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Abstract. Receiver operating characteristic (ROC) curves are commonly used
to evaluate predictions of binary outcomes. When there is a small percentage of
items of interest (as would be the case with fraud detection, for example), ROC

curves can provide an inflated view of performance. This can cause challenges in
determining which set of predictions is better. In this article, we discuss the condi-
tions under which precision-recall curves may be preferable to ROC curves. As an
illustrative example, we compare two commonly used fraud predictors (Beneish’s
[1999, Financial Analysts Journal 55: 24–36] M score and Dechow et al.’s [2011,
Contemporary Accounting Research 28: 17–82] F score) using both ROC and
precision-recall curves. To aid the reader with using precision-recall curves, we
also introduce the command prcurve to plot them.

Keywords: st0591, prcurve, precision-recall curves, classifier evaluation, ROC
curves

1 Introduction

Recent developments in machine learning have increased interest in predictive modeling.
An important component of building a predictive model is evaluating model efficacy.
For evaluating predictions of binary outcomes, receiver operating characteristic (ROC)
curves are the most common tool. In this article, we discuss when it may be advisable
to consult an alternative tool—precision-recall (PR) curves—and introduce a command,
prcurve, for doing so.

In some settings, we may be interested in predicting an outcome that is relatively
rare (for example, fraud). In these settings with a rare outcome, ROC curves can be
shifted outward relative to what would be found under a more balanced distribution.
This outward shift can hinder comparisons of predictors. Our suggestion, and that of
some recent literature (for example, Saito and Rehmsmeier [2015]), is to compare the PR

plots for these predictors. There are, of course, other reasons for preferring PR curves
to ROC, for example, having a loss function (or objective function) that better aligns
with the output provided by the PR curve.
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We illustrate the difference between ROC and PR curves using two well-known cor-
porate fraud predictors: Beneish’s (1999) M score and Dechow et al.’s (2011) F score.
While theM score has a preferable ROC curve, a PR curve highlights the F score’s lower
false-positive rate for companies with the greatest predicted fraud risk.

While much of our discussion synthesizes previous work, there are a few novel as-
pects. First, we elucidate the potential magnitude for ROC curves to overstate the
efficacy of predictors for rare events. This is accomplished through a simulation in
which we vary the percent of cases of interest but hold the true predictive power con-
stant. Second, we compare two commonly used corporate fraud predictors. While both
Beneish (1999) and Dechow et al. (2011) discuss their out-of-sample predictions, there
appears to be little subsequent work that compares these two predictors. Exceptions are
Price, Sharp, and Wood (2011) and Cecchini et al. (2010), who compare the ROC curves
for the M and F scores over the periods 1995–2008 and 1999–2006 (which overlap with
our period of 2006–2011), respectively. Consistent with Price, Sharp, and Wood (2011),
we find that the M score achieves a preferable ROC curve.

Our new command, prcurve, plots PR curves. There are many commands for plot-
ting ROC curves, including the built-in commands rocreg and roccomp and recent
community-contributed commands by Cattaneo, Malighetti, and Spinelli (2017) and
Cook and Rajbhandari (2018). There do not appear to be any available commands for
creating PR plots.

In the next section, we review ROC and PR curves and discuss the situations in which
PR curves can add valuable information to the evaluation. In section 3, we compare
fraud prediction scores. In section 4, we introduce the command prcurve, review its
syntax, and then provide some examples of its usage. In section 5, we conclude.

2 Review of PR and ROC curves

We assume that each observation belongs to one of two classes: positive or negative. In
most economic applications, positive is coded as 1 and negative is coded as 0. To make
predictions, we have a continuous “score”. For example, the predictive probabilities
from a logistic regression could be used as a score. We do not require that the score be
a probability. Instead, we focus on how our score ranks the instances. Throughout this
article, we refer to a set of ordinal scores as a “classifier”.

Our task is to evaluate how well our classifier predicts class. Given a threshold, we
could predict that all observations with a value that is above the threshold are positive
and all observations below the threshold are negative. To see how well the rating works
in combination with the threshold predict class, we define precision, recall, and the
false-positive rate as
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Precision =
TP

TP+ FP

Recall =
TP

P
(1)

False-positive rate =
FP

N
(2)

where the confusion matrix in table 1 defines true positives (TP), false positives (FP),
negatives (N), and positives (P). In other words, precision measures how many of the
items that were predicted to be positive cases are truly positive cases. Recall is the
percent of positive cases that were identified. The false-positive rate is the percent of
negative cases that were incorrectly predicted to be positive.

Table 1. A confusion matrix defining TP, FP, negatives, and positives

truth

positive negative

prediction

positive True False

positives (TP) positives (FP)

negative False True

negatives (FN) negatives (TN)

total Positives (P) Negatives (N)

The values of precision, recall, and the false-positive rate vary with the threshold
used to map our scores into predictions. A common approach is to plot these values
for all possible thresholds. PR curves plot precision as a function of recall; ROC curves
plot recall as a function of the false-positive rate.1 To facilitate a comparison with a
classifier that bears no predictive value, these plots typically include a reference line
corresponding to random predictions. For ROC curves, the reference line is a 45-degree
diagonal. For PR curves, the reference line is a horizontal line at the rate of positives in
the population.

We say that skew is greater when the absolute difference in the percent of positive
and negative cases is larger. A dataset in which 50% of the observations belong to the
positive case and 50% to the negative case exhibits no class skew. Class skew is also
referred to as “class imbalance” in the literature. For datasets that exhibit class skew,
it is usually the case that the negatives outnumber the positives.

1. Note that in ROC analysis, “recall” is typically referred to as the “true-positive rate” or “sensi-
tivity”. The “false-positive rate” is sometimes expressed as “1− specificity”, where “specificity” is
defined as TN/N.
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2.1 When PR curves should be consulted

Before discussing when PR curves should be examined, we should note that ROC curves
have many desirable features. The area under a ROC curve (ROC AUC) has a connec-
tion to the Mann–Whitney U statistic, which enables asymptotic analysis of ROC AUC,
including confidence intervals. (For more details, see DeLong, DeLong, and Clarke-
Pearson [1988].) ROC AUC has an intuitive interpretation as the probability that a
randomly chosen positive case would be ranked higher than a randomly chosen negative
case. While ROC AUC will always be bounded between zero and one, the achievable area
under a PR curve will vary with class skew (Boyd et al. 2012). ROC curves also tend to
be less volatile than PR curves.

Despite the many benefits of ROC curves, two related issues can arise in the presence
of class skew. The first is that with few positives, recall will increase quickly as positive
items are captured. This can lead to big differences in ROC AUC for small changes where
the positive cases lie in the ranked list. Also, small changes in the false-positive rate
indicate large changes in the number of FP when there are many negatives (this has
been discussed by Davis and Goadrich [2006] and Saito and Rehmsmeier [2015]). The
second issue is that, in many settings, ROC AUC is increasing in class skew.

This first issue is related to the classification objective. For a given task, we may
care more about identifying a high percentage of the positives or ensuring that the
items we flag are mainly positives. ROC curves are more attuned to the former and
PR to the latter. Davis and Goadrich (2006) provide an example that highlights the
different information provided by ROC and PR curves. We reproduce this example in
figure 1. In this example, classifier 2 achieves a greater ROC AUC than classifier 1 but
has a much lower PR curve.2 Classifier 2 recalls all the positives while misclassifying
only 25% of the negative cases. In other words, all the positive cases are in (roughly) the
top 25% of the highest ranked observations. For classifier 1, some of the positive cases
are ranked much lower. The PR curve shows us that for the highest-ranked observations
that contain half of the positive cases (that is, recall equals 0.5), all the instances belong
to the positive class.

2. As a bit of an aside, while classifier 2 achieves a greater ROC AUC than classifier 1, the ROC
curve for classifier 1 is higher for small values of the false-positive rate. This corresponds to better
prediction for the instances with the highest scores. For some applications, we may wish to focus
on a portion of the ROC with small false-positive rates, referred to as “partial” or “concentrated”
ROC curves. See, for example, McClish (1989) and Swamidass et al. (2010).
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Figure 1. An example from Davis and Goadrich (2006) that illustrates how ROC and
PR curves can provide different information about a classifier’s performance

We provide a slightly more intuitive plot in figure 2, which plots precision as a
function of the item’s rank once sorted from highest to lowest score. Here we can see
that if we are interested only in highest ranked items (for example, the top 100 or so),
classifier 1 contains a higher portion of positive cases. If we are interested in identifying
all the positive cases, classifier 2 captures these in the top 500. The intuitive nature
of precision has led some to conclude that PR curves are more informative than ROC

(Saito and Rehmsmeier 2015). It can be cumbersome to determine the number of FP

among the observations with the highest scores from a ROC curve when there are many
negatives. If our primary goal is identifying all the positive instances, ROC curves may
still be preferable.
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Figure 2. Precision as a function of rank for the example from Davis and Goadrich
(2006)

The second issue related to class skew (that is, the inflation of ROC AUC) has been the
source of some confusion. Fawcett (2006) states that ROC curves are unaffected by class
skew; (Davis and Goadrich 2006, 1) caution that in the presence of class skew, “ROC

curves can present an overly optimistic view of an algorithm’s performance”. Webb
and Ting (2005) and Fawcett and Flach (2005) provide an excellent discussion of the
effect of class skew on ROC AUC. Fawcett and Flach (2005) provide a useful distinction
between what they refer to as X → Y and Y → X domains. Fawcett and Flach (2005)
motivated this distinction by thinking about the causal link between the features used
to construct the classifier and the outcome that we are interested in predicting. For the
X → Y domain, the features cause the outcome; for the Y → X domain, the outcome
causes the features. We use slightly different definitions—we define the X → Y domain
as a setting in which the ROC AUC is affected by class skew and the Y → X domain as
a setting in which it is not. These definitions are formalized in section 2.2.

For Y → X domains, ROC curves are unaffected by class skew. ROC curves are
unaffected because the distribution of the classifier’s scores are fixed conditional on the
true state (as described below). An example of a Y → X domain from Fawcett and
Flach (2005) is medical diagnosis. Symptoms of a disease could be used to predict
whether an individual is infected.

By contrast, for X → Y domains, an increase in the class imbalance inflates AUC.
TheX → Y domain encapsulates any setting that is not in the Y → X domain. Settings
in a causal relationship that is run from the classifier to the true state would be in the
X → Y domain because the conditions for Y → X domain are stronger than a causal
relationship from the state to the classifier. As an example, a fraud detection score
that contains management’s incentives to overstate earnings would be in the X → Y
domain.
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The essential feature of the Y → X domain is that we can express the distribution of
the classifier’s scores as fixed conditional on whether the item is a positive or negative.
For example, the body temperature of someone with an illness might follow a normal
distribution with mean and standard deviation 101 and 2 degrees Fahrenheit, respec-
tively. If the classifier’s scores follow a fixed distribution conditional on the item’s true
status, recall and the false-positive rate would be unaffected by the percent of positive
cases. A causal relationship from the true class to the classifier is not sufficient for a
setting to be in the Y → X domain.

The shift of PR curves that results from class skew is generally seen as an advantage
(see, for example, Saito and Rehmsmeier [2015]). Given that precision has an intuitive
interpretation of the percentage of predictions that are truly positive, PR curves provide
information about how class skew affects performance. Also, while PR curves are affected
by class skew, so is their reference line. Thus, while the PR curve is shifting with the
percent of positive cases, the results that we would expect under random selection are
also shifting.

Thus far, we have discussed two reasons that we would prefer PR curves to ROC

in the presence of class skew. The first reason is that, if we are concerned about the
number of false negatives for observations with high scores, PR curves can provide a
clearer evaluation than ROC. The second reason is that ROC AUC is often inflated when
there is class skew. In the remainder of this section, we formalize the definitions of
X → Y and Y → X domains and perform a simulation to shed light on the magnitude
of the increase in AUC due to class skew.

2.2 Formal definitions of the X→ Y and Y → X domains

To enable some mathematical statements, we denote the rating for instance i as ai. We
also introduce pi to denote the latent probability of instance i being a positive case. The
joint probability density function for ai and pi is denoted as fap. The true (observable)
class is determined as {

positive if pi > Tp
negative if pi ≤ Tp

where Tp is the threshold for being a positive case. Varying the distribution of pi or the
value of Tp changes the portion of positive cases. We focus on variation in Tp, which is
isomorphic to a shift in pi’s distribution.

By plotting the quantities in (1) and (2) for all possible thresholds, we see the ROC

curve estimates

Recall(False-positive rate) =P (ai > c | pi > Tp)

where c is defined implicitly from False-positive rate = P (ai > c | pi ≤ Tp) (3)

In writing (3), we have made the innocuous assumption that the probabilities P (pi > Tp)
and P (pi ≤ Tp) are both nonzero. The variable c is the threshold for determining
whether to predict that an instance is a positive or negative case. Allowing the false-
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positive rate to vary from zero to one plots all possible combinations of recall and the
false-positive rate.

For a setting to be in the Y → X domain (that is, the ROC curve is unaffected by
changes in Tp), we require that

d

d Tp
{Recall(False-positive rate)} = 0 (4)

for all values of the false-positive rate. Any setting that does not satisfy this condition
is said to be in the X → Y domain. By applying Leibniz’s rule and the implicit function
theorem, we see that the derivative in (4) can be expressed as3

d

d Tp
{Recall(False-positive rate)} = ∂

∂ Tp
P (ai > c | pi > Tp)

+
∂

∂ c
P (ai > c | pi > Tp)

d c

d Tp

The last term can be written as

∂

∂ c
P (ai > c | pi > Tp)

d c

d Tp
=
fa|p>Tp

(c)

fa|p≤Tp
(c)

{
∂

∂ Tp
P (ai > c | pi ≤ Tp)

}
where the conditional probability density functions fa|p>Tp

and fa|p≤Tp
are defined as

fa|p>Tp
=

∫∞
Tp
fap dp∫∞

Tp

∫∞
−∞ fap da dp

fa|p≤Tp
=

∫ Tp

−∞ fap dp∫ Tp

−∞
∫∞
−∞ fap da dp

We assume that fa|p≤Tp
(c) is not equal to zero, because we divide by this term in our

equation for the derivative above. This term would equal zero when c is not in the

support of fap for p ≤ Tp; that is,
∫ Tp

−∞ fap(c, p) dp = 0.

A sufficient condition for equality in (4) to hold is that the conditional probabilities in
(3) do not vary with Tp. Returning to our example of using body temperature to predict
illness, it is plausible that the distribution of body temperatures of the infected would
not vary with disease prevalence. For many other settings, it does not seem feasible that
characteristics would not vary with prevalence. We now explore the potential magnitude
of the increase in ROC AUC as class skew increases for a specific distribution for fap.

2.3 Class skew and inflation of AUC

As before, we denote the score as ai and the latent probability of being a positive case
as pi. We assume a bivariate standard normal distribution for ai and pi so that we

3. For this derivation, we have assumed that the joint distribution fap is atomless and takes positive
support over its domain. If discrete distributions are of interest, we would need to replace the
derivative in (4) with a discrete change in Tp of sufficient magnitude to affect P (pi > Tp).
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can characterize the strength of the relationship between ai and pi with the correlation,
which we denote as ρ. We can think of ρ as the strength of the classifier (with zero
corresponding to no predictive power and one corresponding to perfect prediction). Note
that this is an example of an X → Y domain.

Table 2 shows how ROC AUC varies with the portion of positive cases for a given
classifier strength. The AUC is calculated analytically using a procedure similar to that of
Cook (2017).4 Table 2 also provides the percent increase in AUC over 50% compared with
the AUC when half of the cases are positive. For example, when ρ equals 0.2, the AUC is
0.5903 when 50% of cases are positive but increases to 0.6608 when 0.5% of the cases are
positive. We calculate the percent increase as (0.6608− 0.5)/(0.5903− 0.5)− 1 ≈ 78%.

Table 2. Effects of increasing class imbalance on ROC

AUC. AUCs provided for various percentages of positive
cases and ρ.

Percent of positive cases
50% 10% 5% 1% 0.5%

ρ = 0 0.5000 0.5000 0.5000 0.5000 0.5000
[0%] [0%] [0%] [0%]

ρ = .2 0.5903 0.6097 0.6217 0.6495 0.6608
[22%] [35%] [66%] [78%]

ρ = .4 0.6824 0.7178 0.7390 0.7857 0.8035
[19%] [13%] [56%] [66%]

ρ = .6 0.7787 0.8222 0.8466 0.8955 0.9122
[16%] [24%] [42%] [48%]

ρ = .8 0.8824 0.9188 0.9370 0.9680 0.9767
[10%] [14%] [22%] [25%]

note: The percent increase in AUC over 0.5 is presented in
square brackets.

From table 2, we see that when the classifier has no predictive power (ρ = 0), the
ROC AUC is always 0.5 regardless of the percent of positive cases. For ρ > 0, increasing
the class skew inflates ROC AUC. The increase in AUC is larger for smaller (positive)
values of ρ, as the AUC is bounded above by one.

While ROC AUC is greater for greater values of ρ, the difference can be decreased in
the presence of class skew. For example, comparing ρ equal to 0.6 and 0.8 in table 2,
we see that a difference of 0.7787 to 0.8824 under no skew shrinks to a difference of
0.9122 and 0.9767 when positives are only 0.5% of the sample. Compounding these
smaller differences with the noise induced by finite samples can hinder comparisons of
predictors.

4. Specially, for each c ∈ {−4,−3.9, . . . , 3.9, 4}, we compute recall = P (a > c | p > Tp) and the
false-positive rate = P (a > c | p ≤ Tp). Both of these conditional probabilities can be easily
computed given the bivariate normal assumption. From this collection of points, we integrate to
find the ROC AUC.
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3 Example: Fraud detection scores

Predicting corporate fraud is important for regulators like the U.S. Securities and Ex-
change Commission and investors alike. Two well-known fraud prediction scores from
the accounting literature are Beneish’s (1999) M score and Dechow et al.’s (2011) F
score. In addition to their nonacademic uses, these scores have been used extensively
in the accounting literature.5

Both of these scores are based on regressions of the Securities and Exchange Com-
mission’s Accounting and Auditing Enforcement Releases (AAERs) on characteristics of
firms that did and did not receive an AAER. Details about these scores are described in
Beneish (1999) and Dechow et al. (2011).

Given the similar construction of these scores, it is natural to ask by how much their
ranking of companies differs. Because we are interested only in the ordinal rankings
provided by these predictors, we transform both to a standard normal distribution using
a monotonic transformation.6 This monotonic transformation facilitates visualization of
the correlation between these rankings in a scatterplot. In figure 3, we see that there is
a surprisingly weak relationship between these two predictors. The Pearson (Spearman)
correlation between the normalized scores is only 0.15 (0.17).
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Figure 3. Correlation between the M and F scores. Both scores have been normalized.
The correlation between them is 0.15.

5. These two articles combined have over 1,700 citations on Google Scholar (as of January 3, 2019).
6. We transform these scores to a standard normal distribution by first applying the empirical cu-

mulative distribution function and then applying the inverse of the standard normal cumulative
distribution function. This transformation causes the largest score to be mapped to positive in-
finity. We correct this by replacing the largest transform score with 0.1 plus the second largest
score.
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To evaluate these scores, we use a five-year period starting in 2006. Dechow et al.’s
(2011) dataset includes part of 2005, and Beneish’s (1999) dataset covers earlier years, so
beginning in 2006 ensures that we are not including observations used to create either
score. We eliminate financial companies (that is, those with an Standard Industrial
Classification code in the 6000s) as is common in the accounting literature, because
they are heavily regulated and have unique characteristics.

We report ROC AUC and PR AUC for each year and the entire period in table 3.7

When we compare predictions for individual years, both ROC and PR curves indicate
that the F score performs better in the early years and the M score performs better
in the later years. For the period 2006–2011, ROC and PR curves provide a different
characterization of the relative performance of the scores. We also see in table 3 that
AAERs are relatively rare—only 0.4% of company years received them.

Table 3. Summary statistics for data used to evaluate fraud predictors

ROC AUC PR AUC

Year(s) Observations AAERs F score M score F score M score

2006 3,869 23 0.6660 0.6068 0.0152 0.0077
2007 3,785 19 0.5838 0.4951 0.0098 0.0052
2008 4,404 18 0.5832 0.5812 0.0096 0.0055
2009 4,309 20 0.5165 0.5604 0.0045 0.0053
2010 4,102 17 0.5171 0.6350 0.0042 0.0059
2011 3,511 6 0.3998 0.5960 0.0013 0.0020

2006–2011 23,980 103 0.5648 0.5776 0.0061 0.0052

note: Larger values of AUC are in bold.

The ROC and PR curves for the entire six-year period are provided in figure 4. There
are some similarities with the example in figure 1. While the M score achieves a higher
ROC curve than the F score, we see that theM score’s precision is greater only for recall
between 0.4 and 0.8. If we are interested in examining companies with the highest scores
in hopes that a high percentage is actual frauds, we see in figure 5 that the F score is
preferable for the highest 5,000 (or fewer) companies.

7. Our AAER data are from the Center for Financial Reporting and Management at the Haas School
of Business. The AAER data were collected on September 30, 2016.



142 When to consult precision-recall curves

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0
S

e
n

s
it
iv

it
y

0.00 0.25 0.50 0.75 1.00
1−Specificity

M−score ROC AUC: 0.5776 F−score ROC AUC: 0.5648

(a) ROC curves

0
.0

0
5

.0
1

.0
1

5
.0

2
P

re
c
is

io
n

0 .2 .4 .6 .8 1
Recall

M−score PR AUC: 0.0052 F−score PR AUC: 0.0061

(b) PR curves

Figure 4. ROC and PR curves for Beneish’s (1999) M score and Dechow et al.’s (2011)
F score
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Figure 5. A precision-rank curve comparing Beneish’s (1999) M score and Dechow
et al.’s (2011) F score

Before proceeding to discuss the command to plot PR curves, the astute reader may
wonder whether, given the weak correlation between the M and F scores, an average
of the two would outperform either individually. We confirm that this is the case. A
simple average of the normalized scores used in figure 3 achieves a ROC and PR AUC

of 0.5871 and 0.0065, respectively. Both of these AUCs are greater than those obtained
from either the M or the F score.
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4 The prcurve command

This section describes the prcurve command, which plots the PR curves used in this
article.

4.1 Syntax

prcurve refvar classvar
[
if
] [

in
] [

, compare(classvar) prec at(#) threshold

rank fscore interpolate nograph norefline twoway options
]

4.2 Options

compare(classvar) facilitates comparison with another classifier.

prec at(#) affects the values of precision that are displayed. The displayed values
of precision will be around the specified value of recall. When the option rank is
specified, this option is used to specify a rank.

threshold uses the cutoff threshold for the horizontal axis.

rank uses the item’s rank for the horizontal axis. Note that if multiple observations
have the same classifier score (that is, there are ties), the precision is averaged from
all possible rankings.

fscore plots the F score as a function of cutoff thresholds. The F score is the harmonic
mean of precision and recall. Note that this is not the same as Dechow et al.’s (2011)
F score.

interpolate provides an interpolated precision curve. It can be used with threshold

but not rank.

nograph suppresses the graphical output.

norefline does not provide a reference line for the plot.

twoway options are any of the options documented in [G-3] twoway options, excluding
by().

4.3 Details regarding the rank option

The option to use the observation’s rank on the horizontal axis requires some expla-
nation. While the idea is fairly intuitive—all items are ranked from highest to lowest
score; then cumulative precision is calculated at each item—a complication arises when
multiple items have the same score (that is, a tie). For tied items, there is not a unique
sequence, yet precision may vary depending on how the items are ordered. Our approach
is to use the average precision across all possible orderings.
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Also, while we are referring to the horizontal axis as “rank”, a simple relabeling of
the axis values would lead to an interpretation of the horizontal axis as the percent of
instances (as used in cumulative-gains charts).

4.4 Examples

Example 1: Basic usage

We begin by loading Hosmer and Lemeshow’s (2000) dataset on predictors of low
birthweight. For our example, we will use the variables ui (presence of urinary irritabil-
ity), age (age of mother in years), and bwt (birthweight in grams).

. webuse lbw
(Hosmer & Lemeshow data)

We will use the variable ui as the outcome and create two new variables (score1 and
score2) to predict ui.

. generate score1 = -bwt

. generate score2 = -age

To create a PR curve for the classifier score1, we type

. prcurve ui score1

Number of observations = 189
Unique values of classifier = 133
Number of positive cases = 28
Portion of positive cases = 0.1481

Recall = 0.1071 0.2143 0.3214

Precision 0.6000 0.3529 0.3462

Area under precision-recall curve: 0.3089

In addition to the plotted curve, the command displays the values of precision at different
values of recall and some summary measures such as the number of observations used.
Adding a few options to change the graph region color and line thickness, we have

. prcurve ui score1, graphregion(color(gs16)) lwidth(medthick)

Number of observations = 189
Unique values of classifier = 133
Number of positive cases = 28
Portion of positive cases = 0.1481

Recall = 0.1071 0.2143 0.3214

Precision 0.6000 0.3529 0.3462

Area under precision-recall curve: 0.3089



J. Cook and V. Ramadas 145

The resulting plot is provided in figure 6.
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Figure 6. PR curve

Example 2: Comparing two classifiers

A common task is comparing two classifiers. prcurve enables plotting two PR curves
in the same plot:

. prcurve ui score1, compare(score2)

Number of observations = 189
Number of positive cases = 28
Portion of positive cases = 0.1481

score1 score2

PR AUC 0.3089 0.1566
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The resulting plot is presented in figure 7.
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Figure 7. Example of comparing two PR curves

5 Conclusion

In this article, we championed PR curves for predictions that involve few positive cases.
This discussion was at times commingled with the different objective functions that
may be easier analyzed with either ROC or PR curves. An important result is that ROC

AUC is usually inflated for events that occur infrequently. In section 2.3, we saw the
potential magnitude of ROC AUC increases. Even in the absence of this outward shift
of the curve, PR curves may better align with our prediction objective and may offer a
more intuitive visualization.

PR curves plot the portion of predictions that are true positives on the vertical axis.
The intuitive nature of this measure has led some to favor these curves over ROC. We
have also shown precision-rank curves, which use the observation’s rank once sorted by
score in descending order for the horizontal axis. The Stata command prcurve can
provide both PR and precision-rank plots.

We explored the difference between ROC and PR curves through an example of fraud
prediction, for which the areas under these curves prefer different predictors (for the
period 2006 to 2011). If we are interested in a high percentage of the riskiest companies
being truly risky, a PR curve shows us that the F score is preferable to the M score.
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7 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 20-1

. net install st0591 (to install program files, if available)

. net get st0591 (to install ancillary files, if available)
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