           title used to label Std. Err.
   e(chi2type)
   e(vce)
                           vcetype specified in vce()
                           title used to label Std. Err.
   e(vcetype)
    e(properties)
    e(estat_cmd)
                           reghdfe_estat; program used to implement estat
    e(predict)
                           ppmlhdfe_p; program used to implement predict
    e(marginsok)
                           predictions allowed by margins
    e(marginsnotok)
                           predictions disallowed by margins
                           reghdfe_footnote; program used to display the degrees-of-freedom
    e(footnote)
   e(separation)
                           list of methods used to detect and drop separated observations
    e(dofmethod)
                           degrees-of-freedom method used in the regression
    e(absvars)
                           name of the absorbed variables or interactions
    e(extended_absvars)
                           expanded absorbed variables or interactions
```

105

```
Matrices

e(b) coefficient vector

e(V) variance—covariance matrix of the estimators

e(dof_table) number of categories, redundant categories, and degrees of freedom absorbed by each set of fixed effects

Functions

e(sample) marks estimation sample
```

5 Examples

We begin with a simple example that shows the advantage of ppmlhdfe's approach for dealing with the nonexistence of MLE estimates. As explained earlier, ppmlhdfe takes care to identify separated observations and then restricts the sample in a way that guarantees the existence of meaningful MLE. Our illustrative data consist of six observations and three explanatory variables:

in	out	У	x1	x2	x3					
				у		x1		x2		xЗ
1.	0	1	2	1						
2.	0	0	0	2						
3.	0	2	3	3						
4.	1	1	2	4						
5.	2	2	4	5						
6.	3	1	2	6						
7.	end	f								

If we try to estimate a Poisson regression with the glm command, Stata fails to converge. The poisson command produces estimates for all three coefficients associated with the Xs, but a quick inspection of results clarifies that the results are unreliable:¹¹

. poisson y x1	l x2 x3, nolo	g .					
Poisson regres	Number o	of obs	=	6			
				LR chi2	(3)	=	8.89
				Prob > 0	chi2	=	0.0308
Log likelihood	d = -4.041530	2		Pseudo I	R2	=	0.5237
	Γ						
У	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
x1	-31.29521	8467.059	-0.00	0.997	-16626	3.43	16563.84
x1 x2	-31.29521 15.84339	8467.059 4233.53	-0.00 0.00	0.997 0.997	-16626 -8281.		16563.84 8313.409
						722	

The community-contributed command ppml (Santos Silva and Tenreyro 2015) identifies the existence of a data problem and drops the variable x3. However, the fitted regression still shows problems:

^{11.} A similar situation occurs if we estimate the Poisson regression using glm with the irls option.

. ppml y x1 x2 x3

note: checking the existence of the estimates

Number of regressors excluded to ensure that the estimates exist: 1

Excluded regressors: x3

Number of observations excluded: 0 note: starting ppml estimation

Iteration 1: deviance = 5.984675

(output omitted)

Iteration 15: deviance = 5.489052

Warning: variance matrix is nonsymmetric or highly singular

Number of parameters: 3 Number of observations: 6

Pseudo log-likelihood: -6.5473014

R-squared: .3399843 Option strict is: off

WARNING: The model appears to overfit some observations with y=0

У	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
x1	-32.31708					•
x2	16.58591			•	•	
_cons	8167293	•	•	•	•	

If run with the strict option, ppml will simply drop all regressors. The approach of ppmlhdfe is quite different. Instead of searching for problematic regressors, it looks for problematic observations. In this case, ppmlhdfe drops the third observation. It then drops x2 to avoid perfect multicollinearity. The results are more plausible: 12

```
ppmlhdfe y x1 x2 x3, nolog
(simplex method dropped 1 separated observation)
note: 1 variable omitted because of collinearity: x2
Converged in 6 iterations and 6 HDFE sub-iterations (tol = 1.0e-08)
PPML regression
                                                    No. of obs
                                                    Residual df
                                                                                 2
                                                                            50.78
                                                    Wald chi2(2)
Deviance
                         .4775093816
                                                    Prob > chi2
                                                                           0.0000
Log pseudolikelihood = -4.041530113
                                                    Pseudo R2
                                                                           0.4532
                              Robust
                             Std. Err.
                                                  P>|z|
                                                             [95% Conf. Interval]
                     Coef.
           у
                                             Z
                  .3914642
                             .1733025
                                           2.26
                                                  0.024
                                                             .0517976
          x1
                                                                          .7311309
          x2
                         0
                            (omitted)
                  .7969293
                             .1582404
                                           5.04
                                                  0.000
                                                             .4867839
                                                                         1.107075
          xЗ
                 -4.031679
                                          -3.60
                                                  0.000
                                                            -6.226011
                                                                        -1.837348
       _cons
                             1.119577
```

^{12.} To our knowledge, besides ppmlhdfe, no package in any other statistical software is capable of dealing with the separation problem in a robust way. Please see our comparisons available at the GitHub repository. In the site, we also provide a set of .csv files that contain examples of separation that package developers can use to verify the robustness of their code.

107

Next, we replicate example 1 of the Stata 16 manual for the command xtpoisson (see [XT] xtpoisson) with the fixed-effects option. This example uses ships.dta and estimates a Poisson regression of the number of ship accidents on several regressors. It treats the variable ship as a fixed effect to control for five types of ships. The regression is estimated with a control for exposure (service), and the coefficients are reported as incidence-rate ratios. The syntax needed to replicate the example is 13

```
. webuse ships, clear
. xtpoisson acc op_75_79 co_65_69 co_70_74 co_75_79, exposure(service) irr fe
> nolog
  (output omitted)
```

To obtain equivalent results with ppmlhdfe, we use

```
. ppmlhdfe acc op_75_79 co_65_69 co_70_74 co_75_79, absorb(ship)
> exposure(service) irr nolog
Converged in 6 iterations and 6 HDFE sub-iterations (tol = 1.0e-08)
HDFE PPML regression
                                                   No. of obs
                                                                             34
                                                  Residual df
Absorbing 1 HDFE group
                                                                             25
                                                  Wald chi2(4)
                                                                         111.06
Deviance
                     = 38.69505154
                                                  Prob > chi2
                                                                         0.0000
                                                                         0.8083
Log pseudolikelihood = -68.28077143
                                                  Pseudo R2
```

accident	exp(b)	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
op_75_79	1.468831	.1484359	3.80	0.000	1.204902	1.790572
co_65_69	2.008002	.2202475	6.36	0.000	1.619572	2.489592
co_70_74	2.26693	.3256501	5.70	0.000	1.710649	3.004107
co_75_79	1.573695	.3117262	2.29	0.022	1.067358	2.320232
_cons	.0011254	.0001061	-72.03	0.000	.0009356	.0013538
<pre>ln(service)</pre>	1	(exposure)				

Absorbed degrees of freedom:

Absorbed FE	Categories	- Redundant	= Num. Coefs
ship	5	0	5

where we are absorbing ship as a fixed effect. A few points are worth mentioning. As expected, the estimated coefficients for the variables are the same as those obtained with the xtpoisson command. However, the results for the estimates of the standard errors are different because, by default, ppmlhdfe reports robust standard errors. The values for the log likelihoods presented by the two commands are also different. The command xtpoisson reports the value of the conditional log likelihood, while ppmlhdfe reports the actual Poisson log likelihood (and could thus possibly be used for likelihood-ratio tests against a Poisson regression if one was willing to accept the Poisson distribution

^{13.} Note that the variable ship is already set as the panelvar in ships.dta.

^{14.} If we used the option vce(robust) with the xtpoisson command, the results would still be different. This is because in xtpoisson (and other xt commands), Stata replaces vce(robust) with vce(cluster ships) but does not apply a small-sample adjustment for the number of clusters (see [U] 20.22 Obtaining robust variance estimates).

.0013247

.0017984

assumption). Given that we are working with a small dataset, we could replicate the results obtained with ppmlhdfe using the poisson (see [R] poisson) command as in

```
poisson acc op_75_79 co_65_69 co_70_74 co_75_79 i.ship, exp(service) irr ///
    vce(robust)
```

Note that we can absorb any categorical variable as a fixed effect. For example, if we were interested only in the coefficients for op_75_79 and co_65_69, we could absorb ship, co_70_74, and co_75_79 as

```
. ppmlhdfe acc op_75_79 co_65_69, absorb(ship co_70_74 co_75_79)
> exposure(service) irr nolog
Converged in 7 iterations and 23 HDFE sub-iterations (tol = 1.0e-08)
HDFE PPML regression
                                                   No. of obs
                                                                              34
Absorbing 3 HDFE groups
                                                   Residual df
                                                                              25
                                                   Wald chi2(2)
                                                                           71.60
Deviance
                     = 38.69505154
                                                   Prob > chi2
                                                                          0.0000
Log pseudolikelihood = -68.28077143
                                                   Pseudo R2
                                                                          0.8083
                             Robust
                   exp(b)
                                                 P>|z|
                                                            [95% Conf. Interval]
    accident
                             Std. Err.
                                            z
    op_75_79
                 1.468831
                             .1484359
                                          3.80
                                                 0.000
                                                           1.204902
                                                                        1.790572
    co_65_69
                 2.008002
                             . 2202475
                                          6.36
                                                0.000
                                                           1.619572
                                                                        2.489592
```

-83.00

0.000

Absorbed degrees of freedom:

_cons

ln(service)

Absorbed FE	Categories	- Redundant	= Num.	Coefs	
ship co_70_74 co_75_79	5 2 2	0 1 1		5 1 1	?

.0001204

1 (exposure)

? = number of redundant parameters may be higher

.0015435

and the results would be exactly the same for the variables that were explicitly kept in the model.

Our third example provides a natural application of ppmlhdfe. Here we fit a gravity model using the ancillary data and example provided with the ppml_panel_sg command. The dataset contains annual bilateral trade data for 35 countries from 1986 to 2004. The objective is to estimate the impact that fta—a free-trade agreement variable—has on trade. In this example, we want to control for country-pair fixed effects and country-time fixed effects (for both importer and exporter countries). Additionally, we want our standard errors clustered at the level of the country pair.

```
. use http://fmwww.bc.edu/RePEc/bocode/e/EXAMPLE_TRADE_FTA_DATA if
> category=="TOTAL", clear
(Example gravity data for ppml_panel_sg (35 countries, 1988-2004, every 4 yrs))
. egen imp=group(isoimp)
. egen exp=group(isoexp)
```

. ppmlhdfe trade fta, absorb(imp#year exp#year imp#exp) cluster(imp#exp) nolog Converged in 11 iterations and 35 HDFE sub-iterations (tol = 1.0e-08)

HDFE PPML regression	No. of obs	=	5,950
Absorbing 3 HDFE groups	Residual df	=	1,189
Statistics robust to heteroskedasticity	Wald chi2(1)	=	21.04
Deviance = 377332502.3	Prob > chi2	=	0.0000
Log pseudolikelihood = -188710931.7	Pseudo R2	=	0.9938

Number of clusters (imp#exp)= 1,190

(Std. Err. adjusted for 1,190 clusters in imp#exp)

trade	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
fta	.1924455	.0419527	4.59	0.000	.1102197	.2746713
_cons	16.45706	.0217308	757.32		16.41447	16.49965

Absorbed degrees of freedom:

Absorbed FE	Categories	- Redundant	= Num. Coefs
imp#year exp#year	175 175	0 5	175 170
imp#exp	1190	1190	0 *

^{* =} FE nested within cluster; treated as redundant for DoF computation

Note that we have used Stata factorial notation when specifying the three variables to be absorbed, which is generally faster than creating the categorical variables for the interactions beforehand.

Because our trade example includes HDFE, it also gives us an opportunity to unpack the key mechanisms behind how ppmlhdfe works from a programming perspective. ppmlhdfe itself is a complex command that is mainly coded in Mata and also takes advantage of the existing inner workings of reghdfe wherever possible. But the essential algorithm used to implement HDFE—IRLS is quite portable and can be programmed in any language that already offers robust algorithms for within-transformation and standard weighted regression. The following simple Stata code helps to illustrate. ¹⁵

^{15.} This code is available at the GitHub repository.

```
use http://fmwww.bc.edu/RePEc/bocode/e/EXAMPLE_TRADE_FTA_DATA if
                                                                         ///
 category=="TOTAL", clear
egen imp = group(isoimp)
egen exp = group(isoexp)
egen pair = group(isoexp isoimp)
local accelerate = 1
local crit 1
local iter 0
local last .
local inner_tol = 1e-4
while (`crit´ > 1e-8 | `inner tol´ > `crit´) {
   loc ++iter
    display as text _n "Iteration `iter´ (crit=`crit´) (HDFE tol=`inner_tol´)"
    if (`iter'==1) {
        quietly summarize trade, mean
        quietly generate double mu = (trade + r(mean)) / 2
        quietly generate double eta = log(mu)
        quietly generate double z = eta + trade / mu - 1
        quietly generate double last_z = z
        quietly generate double reg_z = z
    }
    else if (`accelerate') {
        quietly replace last_z = z
        quietly replace z = eta + trade / mu - 1
        quietly replace reg_z = z - last_z + z_resid
        quietly replace fta = fta_resid
    }
    else {
        quietly replace z = eta + trade / mu - 1
        quietly replace reg_z = z
    * Tighten HDFE tolerance
    if (`crit' < 10 * `inner_tol') {</pre>
        local inner_tol = `inner_tol' / 10
    capture drop *resid
    * Perform HDFE weighted least squares
    quietly reghdfe reg_z [aw=mu], absorb(imp#year exp#year imp#exp) ///
      residuals(z_resid) keepsing verbose(-1) tolerance(`inner_tol')
    quietly reghdfe fta [aw=mu], absorb(imp#year exp#year imp#exp)
      residuals(fta_resid) keepsing verbose(-1) tolerance(`inner_tol')
    regress z_resid fta_resid [aw=mu], noconstant cluster(pair) noheader
    predict double resid, resid
    * Update eta = Xb; mu = exp(eta)
    quietly replace eta = z - resid
    quietly replace mu = exp(eta)
    local crit = abs(_b[fta_resid] - `last´)
   local last = _b[fta_resid]
 }
```

As the while loop at the center of this example code converges, the final point estimate and standard error for fta will be the same as those computed by ppmlhdfe above. Some key operations to point out are the crucial IRLS updating step—replace eta = z - resid—and the acceleration step that allows us to avoid having to within-transform z from scratch in each iteration—replace reg_z = z - last_z + z_resid. The reghdfe command, when used without any right-hand-side covariates, may be used

to perform each within-transformation step. Also note that we progressively tighten the **reghdfe** tolerance when we approach convergence; as we have noted, full within-transformation is required only for the final set of estimates.¹⁶

Our final example showcases how to combine ppmlhdfe with the esttab command (Jann 2007) to construct publication-quality regression tables. To construct the labels for the fixed effects, we use the estfe command included with reghdfe. The example consists of a database of more than 1,000,000 observations, containing all SSC citations collected between 1991 and 2009 for 100,404 articles published in 170 economics journals between 1991 and 2006.¹⁷ The database has an ID for journal, article, the number of authors, the two-digit main JEL classification code¹⁸ (124 codes), the publication year, the type of article (proceeding, journal article, review, or note), and the number of citations collected in each year. Nearly 58% of all observations are zeros. Our dependent variable is the number of citations, and we will pretend that our main interest is understanding whether the number of authors in an article does in fact increase the number of citations once we control for a variety of controls. We run the following specifications:

```
. use citations_example, clear
. estimates clear
. ppmlhdfe cit nbaut, a(issn type jel2 pubyear)
  (output omitted)
eststo
(est1 stored)
. ppmlhdfe cit nbaut, a(issn#c.year type jel2 pubyear)
  (output omitted)
 eststo
(est2 stored)
. ppmlhdfe cit nbaut, a(issn#year type jel2 pubyear)
  (output omitted)
 eststo
(est3 stored)
. estfe *, labels(type "Article type FE" jel2 "JEL code FE" pubyear
> "Publication year FE" issn "ISSN FE" issn#c.year "Year trend by ISSN"
> issn#year "ISSN-Year FE")
```

^{16.} For simplicity, this example code uses convergence of the estimated coefficient for fta as the stopping criterion. However, in the complete algorithm, we require full convergence of the deviance as in standard IRLS implementations.

^{17.} For a detailed description of the dataset, see Cardoso, Guimarães, and Zimmermann (2010). The dataset can be downloaded from the GitHub package repository.

^{18.} The JEL code is a detailed system of classification for articles in economics.

The results are summarized in the following table produced by the esttab command. They show that the number of authors has a robust impact on the citation count.

```
. esttab, indicate(`r(indicate_fe)´, labels("Yes" "")) b(3) se(3) varwidth(25)
> label stat(N ll, fmt(%9.0fc %9.2fc)) se starlevels(* 0.1 ** 0.05 *** 0.01)
> compress
```

	(1)	(2)	(3)
	cit	cit	cit
nbaut	0.190*** (0.003)	0.190*** (0.003)	0.189*** (0.003)
Constant	0.054*** (0.006)	0.081*** (0.006)	0.110*** (0.006)
Article type FE	Yes	Yes	Yes
JEL code FE	Yes	Yes	Yes
Publication year FE	Yes	Yes	Yes
ISSN FE	Yes		
Year trend by ISSN		Yes	
ISSN-Year FE			Yes
N	1,083,701	1,083,701	1,080,051
11	-1.71e+06	-1.69e+06	-1.66e+06

Standard errors in parentheses * p<0.1, ** p<0.05, *** p<0.01

What are the exact differences between the regressions? In all three regressions, we introduced fixed effects for the type of article, the JEL code, and the publication year. In the first specification, we treat the journal as any other fixed effect. However, in the second specification, we are assuming that there is a trend in the number of citations that is specific to each journal. Finally, the last specification introduces even more flexibility and permits the existence of a year-specific impact for each journal. While this is simply an illustrative example of the capabilities of ppmlhdfe, if taken with due care, the analysis of the estimates of the absorbed effects may also reveal interesting information.

6 Conclusion

ppmlhdfe is a new community-contributed command that allows for fast estimation of (pseudo-)Poisson regression models. It has a similar syntax to reghdfe and many of the same functionalities. Moreover, ppmlhdfe takes care to check for existence of maximum likelihood results and introduces some promising new concepts for accelerating nonlinear estimation with high-dimensional covariates. Finally, we note that the estimation approach of ppmlhdfe could easily be extended to any other model from the GLM family.

7 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of publication of this article, type

```
net sj 20-1
net install st0589 (to install program files, if available)
net get st0589 (to install ancillary files, if available)
```

There is a dedicated GitHub site (https://github.com/sergiocorreia/ppmlhdfe/) that contains the materials now submitted as well as additional related materials.

8 References

- Abowd, J. M., R. H. Creecy, and F. Kramarz. 2002. Computing person and firm effects using linked longitudinal employer–employee data. Technical Paper No. TP-2002-06, Center for Economic Studies, U.S. Census Bureau. http://www2.census.gov/ces/tp/tp-2002-06.pdf.
- Bergé, L. 2018. Efficient estimation of maximum likelihood models with multiple fixed-effects: The R package FENmlm. CREA Discussion Paper Series 2018-13, Center for Research in Economic Analysis, University of Luxembourg. https://EconPapers.repec.org/RePEc:luc:wpaper:18-13.
- Blackburn, M. L. 2007. Estimating wage differentials without logarithms. *Labour Economics* 14: 73–98. https://doi.org/10.1016/j.labeco.2005.04.005.
- Cardoso, A. R., P. Guimarães, and K. F. Zimmermann. 2010. Trends in economic research: An international perspective. KYklos 63: 479–494. https://doi.org/10.1111/j.1467-6435.2010.00484.x.
- Cornelissen, T. 2008. The Stata command felsdvreg to fit a linear model with two high-dimensional fixed effects. Stata Journal 8: 170–189. https://doi.org/10.1177/1536867X0800800202.
- Correia, S. 2014. reghdfe: Stata module to perform linear or instrumental-variable regression absorbing any number of high-dimensional fixed effects. Statistical Software Components S457874, Department of Economics, Boston College. https://ideas.repec.org/c/boc/bocode/s457874.html.
- ——. 2016. Estimating multi-way fixed effect models with reghdfe. Presented July 28–29, 2016, at the Stata Conference 2016, Chicago. https://www.stata.com/meeting/chicago16/slides/chicago16_correia.pdf.
- Correia, S., P. Guimarães, and T. Zylkin. 2019. Verifying the existence of maximum likelihood estimates for generalized linear models. ArXiv Working Paper No. arXiv:1903.01633. https://arxiv.org/abs/1903.01633.
- Davidson, R., and J. G. MacKinnon. 1993. Estimation and Inference in Econometrics. New York: Oxford University Press.

Davies, R. B., and C. M. Guy. 1987. The statistical modeling of flow data when the Poisson assumption is violated. *Geographical Analysis* 19: 300–314. https://doi.org/10.1016/0895-7177(88)90095-7.

- Figueiredo, O., P. Guimarães, and D. Woodward. 2015. Industry localization, distance decay, and knowledge spillovers: Following the patent paper trail. *Journal of Urban Economics* 89: 21–31. https://doi.org/10.1016/j.jue.2015.06.003.
- Gourieroux, C., A. Monfort, and A. Trognon. 1984. Pseudo maximum likelihood methods: Theory. *Econometrica* 52: 681–700. https://doi.org/10.2307/1913471.
- Guimarães, P., and P. Portugal. 2010. A simple feasible procedure to fit models with high-dimensional fixed effects. *Stata Journal* 10: 628–649. https://doi.org/10.1177/1536867X1101000406.
- Hardin, J. W., and J. M. Hilbe. 2018. Generalized Linear Models and Extensions. 4th ed. College Station, TX: Stata Press.
- Hinz, J., A. Hudlet, and J. Wanner. 2019. Separating the wheat from the chaff: Fast estimation of GLMs with high-dimensional fixed effects. http://julianhinz.com/resources/glmhdfe_technical_note.pdf.
- Jann, B. 2007. Making regression tables simplified. Stata Journal 7: 227–244. https://doi.org/10.1177/1536867X0700700207.
- Larch, M., J. Wanner, Y. V. Yotov, and T. Zylkin. 2019. Currency unions and trade: A PPML re-assessment with high-dimensional fixed effects. Oxford Bulletin of Economics and Statistics 81: 487–510. https://doi.org/10.1111/obes.12283.
- Manning, W. G., and J. Mullahy. 2001. Estimating log models: To transform or not to transform? *Journal of Health Economics* 20: 461–494. https://doi.org/10.1016/S0167-6296(01)00086-8.
- Nelder, J. A., and R. W. M. Wedderburn. 1972. Generalized linear models. *Journal of the Royal Statistical Society, Series A* 135: 370–384. https://doi.org/10.2307/2344614.
- Santos Silva, J. M. C., and S. Tenreyro. 2006. The log of gravity. Review of Economics and Statistics 88: 641–658. https://doi.org/10.1162/rest.88.4.641.
- ———. 2010. On the existence of the maximum likelihood estimates in Poisson regression. *Economics Letters* 107: 310–312. https://doi.org/10.1016/j.econlet.2010.02.020.
- ——. 2011. poisson: Some convergence issues. Stata Journal 11: 207–212. https://doi.org/10.1177/1536867X1101100203.
- ———. 2015. ppml: Stata module to perform Poisson pseudo-maximum likelihood estimation. Statistical Software Components S458102, Department of Economics, Boston College. https://ideas.repec.org/c/boc/bocode/s458102.html.
- Stammann, A. 2018. Fast and feasible estimation of generalized linear models with high-dimensional k-way fixed effects. ArXiv Working Paper No. arXiv:1707.01815v3. https://arxiv.org/abs/1707.01815v3.

115

About the authors

Sergio Correia is an economist at the Board of Governors of the Federal Reserve. His research interests include banking and corporate finance, with a focus on banking competition and how it relates to consumer and firm credit access.

Paulo Guimarães heads the research microdata laboratory of Banco de Portugal (BPLIM). He has a particular interest in the fields of regional, industrial, and labor economics.

Tom Zylkin is an assistant professor at the University of Richmond. His research interests include international trade and quantitative methods related to international trade.