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Abstract. The spaghetti problem arises in graphics when multiple time series or
other functional traces show mostly a tangled mess. Devices to improve on graph-
ical defaults include transformed scales (especially logarithmic scales); trying to
increase the graph area showing the data (especially by losing the legend whenever
possible); different colors sometimes; subdividing data into a few groups; subtrac-
tion to focus on residuals or smoothing to reduce noise; selection or sampling of
what is shown or emphasized; and stacking series vertically.
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1 The spaghetti problem in statistical graphics

The spaghetti problem is easy to explain. Spaghetti plots are those showing many
tangled lines—say, for multiple time series or other functional traces—that can be hard
to distinguish and interpret. We may see broad collective patterns, but can we easily
focus on individual series too or tell apart fine structure and mere noise?

My attempts to identify who first used spaghetti with this meaning have been frus-
trated twice over. Recent examples of use include Wong (2010), Knaflic (2015), and
Camdes (2016), but my guess is that the term has longer roots, which may prove diffi-
cult to identify. Most mentions of spaghetti really do concern pasta, not graphics. Most
uses of the term in graphical contexts appear to be informal and do not carry over to
literature. It is perhaps better to treat the word as one readily occurring to many people
faced with a tangled mess when looking at graphs. Its meaning is more crucial than its
history. Much usage is negative, so spaghetti is, as said, a problem. The problem is to
give a clearer picture of the data, even if the conclusion might remain that many series
are loosely similar.

A related problem might be called the paella problem. Paella plots show multiple
point patterns for many groups, sufficiently mixed up such that comparisons are made
difficult.

This column gives a first look at some simple devices for easing the spaghetti problem.
I intend to return to the problem in later columns. In particular, a sequel to Cox (2010)
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is long overdue. Although the problem appears most common with multiple time series,
many of the ideas here carry over to other kinds of data shown by lines or curves.

2 The problem portrayed

At its simplest, the spaghetti problem—in Stata or any other comparable software—is
not getting a graph, but getting a graph that works well. It can seem that whatever you
do is wrong in some way. Superimposing different curves gives the problem, a tangled
mess, but separating curves by showing them in different panels may make comparison
more difficult and at worst requires too many panels even to be readable or worth trying
to read.

The Grunfeld dataset bundled with Stata serves as a convenient sandbox for play.
The dataset can be read into Stata with

. webuse grunfeld

The dataset includes various measures for 10 companies, each measured for 20 years.
There are no missing values. Incidentally, the dataset is named for Yehuda Grunfeld
(1930-1960) and exists in several different versions. For more detail, see Kleiber and
Zeileis (2010). In essence, the Grunfeld dataset is here a test bed for graphical ideas. If
an idea does not work well with the Grunfeld data, it is unlikely to work well for larger
or more complicated datasets.

Figures 1 and 2 are two graphs from a standard official helper command that show
the main issue.
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Figure 1. The spaghetti problem. Even 10 time series can display as a tangled mess, as
is shown by investment in the Grunfeld dataset for 10 companies over 20 years.



N. J. Cox 991

0 500 1000 1500
L L L L

0 500 1000 1500
L L L L

-
1935 1940 1945 1950 19551935 1940 1945 1950 1955

investment (million USD, 1947 prices)

0 500 1000 1500
L L L

1935 1940 1945 1950 19551935 1940 1945 1950 1955

year
Graphs by company

Figure 2. Separating companies, one in each panel, solves the problem only to create
another. Effective comparison is just as hard.

The previous two graphs came from easy commands. But first, we right two small
wrongs, an overabbreviated variable name and an absent variable label:

. label variable invest "investment (million USD, 1947 prices)"
. xtline invest, overlay

. xtline invest

Unsurprisingly, the results of default choices are often poor. A command like xtline
does not analyze the data to guess at what choices will work well. Still less can it sense
your precise goals. That is true even with a few panels and a few observations in each.
At best, xtline and its sibling tsline are starting points.

3 Try a transformation

The first suggestion is not specific to spaghetti, let alone time series, but often it is
a good idea anyway. Often with students or colleagues, or on Statalist or other web
forums, it is my immediate advice: Have you thought of working on a transformed scale?

In turn, the most commonly considered transformed scale is logarithmic. That fits
panel or longitudinal frameworks quite naturally: response variables are often both
positive always and positively skewed, and patterns of growth or decline over time
suggest thinking on a logarithmic scale. Exponential growth or decline is in many
fields a more natural first approximation or null model than linear growth or decline.
Exponential change is linear with response on a logarithmic scale.
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For time series, the time variable is often best left as it arrives. Exceptions do exist
but are not discussed here; see Cox (2012). It is more common to use a logarithmic
scale for the response variable, which is easy through yscale(log). Getting nice axis
labels can be harder work, but again a fuller story is given separately; see Cox (2018).

For the Grunfeld data, we merely specify yscale(log) and choose sensible labels
ourselves. The result is figure 3.

. xtline invest, overlay yscale(log) ylabel(l 10 100 1000, angle(h))
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Figure 3. Try a transformation, and in particular, know that a logarithmic scale is often
helpful

Other transformations can be helpful too. Logarithms belong to a family whose
other members are all powers. Such a family can be parameterized in many ways, but
for the moment the family resemblance can be underlined by noting that a family of
transformations 7T'(y, p) for a response y and a parameter p comes from

T(y,p) = /yp_ldy

so that, in particular, p = 0 yields Iny, just as, say, p = 2 yields squares 2 and
p = —1 yields reciprocals y~! = 1/y. Compare Mosteller and Tukey (1977, 80) for
this formulation. Here I am neglecting constants, whether additive or multiplicative,
that appear on integration. Accounts of transformations that are cogent, comprehen-
sive, and concise are thin on the ground, but Atkinson (1985) and various chapters in
Hoaglin, Mosteller, and Tukey (1983, 1991) remain helpful.

A complication often met in practice but rarely discussed in texts or courses is
that the response variable can be large negative or large positive. Often, we want
to respect sign—and to respect zeros too—as indicating genuine characteristics of a
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variable. Responses do not have to be exotic or extraordinary for this to happen because
it is common with any kind of response that is a change or difference, such as profit
(which could be loss), net income, change in systolic blood pressure, or change in glacier
terminus position (the last a personal example in Miles et al. [2013]). A little thought
or experiment shows that

cond(y > 0, log(y), -log(y))

is a bad idea even if we do not have any exact zeros and a worse idea if we do. But a
smarter twist such as

sign(y) * log(l + abs(y))

behaves like log(y) for y > 0 and like —log(—y) for y < 0, is exactly 0 for y = 0, and
changes smoothly throughout. Note that in Stata 15.1, updated 7 August 2018, and in
Stata 16 onward, that calculation is a little easier using

sign(y) * loglp(abs(y))

Other transformations not yet mentioned that frequently arise in my experience are
square roots and cube roots, inverse hyperbolic sines (in asinh() ), and logits and folded
roots for data that are proportions or percents.

4 Reclaim lost real estate

Figure 3 is, I suggest, an improvement for researchers on figure 1. A lay audience might
need some help with logarithmic scales, on which Cox (2018) says more. But so much
space in figures 1 and 3 is given up to explaining what is shown that we should try to
reclaim some of this lost real estate.

4.1 Clear the axes of unnecessary detail

With time series, we can usually delete the default xtitle (), here an echo of the name
of the time variable year. Because the years 1935(5)1955 are clearly shown, we surely
do not need that. My Stata advice often includes a suggestion to remove such a title,
let alone variable names like date or time. xtitle("") suffices to excise.

Naturally, it is good graphical practice to explain what is shown on each axis, as (I
guess) your high school and even your college or university teachers were at pains to
emphasize. Nevertheless, rules here are guidance for the wise, and there is a broader
imperative to simplify by removing unneeded detail. Conversely, if your time variable
is unusual, that might be better explained in the caption written in your word or text
processor.

A similar detail often arises. Look back to figure 2 and find the text “Graphs by
company”. A graph that uses the by () option, which in this case underlies the xtline
code, allows a note() suboption naming the grouping variable. If such a note appears,
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often it is best deleted too, if only because the grouping variable is evident from context
or explained in your text caption. The result is not shown here, but you can check that
the extra option byopts (note("")) works to remove it. In any context in which a by ()
option is explicit, add to the recipe by(, note("")).

4.2 Lose the legend

Bigger real estate gains can be achieved if you can lose the legend completely or (if you
prefer) kill the key. A legend is at best a necessary evil. At worst, it takes up too much
space and obliges mental “back and forth” by the reader. Most readers are unwilling
to memorize even a short legend and so resort to thinking along these lines: Which
company or place is this line? Which one is Apple or Amazon or Albania or Alabama
or Aberdeen? Or, to be frank, the reader (me and you too?) knows that in principle
the graph could be studied in detail going back and forth between figure and legend but
in practice moves on to something else that is not too much like hard work.

With this dataset, repeating the text “company =" 10 times over is not essential.
So, working away at the legend() option is possible. With other datasets, editing
value labels or string values for the grouping variable (in this example, panel identifier)
to something shorter is an equivalent way forward. Broad hint: Don’t overwrite the
existing labels or string values; create more concise alternatives. That longer text could
be precisely what you need for another purpose, even if it is only to be metadata that
explain the grouping variable to you or others.

Direct labeling is widely recognized and recommended for statistical graphics (see,
for example, Kosslyn [2006], Few [2012], and Wilke [2019]). In Stata, that can mean
adding text directly within the plot region with a dedicated option, but using marker
labels is usually as effective and much easier. This really is not a new idea: William
Playfair was generally at pains to explain each series on a graph and close to it (see, for
example, Playfair [1801]).

Let us see some sample extra code for adding text labels at the end of each series. We
put the code in a local macro mostly so that commands to come do not get excessively
long. If you are familiar with local macros, you can skip the next two paragraphs and
focus on the next line of code.

If you are new to local macros, think that we are putting the text in a kind of bag,
which we name. Later, we will tell Stata to take the text out of the bag and use it
immediately.

The name “local” is not arbitrary or meant as mischievous or even mystifying, as
jargon sometimes is. It flags that the macro is visible only locally, meaning within the
same program space. Here we might imagine an interactive session in which commands
are typed one by one. Local macros work fine in that context. Whatever was defined
earlier in a session remains visible unless it was overwritten. In many ways, it would
be better practice to put all the code in a do-file, and that will work fine too. Being
local bites in this way: local macros in one do-file cannot automatically see local macros
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in another do-file or in the main interactive session, and conversely. That is a strong
feature, not a limitation. It means that we can define local macros without worrying
about messing up those somewhere else or being messed up by those somewhere else.
Much more could be said, but I stop the story there. If this is interesting or seems useful,
then there is no better place to start careful reading than chapter 18 on “Programming
Stata” in the User’s Guide.

. local endlabels addplot(scatter invest year if year == 1954, msymbol(none)
> mlabel (company))

That syntax may seem puzzling. There are three parts: the command name local;
the name of the macro—here endlabels—that the command is defining; and whatever
follows, which is the text copied into the local macro. We could use an equals sign and
put the text—the macro contents—in double quotes, but we do not have to do that.

The addplot () option allowed by xtline lets us specify a plot to be superimposed
in the same graphical space. We plot investment against year, but for the last year
only, 1954 in this dataset. We suppress the marker symbol but add as a marker label
the company identifier, which as seen already is an integer 1 to 10. The default marker
label position using a clock position syntax is 3. Think of a conventional clock or watch
with hours 1 to 12, so 12 at the top, 3 on the right, and so on. Stata adds a rule that 0
indicates the center of the display, where a data point would be. Then a position of 3
means plotting on the right of the data point. This default is exactly correct for marker
labels to be added at the end of a series. Remembering to remove the xtitle(), we
can now try this. The result is figure 4.

. xtline invest, overlay yscale(log) ylabel(l 10 100 1000, angle(h)) xtitle("")
> “endlabels” legend(off)

Note the syntax to instruct Stata to take the code out of the local macro. Stata
will use it immediately, replacing the macro name by its contents. The result of that
substitution is what is passed to xtline. If you have not used local macros before, be
careful to use the correct quotation marks, ¢ and ’.

We also need to spell out legend(off), which is much of the point.
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Figure 4. Lose the legend if you can. Here the integer identifiers are used as labels at
the end of each series.

The result clearly saves on space, which was the main goal. But problems may still
persist. If two or more marker labels are in (almost) the same position, then they will be
mushed together. In practice, this is not usually a disaster. If two series are similar, we
do not need to worry much about which is which. If extreme series (highest or lowest)
are of particular interest, they will usually be easy to discern.

Here the grouping variable is an integer identifier with values 1 to 10. Other identi-
fiers with small integers can work well too. If you do not have such a variable, then the
group () function of egen (see [D] egen) offers an easy way to produce one.

Short but evocative string identifiers can work fine too, indeed usually better. If
your identifier is numeric with a value label and you want to see the value label, you
need to encode the variable and then pass the resulting string variable to mlabel ().
You are likely to be familiar with ISO country codes (say, DE or FR), abbreviations for
states in the United States (say, TX or MA) or for subdivisions of your own country, and
especially classifications with short codes in your own field (industries, diagnoses, etc.).

Worth mentioning even though obvious on reflection: if the identifiers have no mean-
ing to you, then you will lose nothing by omitting the legend.

With the Grunfeld data, there is a happy small accident. The last year in the dataset
is 1954, but xtline is already minded to show axis labels up to 1955, so there is enough
space for the extra labels to fit anyway. This is not guaranteed, but at worst you may
need to spell out to Stata that the x axis must be extended.
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Suppose you wanted labels at the start of each series too. To my taste, and in my
experience, this is neither attractive nor needed, but your problem could differ. For
this, you could modify the extra code to

. local endlabels2 addplot(scatter invest year if year == 1954,
> msymbol(none) mlabel(company) || scatter invest year if year == 1935,
> msymbol(none) mlabel(company) mlabposition(9))

So we have an extra graph plotted in the same space, putting text labels by the
values for 1935, but this time plotted on the left using position 9. If you try this,
you will find that it does not work well unless you add a further option such as
xscale(range(1934 .)) to extend the range of the z axis.

Before I leave this topic—which is really just one easy idea, but the devil is in the
details—another design should be mentioned. I do not consider the result especially
appealing, either here or even more widely, but the idea is simple to understand and to
implement, and it may be a trick worth knowing.

It is easiest here to back out of xtline and go for a conventional scatterplot. Code
first and result in figure 5:

. scatter invest year, yscale(log) ylabel(l1 10 100 1000, angle(h))
> msymbol(none) mlabel(company) mlabposition(0) xtitle("")
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Figure 5. Every marker label can serve as a self-explanatory marker (so long as you can
read them all)

So, simply, every marker label becomes its own self-explanatory marker. Note the
detail of mlabposition(0). Because no marker is shown, the marker label can and
should be placed where the marker would have been.
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How well this works is sensitive to dataset size. If you have not 20 observations
in each series, but 200, 2,000, etc., the marker labels will just mush together, and the
design will fail. More positively, different colors for different series can still help. A
special bonus: so long as the marker labels are legible, the colors do not need to be
explained in a legend. If series 7 with marker label 7 is always in red, you do not need
a legend entry to tell you that red means 7. Quite how to do this we will set on one
side beyond hinting that separate (see [D] separate) can be mighty helpful. See also
Cox (2005b).

5 Comments on colors

In this column, we are using the Stata Journal scheme, which you can play with too
using

. set scheme sj

Denying ourselves color may also match your situation. You may be planning to submit
an article to a journal that has limitations on use of color. Even in that situation,
you could use a different scheme, say, simono. Conversely, for a seminar or conference
presentation, exploiting color is likely to be not just possible, but expected.

Leaving aside a full discussion of color, the subject of many books and articles, I
confine myself here to some concise comments. Wilke (2019) is sensible and sensitive
on use of color.

Using 2 or 3 colors can work well, but not usually 10 or 12, let alone 20 or 30.
Remember that using a color typically creates an expectation that you will explain it,
which raises the problem once more of a legend taking up much of the available space.

Colorful may sound good, but often colors are not so crucial. If we explain each
series otherwise, say, with text labels, as discussed at length in the previous section, we
may manage well without colors. Multiple colors can even seem garish or confusing, and
there can be “fruit salad” or “techmnicolor dreamcoat” effects. Too many distinctions
made on the graph can make it hard to distinguish in one’s mind.

Never use red and green together: use red or orange and blue. Difficulty in distin-
guishing red and green is a common visual limitation. People who struggle with red and
green together are often comfortable with red and blue, which may well have connota-
tions for your data anyway: red is Republican in United States politics but left wing
in many other countries, red is negative in finance, and so on. Orange and blue is a
modish combination in many circles, and with good reason. There are many examples
in Hastie, Tibshirani, and Friedman (2009) and Wilke (2019).
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Going grey or gray is good (Cox 2009b)! (The spelling of this colo[u]r can change
mid-Atlantic.) A successful design can be to single out just a few series (even one)
of special interest or importance, show those with strong colors, and show the rest as
context in gray and possibly also with thin lines. See also Cox (2010) for a related idea,
and recall from the beginning of this column that a sequel is promised, which may even
have appeared by the time you read this.

6 Subdivide

If showing everything in one graph panel is too messy and showing each series separately
is not a good solution either, perhaps there is a compromise to be found in some other
way. Find a subdivision to subsets, each including several series, so that the spaghetti
problem is at least reduced, if not removed.

Thus, consider a common example: wanting to show series for each of the 50 states
of the United States (possibly even the District of Columbia and Puerto Rico to0o).
A separate graph panel for each state would not, I imagine, be universally regarded
as ideal. I have often seen it done, but I suspect that the reader reaction is more
often “Wow! I didn’t know you could do that” than it is “Aha! That really helps
understanding of the data”.

Typically, the best subdivision is substantive and depends on the data and the aims
of the research. The states might be grouped by region, population density (giving a
rural-urban contrast), or whatever else makes sense. The goal is not necessarily to avoid
crowding, if what is wanted includes showing that a group of states has similar series.

Here is a small trick that can be used quite generally. In the Grunfeld data, the iden-
tifiers run from 1 (overall, the largest company) to 10 (overall, the smallest company),
so dividing identifiers into odd and even would reduce the overlap between series. So,
the odd identifiers are companies 1, 3, 5, 7, and 9 and the even identifiers are 2, 4, 6, 8,
and 10.

Odd and even are indicated by the remainder on dividing the identifier by 2. Testing
whether that is 0 gives 0 (false) if the identifier is odd and 1 (true) if the identifier is
even. Such an indicator variable is 0 for odd (which will plot on the left with the
command below) and 1 for even (plot on the right).

. generate which = mod(company, 2) ==
. local endlabels scatter invest year if year == 1954, msymbol(none)
> mlabel (company)

. line invest year, connect(L) by(which, note("") legend(off))
> yscale(log) xtitle("") subtitle("") ylabel(l1 10 100 1000, angle(h))
> || “endlabels”
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Figure 6. Relieve the strain of many series in one graph panel by grouping into two or
occasionally more panels

Figure 6 is the result. Some details are new with this example. We need to redefine
the code for the end labels because we are no longer using addplot (). We need to retreat
to use line, the price being that we have to redo some work that xtline would carry
out unbidden. We need to use connect (L) to inhibit spurious connections between
the series for different companies. (Inhibit does not mean prohibit: there could still
be problems, but the device mentioned next solves them anyway.) We can and should
suppress the uninformative subtitles for each graph panel (which would be just 0 and 1).

A weakness of this design is using the same line pattern (by default solid) for all
the companies. That is easy enough to fix. Separate variables for each company will
automatically be plotted differently (see also Cox [2005b]). With several variables on
the y axis, graph will give up on ytitle() unless you supply one. We could type in
the variable-label text once again but prefer instead to automate choice, using syntax
described at help macro to call up that variable label. Figure 7 is the result.

. separate invest, by(company) veryshortlabel
(output omitted )

. line investl-invest10 year, by(which, note("") legend(off))
> yscale(log) ylabel(1l 10 100 1000, angle(h)) xtitle("") subtitle("")
> ytitle(" : variable label invest™") || “endlabels~”
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Figure 7. Each series can be shown with different line patterns

Rarely is a graph the last possible version. If colors were allowed, that possibility
should be considered. You might want to change the line patterns in any case. Dotted
patterns can be recessive and not show well if the graph is ported to other software.

There is a tradeoff: increase the number of graph panels for the sake of fewer series
in each, and you can lose more clarity than you gain. Three panels side by side could
just about work if the series are not long. Four panels, presumably in two rows and two
columns, loses some comparability because some panels are on different rows. And so
on.

See Cox (2009a) for a detailed example in which changes over time were plotted for
different groups of patients. With only two time points, three groups could be plotted
in one row.

7 Subtract or smooth

The focus so far has been on plotting the data as they arrive, modulo a possible de-
cision to work on a transformed scale, which would not in any case change the data
strongly. But data analysis clearly does not stop at exploration of data. For some of
its practitioners, that is not even part of their practice. Looking at the data to see
what they might say is for them at best redundant and at worst a source of prejudice
or presumption. That aside, it can be agreed that what might be better plotted are the
results of data analysis.

The range of strategies that may be considered is just about the range of strategies
in statistical science, but mentioning two extremes should be enough to convey some
flavor.
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Statistics can be thought of as answering the elementary but fundamental concern of
whether things are similar despite differences or different despite similarities, a banality
until we develop quantitative handles for comparison. At one extreme, we cannot easily
see differences in behavior unless we calculate some kind of summary (which could be
as simple as a mean or median) or fit some kind of model. Then, we can subtract to
get residuals (observed — summarized or fitted) to see what is idiosyncratic.

The opposite situation is also frequent. Sometimes, all we need is some modest
smoothing to remove minor fluctuations that are likely to be noise or at most fine
structure that does not hold interest or importance.

Now for something quite different—using quantile plots to compare height distri-
butions of members of the New York Choral Society in 1979. The data come from
Chambers et al. (1983, 350) and were previously analyzed in Cox (2007). The data are
a small convenience sample and are best not taken too seriously but serve to provide an
illustration of technique. A quantile plot using the community-contributed command
gplot (Cox 1999, 2005a, 2019) shows ordered values versus their so-called plotting po-
sitions, here (unique rank — 0.5)/sample size by default. You must install gplot from
the Stata Journal website if you wish to use it yourself. gplot is a considerable gener-
alization of the official command quantile.

If plotting positions are new to you, check this recipe out with a simple example.
With a sample, say, of size 7, the median would be at rank 4, which is a plotting
position of (4 —0.5)/7 = 0.5, so the plotting position is an approximation to cumulative
probability. quantile and also gplot talk of “fraction of the data” by default. Several
other plotting-position recipes would check out for the median in the same way: they
differ slightly in what they return as cumulative probabilities on either side of the
median. The art is to avoid plotting positions of exactly 0 or 1, if only because under
various transforms, notably feeding plotting positions to quantile functions, such points
cannot be plotted.

The dataset file for this example is bundled with the media for this column.

. use singer_height, clear

(source: http://www.stat.purdue.edu/ wsc/visualizing.tables.txt)

. gplot height, by(spart, row(1l) note("")) ylabel(60(3)75, angle(h))
> ytitle(height (in))
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Here the four groups distinguished (soprano, alto, tenor, bass) are first plotted side
by side for clarity (figure 8).

Soprano Alto Tenor Bass

75 L

72 o ® c—

69

height (in)
e

66 = e aw ®

634 =

60

0 5 10 5 10 5 1.0 5 1
fraction of the data

Figure 8. Singers’ heights, New York Choral Society, 1979. Quantile plots for sopranos,
altos, tenors, and basses.

Readers in many countries might appreciate a little help with the units of measure-
ment. Heights are given in inches, and indeed are often converted to feet, where 1 foot is
12 inches (“feet” is the plural of “foot”). So 60 inches would often be reported as 5 feet;
72 inches as 6 feet; 66 inches as 5 feet 6 inches. So now the choice of axis labels should
make more sense. More help still: 1 inch is exactly 25.4 millimeters, so, for example, 60
inches is 1.524 meters and 75 inches is 1.905 meters.

That explained, the unusual stepped nature of the quantile plots is easy to under-
stand. Singers’ heights are reported to the nearest inch. Once we know this, we should
no longer care about it: it is no more than a measurement convention. But the eye
and brain are still distracted by that, a secondary feature of the data, which is grounds
enough for smoothing.

Quantiles can be smoothed, and easily. A good method was given by Harrell and
Davis (1982) and is implemented in hdquantile (Statistical Software Components),
which again you must install before you can use it, say, by typing

. ssc install hdquantile

A full discussion of this interesting and useful method would take us too far from the
main path. Pertinent references are given in the help for hdquantile.
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Smoothing and trying again, a first stab at a graph shows that the smoothed or
estimated quantiles—in this use of the method, one for each data point—are close
enough that a line representation of the quantiles is less busy, which is shown in figure 9.

. hdquantile height, by(spart) generate(heightHD)

. gplot heightHD, by(spart, row(1) note("")) ylabel(60(3)75, angle(h))
> ytitle(height (in)) recast(line)

Soprano Alto Tenor Bass
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63
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fraction of the data

Figure 9. Quantile smoothing removes much of the distracting detail

Note that using plotting position as the horizontal coordinate is equivalent to using
a uniform distribution with the same range as the data as the reference distribution.
This default for gplot resembles the only allowed behavior for the official command
quantile.

Advice on smoothing is often that feeling you may not have smoothed quite enough
is better than worrying that you have smoothed too much. Fluctuations that look trivial
can be smoothed out mentally, but it is harder to restore genuine detail in the same
fashion. In this respect, figure 9 qualifies as helpful. What may well be merely quirks
in the data are not all smoothed out, but it is axiomatic that chance is lumpy (Abelson
1995).

Enough noise, or fine structure, has been smoothed away now that we can try
superimposing the quantile traces (figure 10). The numbers 0.25, 0.5, and 0.75 are
plotting positions corresponding to lower quartile, median, and upper quartile.
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. local labs xlabel(0 "O" 0.25 "0.25" 0.5 "0.5" 0.75 "0.75" 1 "1")

. gplot heightHD, over(spart) ylabel(60(3)75, angle(h))

> ytitle(height(in)) recast(line) aspect(1) legend(order(4 3 2 1) cols(1)
> position(3)) “labs”

< — — - Bass
= | T T e Tenor
<
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[}
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0 0.25 05 0.75 i
fraction of the data

Figure 10. Smoothed quantile traces can now be seen in one graph panel

We will stop there without claiming to say everything that could be said even about
this small dataset. The approximate ranking of sopranos, altos, tenors, and basses is
vivid enough. For adults, sopranos and altos are traditionally female parts and tenors
and basses male parts, so it is no surprise to see a contrast between the first two and
the last two groups: females are not quite so tall as males. But it is a surprise to me
to see systematic differences of the magnitude shown between sopranos and altos and
between tenors and basses.

8 Select or sample

I am not out of suggestions yet but will close with some brief general strategic remarks.

Select. Do not feel obliged to try to show everything. Focus on what is of greatest
interest or importance. In a previous section, the strategy of emphasizing a few series
and showing the rest as context was flagged.

Sample. If you have thousands of series, it is possible that plotting a random sample
of tens or hundreds may be as or more helpful in giving insight as plotting them all.
Alternatively, Bowley (1910, 62; 1952, 73) advised use of minimum and maximum and
10%, 25%, 50%, 75%, and 90% points as a basis for graphical summary. You may be
reminded somehow of box plots. A century and more on, the advice remains good. We
might select series according to whether they fall at those levels on some variable or
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criterion based on two or more variables. Diggle et al. (2002) gave further advice and
examples in similar spirit.

9 Stacking

Stacking series vertically within a single graph panel is another old idea. Implicitly or
explicitly, each series is plotted distinctly within its own bounds. Tufte (2006) added
impetus, and even chic, to the idea by talking of sparklines and giving several intriguing
examples. In practice, much depends on what you are willing to give up and what you
want to be a focus. Stacking can be helpful if you want to compare times at which
series were at their maximum or minimum, as one goal among several. As with other
strategies barely mentioned here, this approach deserves more detailed discussion.

10 Conclusion

Spaghetti arises frequently when plotting multiple series as a challenge to do better
graphically. Sometimes the aim is just too ambitious, but there are many small and
large devices that you can try. This column has not been comprehensive, and it has
been capricious in which devices were discussed in detail, leaving much scope for further
treatments.
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