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1 Introduction

In Stata tip 87, Buis (2010) demonstrated how to use Stata to calculate multiplica-
tive interaction effects in nonlinear models. As Buis notes, multiplicative interac-
tion effects, such as odds ratios from a logit model (see [R] logit), are often eas-
ily obtained from standard Stata output without additional programming. Buis con-
trasts this with marginal interaction effects, which require additional postregression
programming for correct computation (Ai and Norton 2003)—although the margins

commands in Stata have greatly simplified this computation and can produce correct
marginal effect calculations with only a few lines of additional postregression commands
(Karaca-Mandic, Norton, and Dowd 2012). Buis also explains that multiplicative and
marginal interaction effects each answer different questions; thus, it is important for
analysts to have both in their toolkit.

Nevertheless, we have observed numerous authors misinterpret Buis (2010), citing
the article as justification for presenting only multiplicative interaction effects, claiming
they are easier to calculate or interpret. For example, Doidge, Karolyi, and Stulz (2013)
state, “We, therefore, report the regression coefficients, but interpret them in terms of
odds ratios which are simpler to interpret when there are interaction terms in the model
(see, for example, Buis, 2010; Kolasinski and Siegel, 2010).” Similarly, Vaidyanathan
(2011) states, “While scholars continue to debate how to interpret interaction effects
in nonlinear models, Buis 2010 argues that using multiplicative effects, such as odds
ratios, overcomes most difficulties, and I follow him in this regard.”

In this Stata tip, we present a simple stylized example illustrating the starkly dif-
ferent conclusions that marginal and multiplicative interaction effects can imply. We
argue that unless analysts have a strong theoretical preference, they should routinely
calculate and present both marginal and multiplicative interaction effects after fitting
nonlinear models.
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2 Multiplicative and marginal interaction effects on

probability and odds scales

For illustration, we focus on the logit estimator with a binary outcome variable y,
which is modeled as a function of two interacted binary explanatory variables, x and z.
In other words, y = f(β1x+ β2z + β12x× z). However, the implications of this article
directly generalize to all nonlinear models, including count data models such as Poisson
(see [R] poisson) or negative binomial (see [R] nbreg), which are often interpreted
multiplicatively.

We define and compare four ways of representing an interaction effect after fitting a
logit model. These include multiplicative and marginal interaction effects on both the
probability scale and the odds scale. Define p as the predicted probability for a binary
dependent variable y, conditional on values of binary x and z and their interaction. The
multiplicative interaction effect of changes in both x and z on p can be represented on
the probability scale as

px=1,z=1/px=1,z=0

px=0,z=1/px=0,z=0

One can easily calculate this in Stata using the nlcom command after margins

following the logistic regression:

. logit y i.x##i.z

. margins x#z, post

. nlcom (_b[1.x#1.z] / _b[1.x#0.z]) / (_b[0.x#1.z] / _b[0.x#0.z])

In contrast with the above multiplicative interaction effects, marginal interaction
effects are represented as a difference in differences on the probability scale:

(px=1,z=1 − px=1,z=0)− (px=0,z=1 − px=0,z=0)

One can calculate this marginal interaction effect on the probability scale using a
one-line postestimation command:

. margins, dydx(z) at(x=(0 1)) contrast(atcontrast(r._at)) post

It is also common in some fields to present effects on the odds p/(1− p) scale rather
than probability scale p. If p is close to zero, then the results on both scales are usually
similar, but more generally they may differ. The multiplicative interaction effect on the
odds scale is

px=1,z=1

1−px=1,z=1
/

px=1,z=0

1−px=1,z=0

px=0,z=1

1−px=0,z=1
/

px=0,z=0

1−px=0,z=0

This is even simpler to calculate in Stata using the or option in the logit command,
which is one reason why it is among the most commonly reported variants:

. logit y i.x##i.z, or
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Finally, although rarely used, it is also possible to calculate marginal interaction
effects on an odds scale (this is the marginal effect variant presented in Buis [2010]):

(
px=1,z=1

1− px=1,z=1
− px=1,z=0

1− px=1,z=0

)
−
(

px=0,z=1

1− px=0,z=1
− px=0,z=0

1− px=0,z=0

)

. margins x#z, expression(exp(xb())) post

. lincom (_b[1.x#1.z] - _b[1.x#0.z]) - (_b[0.x#1.z] - _b[0.x#0.z])

Similar Stata code can be written to calculate interaction effects after probit, Pois-
son, and negative binomial models.

3 A simple cautionary example

To illustrate the potential danger of reporting only one variant of the above interaction
effect calculations, we present an example in which each of these variants implies differ-
ent conclusions. Our simple example has just four data points (see panel A of figure 1).
When x = 0, as z increases from 0 to 1, the probability p of a positive outcome rises
from 0.05 to 0.10. When x = 1, as z increases from 0 to 1, the probability of a positive
outcome rises from 0.10 to 0.19. Panel B of figure 1 shows the same four data points
transformed to the odds scale.

p x=0,z=0

p x=0,z=1

Risk ratiox=0 = 2.0

Risk differencex=0 = .05

p x=1, z=0

p x=1, z=1

Risk ratiox=1 = 1.9

Risk differencex=1 = .09

Multiplicative interaction effect = 0.95
Marginal interaction effect = 0.04
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Panel A: Probability scale

p/(1−p) x=0, z=0

p/(1−p) x=0, z=1
p/(1−p) x=1, z=0

p/(1−p) x=1, z=1

Odds ratiox=0 = 2.11

Odds differencex=0 = .06

Odds differencex=1 = .12

Odds ratiox=1 = 2.11

Multiplicative interaction effect = 1.0

Marginal interaction effect = 0.06
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Figure 1. Multiplicative and marginal interaction effects
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The multiplicative interaction effect on the probability scale is 0.95 (final column
of table 1, panel A), which implies that as x increases, the effect of z decreases. By
contrast, the multiplicative effect on the odds scale is 1.0 (final column of table 1,
panel B), which implies that as x increases, the effect of z is unchanged. Finally, the
marginal effect on the probability scale is 0.04 (middle column of table 1, panel A),
which implies that as x increases, the effect of z increases. The marginal effect on the
odds scale in panel B shows a similar increasing effect in this example, although in other
examples it can differ meaningfully from the marginal effects on the probability scale.

Table 1. Main and interaction effects in nonlinear models

Panel A: Parameter calculations on the probability scale.

Predicted Marginal effects Multiplicative effects
probabilities (p) (p) (p)

z = 0 z = 1 Risk difference Interaction effect Risk ratio Interaction
effect

x = 0 0.05 0.10 0.10− 0.05 = 0.05
0.09− 0.05 = 0.04

0.10
0.05

= 2.0 1.9
2.0

= 0.95

x = 1 0.10 0.19 0.19− 0.10 = 0.09 0.19
0.10

= 1.9

Panel B: Parameter calculations on the odds scale.

Predicted odds Marginal effects Multiplicative effects
( p

1−p
) ( p

1−p
) ( p

1−p
)

z = 0 z = 1 Odds difference Interaction effect Odds ratio Interaction
effect

x = 0 0.0526 0.1111 0.1111− 0.0526 = 0.06
0.12− 0.06 = 0.06

0.1111
0.0526

= 2.1 2.1
2.1

= 1.0

x = 1 0.1111 0.2346 0.2346− 0.1111 = 0.12 0.2346
0.1111

= 2.1

Thus, in this simple example, the interaction effect could alternatively be interpreted
as positive, null, or negative depending on which variant is estimated and reported. As
x increases, the effect of z

• decreases because of the multiplicative interaction effect on the probability scale;

• increases because of the marginal interaction effect on the probability scale;

• is zero because of the multiplicative interaction effect on the odds scale; or

• increases because of the marginal interaction effect on the odds scale.
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4 Discussion

To provide intuition regarding situations in which results are likely to differ across these
variants, let’s consider the case in which our example refers to a natural experiment.
Suppose that z is an indicator for treatment (z = 1) versus control (z = 0) group and x
is a time indicator of preperiod (x = 0) versus postperiod (x = 1). Our example is not
well balanced in the preperiod: treatments had double the baseline risk as the controls.
When there is such imbalance, it is well known that treatment-effect estimates are
sensitive to functional form. In our example, the outcome in the control group doubled
over time, an increase of 0.05; the outcome in the treatment group increased by a greater
absolute amount of 0.09, but it did not quite double. Hence the different sign of the
intervention effect: the marginal effect of 0.04 shows an increase in p in the treatment
group relative to absolute growth in the controls, but the multiplicative interaction
effect on the probability scale of 0.95 shows a negative effect of the treatment relative
to the multiplicative growth in the controls. The preferred solution in the evaluation
literature is to choose a different control group that is better matched at the baseline.
With better matching, at least the signs (though not the magnitudes) of the interaction
effect would be the same for the marginal and multiplicative effects.

Another important point is that our example, if it had included other covariates,
would have different effect sizes across observations. In nonlinear models, the mag-
nitudes of the marginal effects are not constant but vary across observations (Ai and
Norton 2003). For example, although odds ratios are constant for all observations in
a logistic model, marginal effects are typically larger when the underlying probability
is close to 50% and smaller when the underlying probability is close to 0 or 1. On
the other hand, the magnitude of the odds ratio from a logistic regression is scaled by
an arbitrary factor that changes when additional covariates are added to the model,
making comparisons of magnitudes impossible (Norton, Dowd, and Maciejewski 2018).
However, marginal effects are more robust to changes in model specification. In sum-
mary, with a richer dataset, the researcher should be aware that treatment effects will
often differ across observations. In this case, one can use the margins command to
calculate average marginal effects—a summary measure of effect magnitudes and their
statistical significance.

Different disciplinary traditions tend to default to different variants of these inter-
action effects. Setting aside the debates regarding the general merits and drawbacks of
each (see Norton and Dowd [2018]; Mustillo, Landerman, and Land [2012]), we argue
that it can be misleading to focus on only one variant by default. Thus, we build on
Buis (2010) to argue that researchers should estimate both multiplicative and marginal
interaction effects and report the sensitivity of key inferences.
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