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Abstract. Lewbel (2012, Journal of Business and Economic Statistics 30: 67–80)
provides a heteroskedasticity-based estimator for linear regression models contain-
ing an endogenous regressor when no external instruments or other such infor-
mation is available. The estimator is implemented in the command ivreg2h by
Baum and Schaffer (2012, Statistical Software Components S457555, Department
of Economics, Boston College). In this article, we give advice and instructions to
researchers who want to use this estimator.
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1 Introduction

Linear regression models containing endogenous regressors are generally identified using
outside information such as exogenous external instruments or by parametric distribu-
tion assumptions. Some articles obtain identification without external instruments by
exploiting heteroskedasticity, including Rigobon (2003), Klein and Vella (2010), Lewbel
(1997, 2018), and Prono (2014). In particular, Lewbel (2012) shows how one can use
heteroskedasticity to construct instruments when no external instruments are available.
Other articles that obtain identification using constructed instruments include Lewbel
(1997) and Erickson and Whited (2002). See Lewbel (Forthcoming) for a general dis-
cussion of identification methods like these.

In this article, we provide advice and instructions for researchers who wish to apply
the Lewbel (2012) estimator. That article includes estimators for fully simultaneous
systems, semiparametric systems, and bounds for when key identifying assumptions
are violated. However, most empirical applications use the estimator for a single-
equation linear regression model with a single endogenous regressor, which is the focus
here. Baum and Schaffer (2012) implemented this linear single-equation estimator as
the command ivreg2h, which is available from the Statistical Software Components
(SSC) archive.

Note that it is almost always preferable to use any available external instruments
rather than constructed instruments like those of Lewbel (2012) because of the greater
difficulty of confirming that constructed instruments are valid. However, constructed
instruments can be useful if no external instruments are available and for testing validity
of external instruments.
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2 The model and estimator

Assume a sample of observations of endogenous variables Y1 and Y2 and a vector of
exogenous covariates X. We wish to estimate γ and the vector β in the model

Y1 = X ′β + Y2γ + ε1

Y2 = X ′α+ ε2

where the errors ε1 and ε2 may be correlated.

Standard instrumental-variables estimation depends on having an element of X that
appears in the Y2 equation but not in the Y1 equation and uses that excluded regressor
as an instrument for Y2. The problem considered here is that perhaps no element of
X is excluded from the Y1 equation, or equivalently, we are not sure that any element
of β is zero. Lewbel (2012) provides identification and a corresponding simple linear
two-stage least-squares estimator for β and γ in this case, where no element of X can
be used as an excluded instrument for Y2. The method consists of constructing valid
instruments for Y2 by exploiting information contained in heteroskedasticity of ε2.

We begin with some standard regression model assumptions. First, β and γ are as-
sumed to be fixed constants (in particular, this means that if Y2 is a treatment measure,
then treatment effects are assumed to be homogeneous). Second, we have the standard
exogenous X assumptions that E(Xε1) = 0, E(Xε2) = 0, and E(XX ′) is nonsingular.
Then, the key additional assumptions required for applying the Lewbel (2012) estimator
are that Cov(Z, ε1ε2) = 0 and Cov(Z, ε22) 6= 0, where either Z = X or Z is a subset of
the elements of X.

The Lewbel (2012) estimator can be summarized as the following two steps:

1. Estimate α̂ by an ordinary least-squares linear regression of Y2 on X, and obtain
estimated residuals ε̂2 = Y2 −X ′α̂.

2. Let Z be some or all of the elements of X (not including the constant term).
Estimate β and γ by an ordinary linear two-stage least-squares regression of Y1

on X and Y2, using X and (Z−Z)ε̂2 as instruments, where Z is the sample mean
of Z.

This estimator is implemented in the command ivreg2h by Baum and Schaffer
(2012). Note that applying the estimator requires choosing which elements of X will
compose the vector Z used to construct instruments. The default assumption in ivreg2h

is that Z includes all the elements of X except for the constant term. However, one
might also choose to let Z be only some of the elements of X if doing so helps to satisfy
the assumptions required for the estimator as discussed in the next section.
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3 Advice on applying the estimator

The main question to be answered by applied researchers who wish to use this estimator
is whether the key assumptions, that Cov(Z, ε1ε2) = 0 and Cov(Z, ε22) 6= 0, are likely
to hold. Below, we discuss conditions that are sufficient to make these key assumptions
hold. The virtue of these sufficient conditions (given as assumptions A1, A2, and A3
below) is that each can be motivated by economic theory, empirically tested with data,
or both. The key assumptions can hold without satisfying assumptions A1, A2, and A3.
However, if you can provide evidence (theory and tests as we describe below) for why
these sufficient conditions should hold in your application, then the estimator is more
likely to be appropriate for you to use.

Assumption A1 The errors ε1 and ε2 have the factor structure

ε1 = cU + V1

ε2 = U + V2

where c is a constant and U , V1, and V2 are unobserved error terms that are mutually

independent conditional on Z.

The interpretation of assumption A1 is that Y2 is endogenous because it contains an
error component U that appears in the errors of both equations. This assumption is not
directly testable and so should be justified by an appeal to either economic (structural)
or econometric (statistical) theory. To illustrate, here we provide examples of how
assumption A1 could be justified in many contexts.

• Suppose Y2 is endogenous because it is mismeasured. Then V1 is the true outcome
model error, and U is the measurement error. Classical measurement error in
linear regression models satisfies assumption A1.

• Suppose Y1 is an individual’s wage and Y2 is the individual’s education level. Here
U could be unobserved ability, which affects both one’s educational attainment,
Y2, and one’s wage, Y1. Then V1 represents all the unobservables that affect wages
but not education, while V2 represents all the unobservables that affect education
but not wages.

• Suppose Y1 is a firm’s value-added output per unit of capital and Y2 is the firm’s
labor per unit of capital. Here U could be unobserved entrepreneurship, which
affects both productivity and the chosen level of inputs. Then V1 represents all
the unobservables that affect productivity but not inputs, and vice versa for V2.

The point here, as illustrated by these examples, is that the endogeneity of Y2 takes
the form of there being some underlying, unobserved factor U that affects both Y1 and
Y2.
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Assumption A2 U2 is not correlated with Z.

Assumption A2 says that U is homoskedastic. The Y1 equation is a structural model,
so if we can argue that it is correctly specified without important omitted variables, then
it is common to assume remaining errors are completely idiosyncratic. This may be a
difficult assumption to justify in theory, but it is partly testable. In particular, we may
apply a Pagan and Hall (1983) test to the Y1 equation.

The idea behind the Pagan–Hall test is that if any of the exogenous variables can pre-
dict the squared residuals, then the errors are conditionally heteroskedastic. The more
common Breusch–Pagan and White tests for heteroskedasticity (Breusch and Pagan
1979; White 1980) are inappropriate here because, as Pagan and Hall (1983) point out,
those tests are valid only if heteroskedasticity is present in the equation being tested and
nowhere else in the system (that is, the other structural equations in the system corre-
sponding to the endogenous regressors must be homoskedastic, even though they are not
being explicitly estimated). In contrast, under the null of conditional homoskedasticity
in the two-stage least-squares regression, the Pagan–Hall statistic is distributed as χ2

p,
irrespective of the presence of heteroskedasticity elsewhere in the system.

The ivhettest command (Schaffer 2002), available from the SSC archive, is invoked
by

ivhettest
[
varlist

] [
, options

]

where the optional varlist specifies the exogenous variables to be used to model the
squared errors. The tradeoff in the choice of variables to be used is that a smaller
set of variables will conserve degrees of freedom at the cost of being unable to detect
heteroskedasticity in certain directions. See, for example, Baum, Schaffer, and Stillman
(2003), section 3, for more details.

For testing assumption A2, the correct set of variables to include in the test is the
levels of the instruments Z (excluding the constant). This is available in ivhettest by
specifying the ivlev option and is the default. We do not need to test if other variables
(like squares or cross products of Z) are correlated with U2, because those other forms
of heteroskedasticity would not violate assumption A2.

A limitation of this test is that it tests homoskedasticity of ε1, so if we reject ho-
moskedasticity, we cannot know whether the rejection is due to violating assumption A2
or due to harmless heteroskedasticity of V1. In short, failing to reject homoskedasticity
of ε1 provides evidence supporting assumption A2, but rejecting homoskedasticity of ε1
does not mean that assumption A2 is necessarily violated.

Note that assumption A2 does not require that U2 be fully homoskedastic, only that
it not be correlated with Z. As discussed at the end of the previous section, to satisfy
assumption A2 (and A3 below), one might be selective about which elements of X to
include in Z.
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Assumption A3 ε22 is correlated with Z.

This assumption is needed to ensure that the constructed instrument ends up cor-
related with Y2. If the previous assumptions hold, then this assumption is equivalent
to heteroskedasticity of V2 relative to Z. This assumption is easy to justify because the
Y2 equation need not be a structural equation. The Y2 equation is like the first stage of
two-stage least squares; it can be defined as just a linear projection of Y2 on exogenous
covariates. Moreover, this assumption can be tested by applying a Breusch and Pagan
(1979) test to the Y2 equation.1 Unlike the test of assumption A2 for the Y1 equation,
to satisfy assumption A3, we want to reject homoskedasticity.2

Note that the above assumptions are not necessary for validity of the estimator.
For example, it is possible that the factor model of assumption A1 does not hold, but
the estimator is still consistent (see Lewbel [2018] for an example). However, we can
have more confidence that the estimator is consistent in a given application if we can
argue that the logic of assumption A1 holds and if we pass the tests in assumptions A2
and A3.

Additional tests lending even more support for the estimator are possible when Z has
more than one element. In that case, the model is overidentified, and one can then apply
standard overidentification tests such as the Hansen (1982) and Sargan (1958) J-test.
However, note that this tests only a necessary condition for validity of the method,
which is that all instruments yield the same coefficient estimates. It is possible, for
example, that one fails to reject overidentification tests not because the assumptions
hold but because the constructed instruments happen to all yield the same incorrect
coefficient estimates. Still, failing to reject overidentification tests provides additional
evidence in support of the model and estimator.

To summarize the results of this section, we note that one way to use this estimator
convincingly is to do the following:

1. Use economic theory and data to justify linearity of the model Y1 = X ′β+Y2γ+ε1
and the assumption that X is exogenous.

2. Use economic theory and data to justify the factor structure of the errors given
by assumption A1.

3. Choose a set of covariates Z (either all the elements of X except the constant or
some subset of those elements) to use for constructing the instruments
(Z−Z)ε̂2. For the chosen Z, apply theory and the above described tests to justify
the remaining identifying assumptions.

1. Because there are no endogenous regressors in the Y2 equation, the standard heteroskedasticity
tests may be used. The Pagan and Hall (1983) test could also be used because it is equivalent to
the Breusch–Pagan test when applied to an ordinary least-squares equation.

2. The Breusch and Pagan (1979) test is preferred over the general White (1980) test because it allows
us to target the necessary form of heteroskedasticity, that is, correlation of the squared error with
Z.
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4 Implementing the estimator and tests

Using the Lewbel (2012) method, we construct instruments as simple functions of the
model’s data. This approach may be a) applied when no ordinary (external) instruments
are available or b) used along with external instruments to improve the efficiency of the
instrumental-variables estimator. Constructed and external instruments can also be
used to obtain overidentification, thereby allowing application of Sargan–Hansen tests
(of the orthogonality conditions or overidentifying restrictions), which would not be
possible in the case of exact identification by external instruments. This then allows
one to simultaneously test validity of both the external instruments and the constructed
instruments.

The implementation of the estimator in ivreg2h is based on the earlier xtivreg2
(Schaffer 2005) and ivreg2 (Baum, Schaffer, and Stillman 2003, 2007) commands. Es-
sentially, ivreg2h generates the heteroskedasticity-based constructed instruments and
then implements instrumental-variables estimation like these earlier commands. In ad-
dition to pure cross-section or time-series data, ivreg2h can also be applied to panel
data using the within transformation of a fixed-effects model; see the fe option de-
scribed below. Because ivreg2h is a variant of ivreg2, essentially all the features and
options of that command are available in ivreg2h. For that reason, you can consult
help ivreg2 for full details of the available options.

The robust and gmm2s options should generally be used, invoking the instrumental-
variable generalized method of moments estimator. This will compute the Hansen J
statistic as a test of overidentifying restrictions. The default Sargan test assumes nor-
mality of the errors. See Baum, Schaffer, and Stillman (2003, 2007) for further details.
Note that the gmm2s option supersedes the gmm option described in the earlier article.

The ivreg2h command provides four more options: gen, gen(string
[
, replace

]
),

fe, and z(). If the gen option is given, the generated (constructed) instruments are
stored, with names built from the original variable names suffixed with g. If you want
greater control over the naming of the generated instruments, use the gen(string

[
,

replace
]
) option. The string argument allows the specification of a stub, or prefix,

for the generated variable names, which will also be suffixed with g. You can remove
earlier instruments with those same names with the replace suboption. If the data
have been declared as a panel, you can use the fe option to specify that a fixed-effects
model should be fit, as in xtivreg2. The z() option can be used to specify that only
some of the included exogenous variables should be used to generate instruments, as
suggested above.

The ivreg2h command can be invoked to fit either a) a model that would be identi-
fied even without the constructed instruments or b) a model that, without constructed
instruments, would fail the order condition for identification by either having no ex-
cluded instruments or having fewer excluded instruments than needed for traditional
identification.

In case a, where an adequate number of external instruments are augmented by
the generated constructed instruments, ivreg2h provides three sets of estimates: the
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traditional instrumental-variable estimates, the estimates using only the generated in-
struments, and the estimates using both generated and excluded instruments. In
this case, ivreg2h automatically produces a Hayashi C test of the excluded instru-
ments’ validity, equivalent to that provided by the orthog() option in ivreg2, see
Baum, Schaffer, and Stillman (2003, 18–19). The results of the third estimation (the
one including both generated and excluded instruments) are stored in the ereturn

list. All three sets of estimates are stored, named StdIV, GenInst, and GenExtInst,
respectively.

In case b, where the equation would be underidentified without constructed instru-
ments, either one or two sets of estimates will be produced and displayed. If there
are no excluded instruments, only the estimates using the generated instruments are
displayed. If there are excluded instruments but too few to produce identification by
the order condition, the estimates using only generated instruments and those pro-
duced by both generated and excluded instruments will be displayed. Unlike ivreg2 or
ivregress, ivreg2h allows the syntax

ivreg2h depvar exogvar (endogvar =
[
varlist iv

]
)
[
if
] [

in
] [

, options
]

because after augmentation with the generated regressors, the order condition for iden-
tification will be satisfied. The resulting estimates are stored in the ereturn list and
as a set of estimates named GenInst and, optionally, GenExtInst.

The Pagan and Hall (1983) tests referenced above are available from the ivreg2

package of Baum, Schaffer, and Stillman (2003) using the ivhettest command. The
default test does not assume normality of the errors.

4.1 Stored results

In the estimates table output, the displayed results j, jdf, and jp refer to the Hansen
J statistic, its degrees of freedom, and its p-value. If independent and identically dis-
tributed errors are assumed and a Sargan test is displayed in the standard output, the
Sargan statistic, its degrees of freedom, and p-value are displayed in j, jdf, and jpval

because the Hansen and Sargan statistics coincide in that case. The results of the most
recent estimation are stored in the ereturn list.

5 Examples of usage

In this example from Lewbel (2012), centering of regressors is used only to match the
published results.

ssc install center // (if needed)
ssc install bcuse // (if needed)
bcuse engeldat
center age-twocars, prefix(z_)
ivreg2h foodshare z_* (lrtotexp=), small robust
ivreg2h foodshare z_* (lrtotexp = lrinc), small robust
ivreg2h foodshare z_* (lrtotexp = lrinc), small robust gmm2s z(z_age-z_agesp2)
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The following is an example with panel data and heteroskedastic and autocorrelated
standard errors:

webuse grunfeld, clear
ivreg2h invest L(1/2).kstock (mvalue=), fe
ivreg2h invest L(1/2).kstock (mvalue=L(1/4).mvalue), fe robust bw(2)

6 Additional comments

Here we provide answers to additional questions that have been asked about the esti-
mator.

1. Can validity of the estimator be tested?

Partially. The tests discussed in the previous sections are examples.

2. What if Y1 or Y2 is discrete?

The estimator may still be valid in this case. Lewbel (2018) gives one set of
conditions that suffice for validity of the estimator. However, the factor structure
given by assumption A1 will generally not hold if Y1 or Y2 is discrete, so it is
much harder to justify application of the estimator. One might still apply the
tests discussed in the previous sections to provide some evidence to rationalize
the estimator in this case.

3. What does it mean if coefficient estimates are close to those from ordinary least
squares?

In any application of instrumental-variables estimators, coefficient estimates can
be close to ordinary least squares either by chance or if the instruments are highly
correlated with the endogenous regressors. The same is true of constructed in-
struments.

4. Can the estimator be used with more than one endogenous regressor?

Conditions for validity of the estimator have been proven for one endogenous
regressor. The estimator may be valid with multiple endogenous regressors, but
the exact conditions required for validity in that case have not been shown.

5. Can I use functions of the constructed instruments as additional instruments?

No. The ε1 errors are uncorrelated with the constructed instruments but may not
be conditionally mean zero conditioning on the instruments. This means that un-
less you make additional strong assumptions, you cannot, for example, use squares
of the constructed instruments or interactions of the constructed instruments with
exogenous regressors as additional instruments.

6. Can I use the constructed instruments to estimate local average treatment effects?

No, except under very strong conditions. The method does not construct in-
struments designed to satisfy the assumptions for local average treatment-effects
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estimation. It constructs instruments in the traditional structural model sense,
where linear model coefficients are fixed constants. This means that if the endoge-
nous regressor is a measure of treatment, then the constructed instrument is valid
for estimating a treatment effect only if the treatment effect is homogeneous, that
is, the same for everyone in the population.

7. What if I have additional instruments?

This is the best-case scenario because those external instruments can be used along
with the constructed instruments in the second step of the estimator (as discussed
earlier). In particular, one of the best uses of the constructed instruments is
to provide overidentifying information for model tests and robustness checks. For
example, one could apply the overidentification tests discussed in the previous sec-
tions to estimates based on both constructed and external instruments. If validity
is rejected, then either the model is misspecified or at least one of these instruments
is invalid. If validity is not rejected, it is still possible that the model is wrong
or the instruments are invalid, but one would at least have increased confidence
that both the external and constructed instruments are valid. More informally,
one might simply compare the estimated coefficients based on constructed instru-
ments with those based on external instruments.3 If they are numerically similar,
that increases confidence in the robustness of the model because the two estima-
tors based on very different identifying assumptions are yielding similar results.
More generally, identification based on constructed instruments is preferably not
used in isolation but rather is ideally used in conjunction with other means of ob-
taining identification, both as a way to check robustness of results to alternative
identifying assumptions and to increase estimation efficiency.

7 Conclusions

In the few years since the heteroskedasticity-based estimator was proposed, it has been
cited more than 500 times according to Google Scholar. But as with any identification
method that is based largely on structure and functional form, one must be cautious
about interpreting the results. This article should help ensure that the estimator is
applied appropriately.
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