%‘““‘“\N Ag Econ sxes
/‘ RESEARCH IN AGRICUITURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.


https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

1eck for updates

The Stata Journal (2019)
19, Number 4, pp. 803—-819 DOI: 10.1177/1536867X19893624

Permutation tests for stepped-wedge
cluster-randomized trials

Jennifer Thompson
London School of Hygiene and Tropical Medicine
London, UK
jennifer.thompson@Ishtm.ac.uk

Calum Davey
London School of Hygiene and Tropical Medicine
London, UK
calum.davey@lshtm.ac.uk

Richard Hayes
London School of Hygiene and Tropical Medicine
London, UK
richard.hayes@Ilshtm.ac.uk

James Hargreaves
London School of Hygiene and Tropical Medicine
London, UK
james.hargreaves@lshtm.ac.uk

Katherine Fielding
London School of Hygiene and Tropical Medicine
London, UK
katherine.fielding@lshtm.ac.uk

Abstract. Permutation tests are useful in stepped-wedge trials to provide robust
statistical tests of intervention-effect estimates. However, the permute command
does not, produce valid tests in this setting because individual observations are not
exchangeable. We introduce the swpermute command, which permutes clusters to
sequences to maintain exchangeability. The command provides additional func-
tionality for performing analyses of stepped-wedge trials. In particular, we include
the withinperiod option, which performs the specified analysis separately in each
period of the study with the resulting period-specific intervention-effect estimates
combined as a weighted average. We also include functionality to test nonzero
null hypotheses to aid in the construction of confidence intervals. Examples of
the application of swpermute are given using data from a trial testing the impact
of a new tuberculosis diagnostic test on bacterial confirmation of a tuberculosis
diagnosis.
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1 Introduction

Permutation tests are a commonly used nonparametric statistical technique for calculat-
ing p-values without making distributional assumptions (Pitman 1937; Eden and Yates
1933; Fisher 1971). In individually randomized trials, they are used because they make
no distributional assumptions, provide exact p-values and confidence intervals, and do
not rely on large-sample approximations (Ernst 2004); the permute command provides
an intuitive and simple way to perform permutation tests in this scenario.

While the benefits of permutation tests hold for more complex randomized designs,
such as stepped-wedge cluster-randomized trials (SW-CRTs), permute cannot perform a
valid test for these complex designs. In a cluster-randomized trial (CRT), the allocation
of clusters of individuals, such as villages or hospital wards, is randomized. An SW-
CRT is a CRT run over a number of periods. Clusters are randomized to sequences,
where each sequence receives the control condition for a different number of periods and
then receives an intervention condition for the remaining periods of the trial (figure 1).
Parametric analysis of SW-CRTs requires specification of the correlation structure over
time within cluster. This can be difficult to prespecify, and results are sensitive to
misspecification (Thompson et al. 2017). Therefore, permutation tests, which do not
require specification of correlation structures, are appealing (Hayes and Moulton 2009;
Thompson et al. 2018; Ji et al. 2017; Wang and De Gruttola 2017).

Periods

A/A/¢\A\,

Sequences
N

Figure 1. Schematics of an SW-CRT. White = time in control condition. Gray = time
in intervention condition.

Here we introduce a new command, swpermute, that allows specification of clustering
and allocation to a sequence of intervention conditions to enable use with CRTs in general
but with a particular focus on SW-CRTs. In the next section, we provide an overview of
permutation tests for SW-CRTs. In section 3, we outline the syntax of the swpermute
command. In section 5, we demonstrate the use of swpermute with two examples.
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2 Technical details

The swpermute command is designed for trials with two treatment conditions; usually,
they will be control and intervention conditions, so we will use this terminology through-
out this article. In this section, we will summarize the permutation test and show how
it is implemented in swpermute.

2.1 Permutation tests with individual randomization

Details of the permutation test can be found elsewhere, such as in Good (2005); here,
we briefly summarize.

In an individually randomized trial, we have a sample of observations, half of which
were collected under a control condition and half under an intervention condition. We
want to know whether the control and intervention conditions result in different distri-
butions of outcomes. If there is truly no difference between the two conditions, then
assignment of observations to each condition is arbitrary, and for any set of assignments
of the observations to the control and intervention conditions, we can estimate an inter-
vention effect. By repeating this process for each unique assignment of observations to
conditions, we obtain the exact distribution of the intervention-effect estimator under
the null hypothesis of no effect. The p-value, defined as the probability of the observed
data if there is no intervention effect, is then given as the proportion of permuted in-
tervention effects the same as or more extreme than that observed.

Monte Carlo permutations

This process is computationally simplified by randomly sampling a number of permuta-
tions from all possible permutations with or without replacement, a process known as
Monte Carlo permutations (Good 2005). The p-value calculated may differ when the
process is repeated with a different set of permutations.

Constructing confidence intervals

Confidence intervals are created by finding the boundaries of hypothesized intervention
effects that lead to two-sided p-values less than the a level. One way to identify the
confidence limits is to test several hypothesized intervention effects to see whether the
p-value is larger or smaller than a.

A hypothesized intervention of § = 6,4 is tested by first subtracting 84 from ob-
servations collected in the intervention condition, and then running the permutation
test as described above to get a p-value (Good 2005; Rigdon and Hudgens 2015). The
random-number seed should be set to the same seed as the original analysis so that one
set of permutations are used throughout the analysis, allowing the confidence intervals
and p-value to coincide with one another.
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2.2 Extending permutation tests to SW-CRTs

Two assumptions are required for permutation tests to be valid.

First, permutation tests test equivalence of distributions between the conditions.
This means they will return a small p-value if either the means or the variances of out-
comes differ. The effect of an intervention varying between observations is an example
of the latter.

Second, permutation tests assume exchangeability of observations. This means that
any assignment of observations to the conditions is equally likely. In the context of
SW-CRTs, exchangeability holds for the assignment of clusters to sequences but will not
hold at the individual observation level. Clusters should therefore be permuted between
sequences. The permute command permutes individual observations, so it is not a valid
test for SW-CRTs. The swpermute command permutes clusters to sequences, so it is
valid for SW-CRTs (and CRTs with other designs).

2.3 Selecting an intervention-effect estimator for a stepped-wedge
trial

Permutation tests provide a p-value and confidence intervals for a given intervention-
effect estimator. A key design feature of all SW-CRTs is that the intervention effect is
confounded with time. Therefore, the chosen estimator must account for this confound-
ing either by adjusting for period effects or by conditioning on periods.

To adjust for period effects, generalized linear models or generalized linear mixed
models can be used (Bellan et al. 2015; Ji et al. 2017; Wang and De Gruttola 2017).

To condition on the period, the analysis can be conducted within each period with
resulting within-period estimates combined as a weighted average. More details of
this method, also known as a vertical analysis, are given in Thompson et al. (2018).
Any analysis that can be used for a parallel CRT could be used within each period; for
example, Thompson et al. (2018) suggested using a cluster-level analysis in each period.

The overall intervention-effect estimate can be estimated more accurately by us-
ing appropriate weights for each period (Hayes and Moulton 2009). Periods can be
weighted by the imbalance in the number of clusters in the control and intervention
conditions (Matthews and Forbes 2017) or by the precision of within-period estimates
(Thompson et al. 2018).

3 The swpermute command

The swpermute command runs a permutation test for SW-CRTs using any user-specified
analysis to estimate the intervention effect. The algorithm identifies sequences in the
data and permutes clusters between these sequences. Like the permute command,
swpermute performs Monte Carlo permutations with replacement. The specified anal-
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ysis can be run either across all periods in the study or in each period with results
combined as a weighted average. Users can specify hypothesized intervention effects to
construct confidence intervals.

3.1 Data requirements

The swpermute command requires specification of a clustering variable identified in
cluster (), a period variable identified in period(), and an intervention variable iden-
tified in intervention(). Together, these variables define the design of the trial. The
intervention must be specified as a binary variable, where 0 and 1 represent the con-
trol and intervention conditions, respectively. All observations within each value of
cluster () must have the same value of intervention() in each period(), or the
command will return an error. If the intervention variable contains missing values for
all observations in a period in a cluster, then this is assumed to be part of the sequence,
for example, as a washout period, and the missing value will be permuted. Otherwise,
observations with intervention() missing will be excluded from the analysis.

The data should be in long format, with observations in each period given in different
rows of the data.

3.2 Syntax

The syntax of the swpermute command is as follows:

swpermute exp, cluster(varname) Eiod(varname) intervention(varname)
[;eps(#) left |Eht strata(varlist) gving(ﬁlename[ R suboptz'ons])
null (numlist) outcome(varname) seed(#) withinperiod
weightperiod(weightperiod) nodots level (#) ]: command
exp specifies the result to be collected from results stored by the execution of com-

mand. Examples are r(mu_1) - r(mu_2), the mean difference estimated by ttest, and
_blvarnamel, a coeflicient estimate from a regression model.

3.3 Options
Main

cluster (varname) specifies the variable identifying the clusters. cluster () is required
and must be a numeric variable. All observations within each cluster () must have
the same value of intervention() in each period(). Observations with cluster ()
missing will be excluded from the analysis.
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period(varname) specifies the variable identifying the periods. period() is required
and must be a numeric variable. Observations with period() missing will be ex-
cluded from the analysis.

intervention(varname) specifies the variable identifying the intervention assignment.
intervention() is required and must be a binary variable. Treatment of missing
values is described above.

reps (#) specifies the number of permutations to perform. The default is reps(1000).

left or right requests that one-sided p-values be computed. If left is specified, the
p-value reported is the proportion of permutations where exp gives a value less than
or equal to the observed value. If right is specified, the p-value reported is the
proportion of permutations where exp gives a value greater than or equal to the
observed value. The default is two-sided p-values, where the p-value reported is the
proportion of permutations where exp is the same as or further from zero than the
observed value.

Options

strata(warlist) specifies that the permutations be performed within each stratum de-
fined by the values of varlist. This option should be used if randomization of clusters
was stratified (Ernst 2004).

saving(filename [ , suboptions]) creates a .dta file consisting of a row for each per-
mutation for each value in null (). The file consists of three variables containing the
null () value being tested, the observed value of exp for that null value, and values
of exp for each permutation. A new filename is required unless replace is specified.
The suboption double specifies that results should be stored in double precision;
the default is to store results as float. The suboption every(#) writes results to
the file every # permutations; this will allow partial recovery of results should the
command not complete running.

null (numlist) specifies a list of values to test as the null hypothesis. For each value
specified, the value will be subtracted from the variable specified in outcome () if the
variable defined in intervention() is equal to 1. The permutation test is run on this
modified dataset to calculate a p-value. The random-number seed is reset for each
value tested. This option should be used only with cluster-period-level or continuous
outcomes. The null values are assumed to be on the same scale as the outcome (for
example, risk differences if the outcomes are cluster-period risks). Ratios such as
risk ratios or odds ratios should be given on the log scale. The default is null(0).
When values other than the default are specified, the option outcome (varname) is
required.
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outcome (varname) specifies the outcome variable from which the null values will be
subtracted. The outcome variable is assumed to be on the same scale as the null
values. For example, outcome () should contain risks if null () gives risk differences
or log risks if null () gives log risk ratios. outcome () is required if the option null ()
is given with a value other than 0.

seed(#) sets the random-number seed. Specifying this option is equivalent to typing
set seed # prior to calling swpermute. If no seed is specified, then because of the
random selection of permutations, swpermute will return different results each time
it is run.

Within-period analysis

withinperiod specifies that a within-period analysis should be performed. command is
run within each unique value of the variable specified in period (), and the resulting
values of exp are combined as a weighted average using the weights specified in
weightperiod(). This option allows a “vertical analysis” in stepped-wedge trial
literature.

weightperiod (weightperiod) specifies the weights to be used if withinperiod is speci-
fied. This option is required only when withinperiod is specified and is one of the
following:

weightperiod(N) specifies that periods are weighted by the number of clusters in
the control and intervention conditions as

(ra)
wj=|—+—
505 S14

where sp; and si; are the numbers of clusters in the control condition and
the intervention condition, respectively, in period j. This is the default and
is recommended if the total variance is not expected to vary between periods
(Matthews and Forbes 2017).

weightperiod(none) specifies that each period is given equal weight, so the weight
w; = 1 for all periods j.

weightperiod(variance expsy) specifies that each period is weighted by the inverse
of the statistic exps stored by the execution of command. That is,

1
wj = expy;

expy; is assumed to be the variance of the estimate from the jth period. This
specification is suggested by Thompson et al. (2018) when the variance of the
outcome is expected to vary between periods.
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Reporting

nodots suppresses display of the dots at the completion of each permutation. By default,
one . is displayed for each successful permutation. A red x is displayed if command
returns an error or if the statistic in exp is missing for a permutation.

level (#) specifies the confidence level, as a percentage, for the confidence intervals.
The default is level(95) or as set by set level; see [U] 20.8 Specifying the
width of confidence intervals.

3.4 Stored results

swpermute stores the following in r():

Scalars
r(N_cluster) number of clusters being permuted
r(N_strata) number of strata if the strata() option is specified
r(obs_value) value of exp observed in the original data
r(N_reps) number of permutations
Matrices
r(design) matrix of 0 and 1 values showing the design of the SW-CRT
r(obs_period) value of exp observed in the original data within each value of
period() if a within-period analysis is specified
r(p) p-values with their confidence intervals for each null value

3.5 The dialog box

The swpermute command can be used both as a coded command and through a drop-
down dialog box as shown in the appendix. To install the dialog box, run the following
commands:

. window menu append submenu "stUser" "&Cluster RCTs"

. window menu append item "Cluster RCTs" "Permute for stepped-wedge trials
> (&swpermute)" "db swpermute"

. window menu refresh

Running these commands from within Stata will install only the dialog box for the
current session of Stata. To install the menus permanently, place the above commands
into your profile.do file. See [GSW] B.3 Executing commands every time Stata
is started, [GSM] B.1 Executing commands every time Stata is started, or
[asu] B.1 Executing commands every time Stata is started for more details on
how to do this.

4 Examples

To demonstrate the use of swpermute, we will use data from an SW-CRT conducted in
Brazil that assessed the impact of switching from the standard tuberculosis (TB) diag-
nostic test, sputum smear microscopy, to a new diagnostic test called Xpert MTB/RIF.
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We will focus on a secondary outcome of the proportion of patients with a bacterial
confirmation of their TB diagnosis (Trajman et al. 2015). These examples use real trial
data, but the data cannot be provided with the command. Instead, a simulated dataset
is included that closely mimics the characteristics of these trial data but will not repro-
duce these example results.

The trial included 14 laboratories (clusters). At initiation of the study, all laborato-
ries were using sputum smear microscopy to diagnose TB. Following a month of baseline
data collection, the Xpert test was rolled out to two randomly assigned laboratories each
month (that is, within seven months, all laboratories were using the Xpert test). The
dataset contains 3,924 patients; their diagnoses were recorded as either clinical (with
a negative test or no test done) or bacterially confirmed. The Xpert test was used to
diagnose 2,147 (55%) patients. Across both trial arms, 2,833 (72%) had a confirmed TB
diagnosis.

The output below describes the dataset:

. describe

Contains data from TBdiagnostic.dta

obs: 3,924
vars: 6 5 Oct 2018 15:33
size: 27,468
storage display value
variable name type format label variable label
lab byte %8.0g ID of laboratory
patientid int %9.0g
study_month byte %8.0g Study month
arm byte %8.0g armlbl Intervention status
fav_outcome byte %10.0g favoutlbl
Treatment outcome of individual
confirmed byte %11.0g confirmedlbl
Laboratory confirmation of TB
diagnosis
Sorted by: lab study_month
. list in 1/5
lab patien~d study_-~h arm fav_outc-e confirmed
1 1 1 1 smear favourable unconfirmed
2 1 2 1 smear poor confirmed
3 1 3 1 smear favourable confirmed
4 1 4 1 smear poor confirmed
5 1 5 1 smear favourable confirmed

Each row gives the diagnosis type, confirmed, of a patient. lab identifies which
laboratory they were diagnosed in and so assigns the patient to a cluster. study month
identifies which month of the study they were diagnosed in, and arm identifies whether
the laboratory was using smear microscopy or the Xpert diagnostic at the time of
diagnosis.
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We will explore two analyses with permutation tests: the first will use a generalized
linear mixed model with a permutation test, and the second will demonstrate a within-
period analysis.

4.1 Example 1: Generalized linear mixed model

A mixed-effects logistic regression, adjusting for period effects as a fixed categorical
variable and with a random intercept for cluster, can be used in combination with a
permutation test to analyze this trial, as shown below.

. swpermute _b[arm], cluster(lab) period(study_month) intervention(arm)
> reps(1000) seed(20255) nodots:
> melogit confirmed i.study_month arm || lab:

Monte Carlo permutation results

command: melogit confirmed i.study_month arm || lab :
statistic: _b[arm]
design:
freq 1 2 3 4 5 6 7 8
2 0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 1 1
2 0 0 0 0 0 1 1 1
2 0 0 0 0 1 1 1 1
2 0 0 0 1 1 1 1 1
2 0 0 1 1 1 1 1 1
2 0 1 1 1 1 1 1 1
statistic obs_value null c n p [95% Conf. Intervall
_b[arm] .4155579 0 2 1000 0.0020 .0002423 .0072058

Note: confidence interval is with respect to p
p-value is two-sided

swpermute shows the design-pattern matrix of the trial to allow users to check that
sequences have been correctly identified. FEach row represents a unique sequence of
allocations observed within the data, and each column represents a period. For each
sequence and period, a 0 or 1 is shown to represent the intervention condition of clusters
in that sequence in that period. The leftmost column shows the number of clusters
assigned to each sequence.

The table below this matrix gives the results of the permutation test. First, we
see the intervention-effect estimate observed in the data (obs_value), and then the null
hypothesis being tested (null). The third column (c) gives the number of permutations
with a value of exp the same as or more extreme than the observed value, and the fourth
column (n) gives the total number of permutations successfully completed.

The intervention-effect estimate is the value estimated by the melogit command
[odds ratio = exp(0.42) = 1.52].
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Only 2/1000 permutations gave a result the same as or more extreme than that
observed, giving the p-value 2/1000 = 0.002 shown in column 5 (p). This analysis
suggests there is strong evidence that the Xpert test increases the odds of a confirmed
diagnosis.

The last two columns give a two-sided 95% confidence interval for the p-value that
indicates the level of uncertainty around the p-value from the random selection of per-
mutations. In this example, the interpretation of the p-value does not substantively
change for values within this interval. Where interpretation would be altered for differ-
ent values within the interval, the analysis should be rerun with more permutations.

4.2 Example 2: Within-period analysis and generating confidence
intervals

In our second example, we will use a within-period analysis to calculate the difference
in the risk (the proportion) of a confirmed diagnosis using a cluster-level analysis within
each period, and we show how to construct confidence intervals.

First, we calculate the proportion of confirmed diagnoses in each cluster period by
collapsing the data. We run swpermute with regress as the command to calculate a
risk difference and its variance. We select the withinperiod option to run the regression
within each period and set the period weights as variance weights.
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. collapse (mean) risk_confirmed = confirmed , by(lab study_month arm)

. swpermute _b[arm], cluster(lab) period(study_month) intervention(arm)
> seed(9845) withinperiod weightperiod(variance _se[arm]~2) nodots
> reps(1000) : regress risk_confirmed arm

Warning: study_month = 1 not included in analysis. Clusters all in one condition
Warning: study_month = 8 not included in analysis. Clusters all in one condition
Monte Carlo permutation results

command: regress risk_confirmed arm

statistic: _b[arm]
design:
freq 1 2 3 4 5 6 7 8
2 0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 1 1
2 0 0 0 0 0 1 1 1
2 0 0 0 0 1 1 1 1
2 0 0 0 1 1 1 1 1
2 0 0 1 1 1 1 1 1
2 0 1 1 1 1 1 1 1

Within period Estimates and Weights:

Estimate Weight
study_month:2 0.0401 0.0581
study_month:3 0.0998 0.1787
study_month:4 0.0334 0.1329
study_month:5 0.1512 0.1835
study_month:6 0.1362 0.2714
study_month:7 0.0909 0.1753
statistic obs_value null c n p [95% Conf. Intervall
_blarm] .1052611 0 50 1000 0.0500 .0373354 .0653905

Note: confidence interval is with respect to p
p-value is two-sided

We are warned that study month 1 and study month 8 are not included in this
analysis. All clusters are in the same condition during these periods, so an intervention
effect cannot be calculated.

The command displays a list of effect estimates and weights for each period in the
study. The greatest weight is given to study month 6 despite the imbalance in clusters in
the control and intervention conditions. This is because there was less variability in the
cluster-level outcomes during this period, leading to a lower variance for the estimated
intervention effect.

The observed value in the table of results is the weighted average of these period-
specific estimates. The percentage of patients with a confirmed diagnosis was 10.5%
higher in patients diagnosed with the Xpert test compared with patients diagnosed
with smear microscopy, and there is some evidence against the intervention having no
effect (p = 0.05).
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Next, we demonstrate the construction of 95% confidence intervals.
estimate of the confidence interval boundaries can be found by assuming that the
intervention-effect estimate follows a normal distribution and using the p-value to esti-

mate a standard error as follows:

. * Estimate standard error
. display .1052611 / invnorm( 1 - 0.0500 / 2 )

.05370563

. * Initial lower bound of 95J CI
. display .1052611 - 1.96 * .0537

9.100e-06

. * Initial upper bound of 95} CI
. display .1052611 + 1.96 * .0537

.2105131

Permutation tests are conducted to test these initial values. An example is shown
below for the initial proposed upper boundary; the dialog boxes shown in the appendix

replicate this example.

The initial

. swpermute _b[arm], cluster(lab) period(study_month) intervention(arm)
> seed(9845) withinperiod weightperiod(variance _se[arm]~2) nodots

A\

reps(1000) null(0.211) outcome(risk_confirmed):

> regress risk_confirmed arm

Warning: study_month =

Warning: study_month =

1 not included in analysis. Clusters all in one condition

8 not included in analysis. Clusters all in one condition

Monte Carlo permutation results

command :
statistic:
design:

regress risk_confirmed arm

Within period Estimates and Weights:

_bl[arm]

freq 1 2 3 4 5 6 7 8
2 0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 1 1
2 0 0 0 0 0 1 1 1
2 0 0 0 0 1 1 1 1
2 0 0 0 1 1 1 1 1
2 0 0 1 1 1 1 1 1
2 0 1 1 1 1 1 1 1

Estimate Weight
study_month:2 0.0401 0.0581
study_month:3 0.0998 0.1787
study_month:4 0.0334 0.1329
study_month:5 0.1512 0.1835
study_month:6 0.1362 0.2714
study_month:7 0.0909 0.1753
statistic obs_value null c n p [95% Conf. Intervall
_b[arm] .1052611 .211 26 1000 0.0260 .0170528 .0378651

Note: confidence interval is with respect to p
p-value is two-sided
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Depending on the p-value, the proposed boundary value is either increased or de-
creased until the boundary value with p > 0.05 is identified. To identify the lower
boundary in our example, the initial estimate was 0.00, which gives p = 0.0500, so we
tested a null value of —0.001 to see if a smaller value also fell with the 95% confidence
interval. This has p = 0.048, so the lower boundary is 0.00. For the upper boundary,
the initial estimate of 0.211 gave p = 0.026, well outside the 95% confidence interval. A
null of 0.20 gave p = 0.045, null = 0.197 gave p = 0.054, null = 0.198 gave p = 0.051,
and lastly null = 0.199 gave p = 0.047. The largest value within the 95% confidence
interval is 19.8%. Therefore, our 95% confidence interval is [0.0%, 19.8%].

5 Concluding remarks

swpermute, an extension of the command permute, permutes clusters between sequences
and can perform within-period analyses. We also incorporated functionality to test
nonzero null hypotheses to facilitate the construction of confidence intervals. Although
this command has been designed for use with SW-CRTs, it can also be used with other
trial designs such as parallel and crossover CRTSs.

However, swpermute has limitations. Testing nonzero null hypothesis values is only
available for continuous outcomes (including cluster—period-level summaries). For other
outcome types, the process involves manipulating the dataset to such a degree that we
felt it was safer for the user to perform this themselves. For example, with a binary
outcome, a risk difference cannot simply be subtracted from the outcome of 0 or 1.
While we have incorporated stratification of randomization by a list of variables, some
randomization strategies, such as restricted randomization, cannot be captured this
way (Moulton 2004). In general, it is a limitation of permutation tests that confidence
interval construction is computationally intensive.

swpermute facilitates the use of robust analysis methods for an SW-CRT, simplifying
complex analysis.
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7 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 19-4
. net install st0577 (to install program files, if available)
. net get st0577 (to install ancillary files, if available)
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A Appendix: Dialog boxes to run the example in sec-
tion 4.2

=] swpermute 1.1 - permutation tests for stepped wedge trials — X

Main  Qptions Within-Period and Reporting

Stata command to run:

| regress risk_confirmed arm |

Statistical expression:
| _blarm] |

Permutations

Cluster Period Intervention

Iab ~ study_month v arm ~

1000 =+ Replication

Direction of comparison
(®) Two sided (O Left tail (O Right tail

L7 R R Cancel Submit
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[E=] swpermute 1.1 - permutation tests for stepped wedge trials - X
Main  Options  Within-Period and Reporting

Random number seed:

Permute within strata
| [¥]

Test non-zera null values

Warning: Only use this eption if you are using cluster summaries or a continuous
Specify null values on the same scale as the outcome

Mull values to test Outcome variable

[ 5ave results to file
Filenarne:

Browse...

Save statistics in double precision

1 zl Sawe results to file every #th permutations

QK I | Cancel | | Submit

=] swpermute 1.1 - permutation tests for stepped wedge trials — x

Main Options Within-Period and Reporting

[#] Within-period analysis

Period Weight

() None

ON

(@) Variance Statistic:
Reporting

Confidence level

Suppress permutation dots

QK I | Cancel | | Submit






