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Abstract. Standard mediation techniques for fitting mediation models cannot
readily be translated to nonlinear regression models because of scaling issues.
Methods to assess mediation in regression models with categorical and limited
response variables have expanded in recent years, and these techniques vary in
their approach and versatility. The recently developed khb technique purports to
solve the scaling problem and produce valid estimates across a range of nonlinear
regression models. Prior studies demonstrate that khb performs well in binary
logistic regression models, but performance in other models has yet to be inves-
tigated. In this article, we evaluate khb’s performance in fitting ordinal logistic
regression models as an exemplar of the wider set of models to which it applies.
We examined performance across 38,400 experimental conditions involving sample
size, number of response categories, distribution of variables, and amount of medi-
ation. Results indicate that under all experimental conditions, khb estimates the
difference (mediation) coefficient and its associated standard error with little bias
and that the nominal confidence interval coverage closely matches the actual. Our
results suggest that researchers using khb can assume that the routine reasonably
approximates population parameters.

Keywords: st0583, khb, performance simulation, mediation, ordinal logistic regres-
sion

1 Introduction

Researchers are often interested in conducting mediation analysis for categorical re-
sponse variables (for convenience, we speak of “mediation” throughout, although this
process is generally statistically indistinguishable from spuriousness). Because categor-
ical response variables present a more complex problem than in linear regression mod-

c© 2019 StataCorp LLC st0583

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1536867X19893638&domain=pdf&date_stamp=2019-12-18


914 Performance simulations for categorical mediation: khb

els, several solutions have been proposed to resolve the longstanding issues of scaling
(Erikson et al. 2005; Buis 2010). A relatively new approach commonly known as khb has
grown rapidly in popularity since introduction by Kohler, Karlson, and Holm (2011).
Despite wide use in various disciplines—with some 1,400 citations to the foundational
khb articles by September 2019 (Kohler, Karlson, and Holm 2011; Karlson and Holm
2011; Breen, Karlson, and Holm 2013, Forthcoming, 2018; Karlson, Holm, and Breen
2012—the previous performance evaluations of khb were restricted to binary response
models (Karlson and Holm 2011; Karlson, Holm, and Breen 2012; Best and Wolf 2012)
and encompassed a relatively modest set of conditions (sample size, degree of media-
tion).

While the current Stata implementation of the khb approach can be applied to over
13 different procedures besides the binary response model (ordinal logit, multinomial
logit, rank ordered logit, xtlogit, etc.), we cannot analyze all of these models; rather,
we focus on the ordinal logit model. Using bootstrapping simulations, we simulated a
range of data conditions and evaluated the performance of the khb package across these
experimental conditions. In this analysis, we make several important contributions.

First, no evaluation of the performance of the khb approach applied to ordinal re-
sponse models exists in previous literature. In fact, despite regression models for ordinal
response variables being widespread in the sociobehavioral and biomedical sciences, per-
formance analyses of such models even in simple applications (that is, without mediation
estimates) are essentially absent from the literature except for the work of Lipsitz et al.
(2013) on bias correction for parameter estimates in ordered logistic regression. With
such paucity of literature on ordinal response-model performance, the existing evidence
is insufficient to conclude that previous work about the performance of khb with binary
variables necessarily applies to ordinal responses.

Second, estimation performance with an ordinal rather than binary response vari-
able arguably presents a more difficult test for the khb method, although no one has
yet empirically or theoretically examined this question. Our suspicion here rests first on
noting that a k-category ordinal response variable always requires estimation of k − 2
more threshold parameters than the corresponding binary model. Further, for the least
sparse situation of a uniformly distributed response variable, an ordinal model with
given N will have 2/k proportionally fewer observations (“events”) to fill each cate-
gory than its binary response peer. Concerns about sparsity should be even worse in
actual research practice because ordinal response data so commonly show skewed or
other nonuniform distributions with substantially fewer observations in one or more
extreme categories than in others. This potential for sparsity has been a common
emphasis in evaluations of the effect of “events per variable” in simple binary logis-
tic regression (Harrell 2001; Peduzzi et al. 1996). Recent literature (Nemes et al. 2009;
van Smeden et al. 2016, 2019) has added a broader emphasis on sample size regardless
of sparsity and pointed to various other issues (correlation structure among covariates,
number of parameters, etc.). Extending this literature by analogy to the mediation
analysis offered by khb and to the sparse- or more-parameters situation of an ordinal
response suggests that ordinal regression might challenge the performance of khb more
than the simpler binary response model.
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Third, performance evaluations of the khb method have focused on the mediation
coefficient and given little attention to its variance. In simple binary logistic regression,
the sampling variance of slope estimates is commonly presumed to be substantially
larger than their bias (Nemes et al. 2009; Pawitan 2001), and we reason analogically
that a similar situation might prevail in estimating the khb mediation coefficient. This
motivates a focus of our presentation that follows, that is, the relative size of the empir-
ical standard errors (ESEs) of the mediation coefficient observed in simulations. We add
to this a distinct but complementary examination of confidence interval coverage of the
mediation coefficient, using the normal-theory confidence interval based on the asymp-
totic (formula-based) estimate of the standard error of the mediation coefficient. Note
that the amount of sampling variability is of interest regardless of how well confidence
intervals perform.

Finally, this article examines the performance of khb in a broader and more de-
tailed set of simulation conditions than covered in previous studies. This emphasis
resonates with recent work showing that the necessary range and detail in simulation
scenarios has been neglected in evaluations of the simple binary logistic response model
(van Smeden et al. 2019). We presume such detail is equally relevant for procedures
that assess levels of mediation. So, for example, in this investigation, we chose several
much smaller but common sample sizes (n = 150, 400, and 800) compared with the sole
choice of n = 5000 used in the original evaluation of binary logistic applications of khb
(Karlson and Holm 2011). A sample size of n = 5000 is large enough that problems of
sparsity, as noted above, might never appear. We also included different numbers of
response categories, amounts of mediation, distributional shapes of the response vari-
ables, and different levels of measurement and distribution shapes for the predictor and
mediation variables. This gave a total of 38,400 experimental conditions in contrast
with the 24 experimental conditions used in the binary logistic mediation evaluations of
Karlson and Holm (2011) and Best and Wolf (2012). For each of these conditions, we
performed a separate bootstrap experiment with 1,000 repetitions.

Thus, this article contributes to knowledge about the widely used khb procedure
by offering detailed analysis of mediation estimation performance using ordinal logistic
regression, a response model not previously studied and for which there is reason to think
more performance problems might occur than in the previous large-sample studies of
the binary response model. If our investigation shows the khb method to perform well
here across many challenging conditions, it not only extends such evidence for khb to
another response model but also should increase confidence about its application to
binary response data under challenging and diverse real-world applications. Of course,
we cannot claim that our work illuminates how khb might perform with any other
regression model to which it applies. In the next section, we provide a background on
mediation analysis and explain the difficulties of fitting mediation models for nonlinear
probability models.
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2 Background: Mediation with categorical outcomes

Although the idea of mediation (if not the term) goes back in the social sciences at least
to the work of Lazarsfeld (1955), it became popular through the rise of path analysis
in the 1960s and 1970s (for example, Duncan [1966]; Alwin and Hauser [1975]), resting
on earlier work by Wright (1921, 1934). Typically, a mediation analysis involves an
outcome variable (y), a predictor (x), and a mediator variable (denoted here as m).
The predictor variable can affect the outcome directly, indirectly via the mediator, or
in some combination of both.

However, the well-established statistical techniques for measuring mediation in mod-
els with continuous outcomes (for example, ordinary least squares) do not easily gen-
eralize to logistic regression and other (nonlinear) categorical response models. These
models do not estimate coefficients separately from the error variance, making compar-
ison of coefficients across different regression models problematic. Instead, the coeffi-
cients are distinct only up to a scale parameter derived from the error standard deviation
and a true regression coefficient (Winship and Mare 1983; Allison 1999; Williams 2009).
Estimates of mediation depend on comparing coefficient estimates across different mod-
els with a different error standard deviation, thus making assessment of mediation in
categorical response models difficult. This scaling problem has been explicated by nu-
merous others in the context of nonlinear probability models; see Erikson et al. (2005)
and Buis (2010), as well as discussions appearing in the context of the khb technique
(Karlson, Holm, and Breen 2012; Breen, Karlson, and Holm 2013, 2018).

Several techniques have been proposed to address this problem, particularly for lo-
gistic regression (for example, Winship and Mare [1983]; Mackinnon and Dwyer [1993];
Erikson et al. [2005]; Buis [2010]). Recently, the khb technique was introduced through
a series of articles and an associated khb routine (Kohler, Karlson, and Holm 2011;
Karlson and Holm 2011; Breen, Karlson, and Holm 2013, Forthcoming, 2018; Karlson,
Holm, and Breen 2012) that has become one of the most—if not the most—widely used
techniques for estimating mediation in nonlinear regression models. Like other medi-
ation methods, the khb routine uses at least three variables: a dependent (response)
variable (y), an initial independent variable (x), and a subsequent “mediating” inde-
pendent variable (m).1 Further, khb produces an array of outputs, first including an
estimation of the coefficient and standard error for the “reduced model” that is equiva-
lent to the estimation for a simple bivariate relationship between y and x. Second, khb
also estimates the coefficient and error for the “full model”, which gives the effect of x
on y, controlling for m.

Finally, and most importantly, khb fits the “difference model”, which calculates the
change in the regression coefficient of x in relation to y after the inclusion of m, as well
as the standard error for this difference coefficient. This difference model is presumed
to estimate the amount of mediation (or confounding) due to the m variable. The khb

technique derives this estimate to account for any rescaling associated with nonlinear
response models, as appropriate. The difference coefficient is equal to the coefficient

1. khb also allows other covariates or a “concomitant” variable, as well as multiple mediating variables
(m). We consider only the idealized case of a model with an x, a y, and an m here.
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of x in the reduced model minus the coefficient of x in the full model.2 Therefore, if
this difference coefficient is positive, the coefficient for x has decreased after including
the mediating variable, while if this difference coefficient is negative, the value of x has
increased after including the mediating m variable—the more rare situation of a so-
called suppressor effect. For our analyses, we examine results of the difference models,
in particular, the coefficient and the standard error of the difference coefficient. The
khb package also provides a “confounding percentage”, which is derived by dividing the
difference coefficient by the coefficient of x for the reduced model. The confounding
percentage is a measure of the amount of mediation that occurs after including a third
variable in the full model relative to the size of the original reduced coefficient.

The developers of the khb method argue that other techniques do not effectively
address the scaling problem associated with the nonseparability of parameter estimates
and error variance that prevails in nonlinear response models. Using Monte Carlo
simulations, they demonstrate that for binary logistic regression models, khb produced
less biased estimates for confounding percentages than alternative methods (Karlson and
Holm 2011; Karlson, Holm, and Breen 2012). The flexibility of khb,3 its performance
relative to other options, and its ease of execution have undoubtedly contributed to its
rapid diffusion.

These previous simulation studies described above are informative, particularly in
making comparisons with other mediation techniques, but they examined khb’s perfor-
mance for a relatively narrow set of conditions using the binary regression model. These
studies involved only a single large-sample size (N = 5000), where bias in estimating
coefficients and their variance would be expected to be low and where the sampling
distribution would be expected to better converge to normality. Further, they consid-
ered a limited set of distributions of the binary responses and mediation (confounding)
percentages. Finally, these studies analyzed only binary response models, which, as we
suggested above, could present a less challenging estimation situation than an ordinal
response.

Here we examine the performance of the khb mediation technique for ordinal logis-
tic regression models (McKelvey and Zavoina 1975; Winship and Mare 1983; Fullerton
2009; McCullagh 1980), using a comprehensive set of conditions. The khb technique has
been used for mediation analysis in ordinal regression models across several disciplines
such as sociology (for example, Stearns, Jha, and Potochnick [2013]; Monnat and Chan-
dler [2015]; Mair et al. [2016]), political science (for example, Ennser-Jedenastik [2017]),
demography (for example, Hoehne and Michalowski [2016]), psychology (for example,
Guloksuz et al. [2015]), and public health (for example, Attanasio et al. [2017]). Given
the widespread popularity of ordinal logistic regression, it is critical to understand how
well khb performs in mediated ordinal logistic regression models. In the next section,
we describe the range of experimental conditions and simulation procedures used to
scrutinize the performance of khb in mediated ordinal logistic regression models.

2. The difference coefficient can also be understood as the mediation coefficient.
3. As of September 2019, khb currently supports the regress, logit, ologit, probit, oprobit,

cloglog, slogit, scobit, rologit, clogit, xtlogit, xtprobit, and mlogit commands.
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3 Methods

We constructed synthetic datasets representing populations of observations for a proto-
typical mediation analysis with an ordinal response variable y, an antecedent predictor
x, and a mediator variable m, with each population instantiating a particular set of
experimental conditions. For each synthetic population, we repeatedly took bootstrap
samples of a specific size, estimated the amount of mediation with khb, and retained
those estimates. From the resulting simulation outcomes, we examined how the bias and
variance estimates of the difference coefficient differ as a function of these conditions.

3.1 Experimental conditions

We chose many experimental conditions intended to represent prototypical scenarios
likely encountered in empirical research. We constructed populations (N = 10000) with
both three- and five-category variables for the ordinal response y, each with four dis-
tributional shapes (uniform, mound-shaped, u-shaped, and left skewed). We used five
distributions for the predictor variable x: normal, binary with an 80/20 split, binary
with a 50/50 split, continuous with a right skew, and continuous with a left skew. The
mediating variable m was constructed to have these same five distributions. Following
Karlson and Holm (2011) and Karlson, Holm, and Breen (2012), we also constructed
our population data with different degrees of confounding percentage implemented by
varying the correlations among y, x, and m in our synthetic populations. We used
Pearson’s r values from {0.1, 0.2, 0.3, 0.4} for each of the pairwise correlations among y,
x, and m, resulting in 64 different combinations of intercorrelations and therefore sub-
stantial variation in confounding percentages. The resulting confounding percentages
varied from negative to near 200%.

Thus, we constructed 12,800 synthetic populations by fully crossing 2 numbers of
response categories for y, 4 distribution shapes for each y, 5 distribution shapes for
x, 5 distribution shapes for m, and 64 different intercorrelations. Using the built-in
bootstrap command in Stata, we sampled with replacement from these populations
at 3 sample sizes—150, 400, and 800—giving a total of 38,400 distinct experimental
conditions. At each experimental condition, we fit khb models for 1,000 replication
samples using Stata 12 and the khb command (Kohler, Karlson, and Holm 2011). A
chief practical problem encountered here was to construct these synthetic data popula-
tions because Stata’s corr2data generates Gaussian continuous variables. A description
of our solution appears in the appendix.4

4. About 5% of the combinations of experimental conditions proved too extreme for khb to estimate.
These tended to have a combination of small-sample sizes and sparse distributions. Thus, we
obtained results only for 36,666 of the 38,400 possible conditions.
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3.2 Performance criteria

We used three criteria to examine the performance of khb:

1. the bias of the sample estimate bm of the population difference (mediation) coef-
ficient as a percentage of the population value (relative bias bm);

2. the empirical standard deviation (standard error) of bm across the 1,000 replication
samples at each condition as a percentage of its population value (ESE as % of
βm); and

3. the actual versus nominal coverage of confidence intervals constructed using bm
(% Coverage—95).

First, at each setting of the experimental conditions, we measured the bias of the sample
mediation (difference) coefficient in relative terms as

relative bias = 100× bm − βm

βm

where bm is the empirical mean of the difference coefficient estimates across the 1,000
replication samples, βm is the corresponding value of the difference coefficient given
by applying the khb routine to each population of N = 10000 synthetic observations
for this particular set of experimental conditions, and bias(bm) = bm − βm. As noted
above, we refer to this criterion as “relative bias”. Second, as an estimate of the ran-
dom error associated with the difference coefficient estimates from khb, we used the
observed (empirical) standard deviation of bm across the 1,000 replications at each of
the experimental conditions, also reported in relative terms here as a percentage of the
corresponding βm. We refer to this in the following as the ESE. Finally, at each of the
experimental conditions, we constructed a conventional normal-theory 95% confidence
interval of the form bm ± 1.96sbm , where sbm is the estimate of the standard error of
the difference given by khb. For each replication sample, we recorded whether this
interval contained the βm for the parent population, yielding a comparison of actual
versus nominal confidence interval coverage across the 1,000 replications. We refer to
this criterion as “confidence interval coverage” throughout the analyses.

3.3 Analytical strategy

We used several methods to identify patterns in the criteria listed above. Initially, we
present the medians for the three performance criteria broken down by the experimental
conditions. We chose medians rather than means to avoid distortions from individual
cases where small values for the denominator of the various relative measures led to
small absolute errors being enormous in relative terms.

Next, motivated by the complexity of the experimental design, we adopted a regres-
sion-based summary of the results to concisely describe how each experimental condition
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independently affected estimation performance. This regression-based summary gives
a more concise and comprehensible description of the results than a tabular summary.
Again motivated by some unusual outliers, we used least absolute deviation (LAD) re-
gression, which summarizes how the conditional median of each performance varied
across our experimental conditions as opposed to the conditional mean that would re-
sult from a conventional (ordinary least-squares) summary.

4 Results

4.1 Tabular analysis

Table 1 displays the median for each performance criterion organized by the experimen-
tal conditions. Overall, across all experimental conditions, the bm difference coefficient
showed a slight upward bias with a median relative bias of roughly 1.1% of the popula-
tion coefficient. The median bias of the bm was small at all sample sizes but decreased
in proportion to 1/N , from 2.8% at n = 150 to 0.5% at n = 800. The median of the
relative bias was small across all distributions of the response variable y, as well as
across the distributions of x and m and the various confounding percentages, with a
range of 0.9% to 1.4% in the median bias across these conditions.
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Table 1. Median values of bias, ESE, and confidence interval cov-
erage for khb difference coefficients

Experimental condition Relative ESE as % % Coverage
bias (bm) of βm —95

Sample size
150 2.8 84.3 94.6
400 1.0 47.0 94.8
800 0.5 32.6 94.9

Categories of y
3-category y 1.0 48 94.8
5-category y 1.2 49.1 94.8

Distribution of y
Uniform 1.0 47.7 94.8
Mound 1.0 48.0 94.8
Skewed 1.3 51.4 94.9
U-Shaped 1.2 48.8 94.8

Distribution of x
Normal 1.1 49.4 94.8
Binary 80/20 1.1 48.3 94.8
Binary 50/50 1.1 49.3 94.8
Positive skew 1.1 49.0 94.8
Negative skew 1.2 48.4 94.9

Distribution of m
Normal 1.0 48.0 94.8
Binary 80/20 1.3 52.1 95.0
Binary 50/50 0.9 47.5 94.7
Positive skew 1.4 48.9 94.6
Negative skew 1.1 48.0 95.0

Confounding percentageb

Negative 1.1 168.3 95.8
0–30% 1.1 56.2 94.7
30–60% 1.1 30.0 94.7
60–90% 1.1 27.2 94.9
90–120% 1.3 23.6 94.7
>120% 1.1 20.2 95.0

Total 1.1 48.9 94.8

notes: n = 36666
a Bias and standard errors are reported as a percentage of the population
value of the difference coefficient βm in the population from which the samples
were drawn.
b Confounding percentage denotes the size of the difference coefficient as a
percentage of the value of the slope coefficient for x in the model without the
mediator variable.
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While relative bias was generally quite small, the sampling variability of the esti-
mates, as measured by the ESE as % of βm, was much larger. The median value of
the ESE was 49%, that is, about half as large as the population value of the coefficient
being estimated. The ESE varied substantially with the sample size and confounding
percentages. First, the median ESE ranged from 84% of the size of the population co-
efficient at n = 150 to 33% at n = 800, decreasing approximately as 1/

√
N . Second,

the ESE increased substantially as the confounding percentage approached 0%, indicat-
ing that estimation becomes more unreliable in relative terms in situations with little
mediation. Confidence interval coverage for estimates of the difference coefficient was
consistently remarkably good and varied little across any of the experimental conditions
with a median of no less than 94.6% (versus the nominal 95%) for any experimental
condition.

In summary, our descriptive observations identify relatively limited systematic dif-
ferences in the performance of khb as a function of sample size, the distribution of y,
x, and m, and the confounding percentage. And, more importantly, performance of the
khb method appears quite good under nearly all conditions.

4.2 Median regression models

To synthesize the results across multiple experimental conditions, we used LAD regres-
sion models to summarize the effect of each condition on the median for each of the
performance criteria, displayed in table 2 below. Mirroring the descriptive results, we
find that relative bias was largely unaffected by any experimental condition except sam-
ple size at n = 150 because no other conditions affected relative bias by more than about
0.5 percentage points. Compared with n = 800, the relative bias increased by roughly
2.4 percentage points when n = 150 and 0.5 percentage points when n = 400. Other
relatively small but notable differences were observed between the number of categories
and distributions y, as well as the distribution of m, but not x. In sum, the model
suggests little bias in estimation of the difference coefficient.
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Table 2. Coefficients (standard errors) from LAD regressiona models for khb mea-
sures as a function of experimental conditions

Relative bias (bm)b ESE as % of βm
c % Coverage—95d

Sample size (ref. n = 800)
n = 150 2.35** 50.53** −0.35**

(0.03) (0.34) (0.02)
n = 400 0.52** 15.73** −0.10**

(0.03) (0.34) (0.02)
y categories (ref. 5-categories)

3-categories 0.21** 0.35 −0.00
(0.02) (0.28) (0.02)

y distribution (ref. y = mound)
Uniform 0.00 0.26 0.00

(0.03) (0.40) (0.02)
Skew 0.50** 2.79** 0.05*

(0.03) (0.40) (0.02)
U-Shaped 0.23** 0.75 0.00

(0.03) (0.40) (0.02)
x distribution (ref. x = normal)

80/20 −0.04 0.36 0.00
(0.04) (0.45) (0.03)

50/50 −0.03 −0.40 −0.00
(0.03) (0.44) (0.03)

Positive skew 0.01 0.20 −0.00
(0.03) (0.44) (0.03)

Negative skew 0.11** −0.01 0.10**
(0.03) (0.44) (0.03)

m distribution (ref. m = normal)
Positive skew 0.35** 2.75** 0.25**

(0.04) (0.45) (0.03)
Negative skew −0.13** −0.27 −0.05

(0.03) (0.44) (0.03)
50/50 0.40** 1.19** −0.20**

(0.03) (0.44) (0.03)
80/20 0.10** −0.07 0.25**

(0.03) (0.44) (0.03)
Confounding % 0.02 −50.93** 0.00
Constant (0.03) (0.44) (0.03)

0.09* 43.93** 94.85**

N 36,666 36,666 36,666

notes: * p < 0.05; ** p < 0.01
a All estimates here are from absolute-deviation (median) regression models. Table entries are
therefore slopes of the conditional median with respect to each experimental condition variable.
b Bias of the difference coefficient as a percentage of its population value.
c ESE of the difference coefficient as a percentage of its population value.
d Percent of time-asymptotic confidence interval included the population value of the difference
coefficient.
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Results for the second LAD model showed that the ESE as % of βm was sensitive
to sample size, with the median ESE being about 50 percentage points higher at n =
150 than at n = 800 and 15 percentage points higher at n = 400, controlling for all
other conditions. Further, the ESE was substantially larger at smaller confounding
percentages. To better understand this relationship, we conducted a supplementary
analysis, predicting values of the ESE by confounding percentage, with results shown
graphically in figure 1 below. Our model predicts that the ESE as a percentage of
the population coefficient is roughly 70% when the confounding percentage is near
zero, but the empirical standard decreases dramatically as the confounding percentage
increases. This is again unsurprising because these results at least partially reflect the
small denominator value of the difference coefficient in these relative measures. Finally,
the predicted ESE was largely unaffected by the number of categories of the response
variable y or the distributions of x and m.
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Figure 1. Predicted value of ESE as % of βm by confounding percentage

Finally, we found that under all experimental conditions, confidence interval coverage
did not vary more than 0.5 percentage points from the median. Again, sample size was
the largest source of differentiation, where in comparison with n = 800, confidence
interval coverage is 0.4 percentage points less at n = 150 and 0.1 percentage points
less at n = 400. Further, confidence interval coverage was largely unaffected by the
number of categories of y, or the distribution of y or x, but was partially influenced
by distributions of m. Compared with a normally distributed m, distributions with
a positive skew and 80/20 binary split are 0.3 percentage points higher in confidence
interval coverage, while conversely the coverage was 0.2 percentage points lower for
50/50 binary splits. Confounding percentage also appears to have no effect on the
confidence interval coverage. As such, we observe that under all conditions, the khb

estimate of the difference coefficient’s 95% confidence interval generally contains the
population parameter.
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5 Discussion and conclusion

The khb method of adopting difference coefficients to estimate the amount of mediation
(confounding) solves the well-known and long-standing issues associated with conduct-
ing mediation analysis in nonlinear models. In the preceding analyses, we exhaustively
evaluated the performance of the khb technique for estimating mediation in nonlinear
response models, using ordinal logistic regression as an exemplar.

While we do not comment on the underlying theory of how best to measure media-
tion, we can confidently argue that—at least for the ordinal response models analyzed
here—the estimation performance of these measures is excellent as judged by bias in the
estimation of the difference coefficient, even at small-sample sizes, and actual confidence
interval coverage closely matched nominal values.

Our analysis goes substantially beyond previous analyses (see Karlson and Holm
[2011]; Best and Wolf [2012])—which used a large-sample size and focused on binary
outcomes—and provides a more rigorous and comprehensive understanding of the khb

technique. We expanded upon these previous analyses in four key ways: First, we
analyzed the performance of khb with regard to ordinal response models, building upon
previous work that had included only binary response models (see Karlson and Holm
[2011]; Karlson, Holm, and Breen [2012]; Best and Wolf [2012]). Second—and related
to the first point—estimation of ordinal models, while unique, could also present a
more difficult case for the khb method. Third, previous performance analyses have
focused solely on the mediation coefficient, while this analysis also paid attention to
its variance. Finally, we provided a far broader, and arguably more difficult, range of
simulation conditions than assessed in previous studies.

Our results show that khb performs remarkably well in many scenarios for ordinal
outcomes. While we have discussed conditions under which khb’s performance degrades,
we suggest that overall khb estimates the difference coefficient with modest biases. But
the estimation of the standard error is comparatively more troublesome with greater
observed relative biases. This finding on the difficulty of estimating standard errors is
in line with previous studies of binary logistic regression, where the bias of the sample
variance of slope estimates is commonly larger than the bias of the slope estimates
themselves (see Nemes et al. [2009]; Pawitan [2001]).

Further, confidence interval coverage is quite accurate, with an average coverage of
94.7% across all simulations versus the nominal level of 95%. Sample size is a strong,
consistent predictor of bias in the estimation of the difference coefficient and ESE, but
even in the worst case of n = 150, khb performs well. Overall, our results suggest that
researchers using khb can assume that it reasonably approximates parameters.
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A Appendix: Creation of synthetic population datasets

Here we describe the procedures by which we created the 12,400 synthetic data popu-
lations for each combination of response variable y, exogenous predictor variable x, and
mediator variable m. At the most abstract level, these procedures involved three steps
that we will describe in detail:

1) Create a response variable (y) with the desired number of categories and distri-
bution for 10,000 simulated observations.

2) Create the exogenous predictor variable x with the desired distributional shape
and with the desired (target) correlation value ryx to the response y, with that
correlation accurate to a relative tolerance of 10−3.

3) Create the mediator variable m of the desired shape with m correlated at the
desired level to y and x at values rym and rxm, with correlations accurate again
to a relative tolerance of 10−3.

Details and elaboration on each of the preceding steps follows:

1) Creating the ordinal response variable.

Note that there is no need to generate y as a random variable, because both
the exogenous variable x and mediator variable m will be generated as random
variables.

2) Creating the exogenous predictor x with the desired shape and value of ryx.

2.1) Initialize rtrial to the target value ryx.

2.2) Create z as a normally distributed continuous variable correlated at rtrial
with y.

2.3) Transform z into a temporary variable q by applying the inverse cumulative
distribution function of the desired shape to the cumulative normal distribu-
tion function applied to z.

For example, in constructing x as a positively skewed continuous variable,
we set

q = B−1 {1, 5,Φ(z)}

where B−1 is the inverse beta distribution with the chosen shape parameters
and Φ is the cumulative normal probability associated with z. Note that while
the transformation of z into q achieves the desired shape for the eventual x
variable, it generally results in a correlation ryq departing somewhat from
the desired target value of ryx, so iteration to the target is required, per 2.4.

2.4) If ryq is sufficiently close to the desired target correlation ryx, we set x = q
and are done. Otherwise, adjust rtrial and return to step 2.2.
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3) Creating m with the desired shape and given rym and rmx.

Note that at this point we are given vectors of values for the response y and
exogenous variable x. Our method for creating the third variable, the mediator m,
entailed a procedure to create a standard normally distributed variable, correlated
with y and x at the desired rym and rxm.

To aid in description here, we term this routine correxist2. This routine accepts
two existing variables (y and x) and returns a standard normal variable w corre-
lated at specified ryw and rxw. This can be done by creating w as

w = a1zy + a2zx + a3e

where zy is a standardized version of y, zx is a standardized version of x, e is a
standard normal random variable uncorrelated with x or y, and the scalar con-
stants a1, a2, and a3 can be obtained in sequence as

a1 =
rym − ryxrxm

1− r2yx

followed by
a2 = rxm − ryxa1

and finally by

a3 =
√

1− a21 − a22 − 2a1a2ryx

(We thank Dr. Clyde Schechter for help in deriving this. Details of our derivation
are available on request.)

We used correxist2 (which creates a normally distributed variable w) iteratively
in step 3 to create the mediator variable m, proceeding as follows:

3.1) Initialize ryrial = rym and rxtrial = rx.

3.2) Call correxist2 using rytrial and rxtrial and the existing variables y and m,
returning the new normally variable distributed w with ryw = rytrial and
rxw = rxtrial.

3.3) As in step 2, use an inverse distribution function to transform w into q, a
variable with the desired distributional shape, say,

q = B−1 {1, 5,Φ(w)}

for a positively skewed continuous m. Changing the distributional shape this
way gives a variable q with correlations ryq and rxq that in general differ
somewhat from the desired rym and rxm, necessitating the next step.

3.4) If ryq and rxq both are close to their respective targets rym and rxm, set
m = q and we are done. Otherwise, adjust rytrial and rxtrial and return to
step 3.2.




