

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
<http://ageconsearch.umn.edu>
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

Advice on using heteroskedasticity-based identification

Christopher F. Baum
Boston College
Chestnut Hill, MA
baum@bc.edu

Arthur Lewbel
Boston College
Chestnut Hill, MA
lewbel@bc.edu

Abstract. Lewbel (2012, *Journal of Business and Economic Statistics* 30: 67–80) provides a heteroskedasticity-based estimator for linear regression models containing an endogenous regressor when no external instruments or other such information is available. The estimator is implemented in the command `ivreg2h` by Baum and Schaffer (2012, Statistical Software Components S457555, Department of Economics, Boston College). In this article, we give advice and instructions to researchers who want to use this estimator.

Keywords: st0575, `ivreg2h`, instrumental variables, linear regression, endogeneity, identification, heteroskedasticity

1 Introduction

Linear regression models containing endogenous regressors are generally identified using outside information such as exogenous external instruments or by parametric distribution assumptions. Some articles obtain identification without external instruments by exploiting heteroskedasticity, including Rigobon (2003), Klein and Vella (2010), Lewbel (1997, 2018), and Prono (2014). In particular, Lewbel (2012) shows how one can use heteroskedasticity to construct instruments when no external instruments are available. Other articles that obtain identification using constructed instruments include Lewbel (1997) and Erickson and Whited (2002). See Lewbel (Forthcoming) for a general discussion of identification methods like these.

In this article, we provide advice and instructions for researchers who wish to apply the Lewbel (2012) estimator. That article includes estimators for fully simultaneous systems, semiparametric systems, and bounds for when key identifying assumptions are violated. However, most empirical applications use the estimator for a single-equation linear regression model with a single endogenous regressor, which is the focus here. Baum and Schaffer (2012) implemented this linear single-equation estimator as the command `ivreg2h`, which is available from the Statistical Software Components (SSC) archive.

Note that it is almost always preferable to use any available external instruments rather than constructed instruments like those of Lewbel (2012) because of the greater difficulty of confirming that constructed instruments are valid. However, constructed instruments can be useful if no external instruments are available and for testing validity of external instruments.

2 The model and estimator

Assume a sample of observations of endogenous variables Y_1 and Y_2 and a vector of exogenous covariates X . We wish to estimate γ and the vector β in the model

$$\begin{aligned} Y_1 &= X'\beta + Y_2\gamma + \varepsilon_1 \\ Y_2 &= X'\alpha + \varepsilon_2 \end{aligned}$$

where the errors ε_1 and ε_2 may be correlated.

Standard instrumental-variables estimation depends on having an element of X that appears in the Y_2 equation but not in the Y_1 equation and uses that excluded regressor as an instrument for Y_2 . The problem considered here is that perhaps no element of X is excluded from the Y_1 equation, or equivalently, we are not sure that any element of β is zero. Lewbel (2012) provides identification and a corresponding simple linear two-stage least-squares estimator for β and γ in this case, where no element of X can be used as an excluded instrument for Y_2 . The method consists of constructing valid instruments for Y_2 by exploiting information contained in heteroskedasticity of ε_2 .

We begin with some standard regression model assumptions. First, β and γ are assumed to be fixed constants (in particular, this means that if Y_2 is a treatment measure, then treatment effects are assumed to be homogeneous). Second, we have the standard exogenous X assumptions that $E(X\varepsilon_1) = 0$, $E(X\varepsilon_2) = 0$, and $E(XX')$ is nonsingular. Then, the key additional assumptions required for applying the Lewbel (2012) estimator are that $\text{Cov}(\mathbf{Z}, \varepsilon_1\varepsilon_2) = 0$ and $\text{Cov}(\mathbf{Z}, \varepsilon_2^2) \neq 0$, where either $\mathbf{Z} = X$ or \mathbf{Z} is a subset of the elements of X .

The Lewbel (2012) estimator can be summarized as the following two steps:

1. Estimate $\hat{\alpha}$ by an ordinary least-squares linear regression of Y_2 on X , and obtain estimated residuals $\hat{\varepsilon}_2 = Y_2 - X'\hat{\alpha}$.
2. Let \mathbf{Z} be some or all of the elements of X (not including the constant term). Estimate β and γ by an ordinary linear two-stage least-squares regression of Y_1 on X and Y_2 , using X and $(\mathbf{Z} - \bar{\mathbf{Z}})\hat{\varepsilon}_2$ as instruments, where $\bar{\mathbf{Z}}$ is the sample mean of \mathbf{Z} .

This estimator is implemented in the command `ivreg2h` by Baum and Schaffer (2012). Note that applying the estimator requires choosing which elements of X will compose the vector \mathbf{Z} used to construct instruments. The default assumption in `ivreg2h` is that \mathbf{Z} includes all the elements of X except for the constant term. However, one might also choose to let \mathbf{Z} be only some of the elements of X if doing so helps to satisfy the assumptions required for the estimator as discussed in the next section.

3 Advice on applying the estimator

The main question to be answered by applied researchers who wish to use this estimator is whether the key assumptions, that $\text{Cov}(\mathbf{Z}, \varepsilon_1 \varepsilon_2) = 0$ and $\text{Cov}(\mathbf{Z}, \varepsilon_2^2) \neq 0$, are likely to hold. Below, we discuss conditions that are sufficient to make these key assumptions hold. The virtue of these sufficient conditions (given as assumptions A1, A2, and A3 below) is that each can be motivated by economic theory, empirically tested with data, or both. The key assumptions can hold without satisfying assumptions A1, A2, and A3. However, if you can provide evidence (theory and tests as we describe below) for why these sufficient conditions should hold in your application, then the estimator is more likely to be appropriate for you to use.

Assumption A1 *The errors ε_1 and ε_2 have the factor structure*

$$\begin{aligned}\varepsilon_1 &= cU + V_1 \\ \varepsilon_2 &= U + V_2\end{aligned}$$

where c is a constant and U , V_1 , and V_2 are unobserved error terms that are mutually independent conditional on \mathbf{Z} .

The interpretation of assumption A1 is that Y_2 is endogenous because it contains an error component U that appears in the errors of both equations. This assumption is not directly testable and so should be justified by an appeal to either economic (structural) or econometric (statistical) theory. To illustrate, here we provide examples of how assumption A1 could be justified in many contexts.

- Suppose Y_2 is endogenous because it is mismeasured. Then V_1 is the true outcome model error, and U is the measurement error. Classical measurement error in linear regression models satisfies assumption A1.
- Suppose Y_1 is an individual's wage and Y_2 is the individual's education level. Here U could be unobserved ability, which affects both one's educational attainment, Y_2 , and one's wage, Y_1 . Then V_1 represents all the unobservables that affect wages but not education, while V_2 represents all the unobservables that affect education but not wages.
- Suppose Y_1 is a firm's value-added output per unit of capital and Y_2 is the firm's labor per unit of capital. Here U could be unobserved entrepreneurship, which affects both productivity and the chosen level of inputs. Then V_1 represents all the unobservables that affect productivity but not inputs, and vice versa for V_2 .

The point here, as illustrated by these examples, is that the endogeneity of Y_2 takes the form of there being some underlying, unobserved factor U that affects both Y_1 and Y_2 .

Assumption A2 U^2 is not correlated with \mathbf{Z} .

Assumption A2 says that U is homoskedastic. The Y_1 equation is a structural model, so if we can argue that it is correctly specified without important omitted variables, then it is common to assume remaining errors are completely idiosyncratic. This may be a difficult assumption to justify in theory, but it is partly testable. In particular, we may apply a Pagan and Hall (1983) test to the Y_1 equation.

The idea behind the Pagan–Hall test is that if any of the exogenous variables can predict the squared residuals, then the errors are conditionally heteroskedastic. The more common Breusch–Pagan and White tests for heteroskedasticity (Breusch and Pagan 1979; White 1980) are inappropriate here because, as Pagan and Hall (1983) point out, those tests are valid only if heteroskedasticity is present in the equation being tested and nowhere else in the system (that is, the other structural equations in the system corresponding to the endogenous regressors must be homoskedastic, even though they are not being explicitly estimated). In contrast, under the null of conditional homoskedasticity in the two-stage least-squares regression, the Pagan–Hall statistic is distributed as χ_p^2 , irrespective of the presence of heteroskedasticity elsewhere in the system.

The `ivhettest` command (Schaffer 2002), available from the SSC archive, is invoked by

```
ivhettest [ varlist ] [ , options ]
```

where the optional *varlist* specifies the exogenous variables to be used to model the squared errors. The tradeoff in the choice of variables to be used is that a smaller set of variables will conserve degrees of freedom at the cost of being unable to detect heteroskedasticity in certain directions. See, for example, Baum, Schaffer, and Stillman (2003), section 3, for more details.

For testing assumption A2, the correct set of variables to include in the test is the levels of the instruments \mathbf{Z} (excluding the constant). This is available in `ivhettest` by specifying the `ivlev` option and is the default. We do not need to test if other variables (like squares or cross products of \mathbf{Z}) are correlated with U^2 , because those other forms of heteroskedasticity would not violate assumption A2.

A limitation of this test is that it tests homoskedasticity of ε_1 , so if we reject homoskedasticity, we cannot know whether the rejection is due to violating assumption A2 or due to harmless heteroskedasticity of V_1 . In short, failing to reject homoskedasticity of ε_1 provides evidence supporting assumption A2, but rejecting homoskedasticity of ε_1 does not mean that assumption A2 is necessarily violated.

Note that assumption A2 does not require that U^2 be fully homoskedastic, only that it not be correlated with \mathbf{Z} . As discussed at the end of the previous section, to satisfy assumption A2 (and A3 below), one might be selective about which elements of X to include in \mathbf{Z} .

Assumption A3 ε_2^2 is correlated with \mathbf{Z} .

This assumption is needed to ensure that the constructed instrument ends up correlated with Y_2 . If the previous assumptions hold, then this assumption is equivalent to heteroskedasticity of V_2 relative to \mathbf{Z} . This assumption is easy to justify because the Y_2 equation need not be a structural equation. The Y_2 equation is like the first stage of two-stage least squares; it can be defined as just a linear projection of Y_2 on exogenous covariates. Moreover, this assumption can be tested by applying a Breusch and Pagan (1979) test to the Y_2 equation.¹ Unlike the test of assumption A2 for the Y_1 equation, to satisfy assumption A3, we want to reject homoskedasticity.²

Note that the above assumptions are not necessary for validity of the estimator. For example, it is possible that the factor model of assumption A1 does not hold, but the estimator is still consistent (see Lewbel [2018] for an example). However, we can have more confidence that the estimator is consistent in a given application if we can argue that the logic of assumption A1 holds and if we pass the tests in assumptions A2 and A3.

Additional tests lending even more support for the estimator are possible when \mathbf{Z} has more than one element. In that case, the model is overidentified, and one can then apply standard overidentification tests such as the Hansen (1982) and Sargan (1958) J -test. However, note that this tests only a necessary condition for validity of the method, which is that all instruments yield the same coefficient estimates. It is possible, for example, that one fails to reject overidentification tests not because the assumptions hold but because the constructed instruments happen to all yield the same incorrect coefficient estimates. Still, failing to reject overidentification tests provides additional evidence in support of the model and estimator.

To summarize the results of this section, we note that one way to use this estimator convincingly is to do the following:

1. Use economic theory and data to justify linearity of the model $Y_1 = X'\boldsymbol{\beta} + Y_2\gamma + \varepsilon_1$ and the assumption that X is exogenous.
2. Use economic theory and data to justify the factor structure of the errors given by assumption A1.
3. Choose a set of covariates \mathbf{Z} (either all the elements of X except the constant or some subset of those elements) to use for constructing the instruments $(\mathbf{Z} - \bar{\mathbf{Z}})\hat{\varepsilon}_2$. For the chosen \mathbf{Z} , apply theory and the above described tests to justify the remaining identifying assumptions.

1. Because there are no endogenous regressors in the Y_2 equation, the standard heteroskedasticity tests may be used. The Pagan and Hall (1983) test could also be used because it is equivalent to the Breusch–Pagan test when applied to an ordinary least-squares equation.

2. The Breusch and Pagan (1979) test is preferred over the general White (1980) test because it allows us to target the necessary form of heteroskedasticity, that is, correlation of the squared error with \mathbf{Z} .

4 Implementing the estimator and tests

Using the Lewbel (2012) method, we construct instruments as simple functions of the model's data. This approach may be a) applied when no ordinary (external) instruments are available or b) used along with external instruments to improve the efficiency of the instrumental-variables estimator. Constructed and external instruments can also be used to obtain overidentification, thereby allowing application of Sargan–Hansen tests (of the orthogonality conditions or overidentifying restrictions), which would not be possible in the case of exact identification by external instruments. This then allows one to simultaneously test validity of both the external instruments and the constructed instruments.

The implementation of the estimator in `ivreg2h` is based on the earlier `xtivreg2` (Schaffer 2005) and `ivreg2` (Baum, Schaffer, and Stillman 2003, 2007) commands. Essentially, `ivreg2h` generates the heteroskedasticity-based constructed instruments and then implements instrumental-variables estimation like these earlier commands. In addition to pure cross-section or time-series data, `ivreg2h` can also be applied to panel data using the within transformation of a fixed-effects model; see the `fe` option described below. Because `ivreg2h` is a variant of `ivreg2`, essentially all the features and options of that command are available in `ivreg2h`. For that reason, you can consult `help ivreg2` for full details of the available options.

The `robust` and `gmm2s` options should generally be used, invoking the instrumental-variable generalized method of moments estimator. This will compute the Hansen J statistic as a test of overidentifying restrictions. The default Sargan test assumes normality of the errors. See Baum, Schaffer, and Stillman (2003, 2007) for further details. Note that the `gmm2s` option supersedes the `gmm` option described in the earlier article.

The `ivreg2h` command provides four more options: `gen`, `gen(string[, replace])`, `fe`, and `z()`. If the `gen` option is given, the generated (constructed) instruments are stored, with names built from the original variable names suffixed with `_g`. If you want greater control over the naming of the generated instruments, use the `gen(string[, replace])` option. The string argument allows the specification of a stub, or prefix, for the generated variable names, which will also be suffixed with `_g`. You can remove earlier instruments with those same names with the `replace` suboption. If the data have been declared as a panel, you can use the `fe` option to specify that a fixed-effects model should be fit, as in `xtivreg2`. The `z()` option can be used to specify that only some of the included exogenous variables should be used to generate instruments, as suggested above.

The `ivreg2h` command can be invoked to fit either a) a model that would be identified even without the constructed instruments or b) a model that, without constructed instruments, would fail the order condition for identification by either having no excluded instruments or having fewer excluded instruments than needed for traditional identification.

In case a, where an adequate number of external instruments are augmented by the generated constructed instruments, `ivreg2h` provides three sets of estimates: the

traditional instrumental-variable estimates, the estimates using only the generated instruments, and the estimates using both generated and excluded instruments. In this case, `ivreg2h` automatically produces a Hayashi C test of the excluded instruments' validity, equivalent to that provided by the `orthog()` option in `ivreg2`, see Baum, Schaffer, and Stillman (2003, 18–19). The results of the third estimation (the one including both generated and excluded instruments) are stored in the `ereturn list`. All three sets of estimates are stored, named `StdIV`, `GenInst`, and `GenExtInst`, respectively.

In case b, where the equation would be underidentified without constructed instruments, either one or two sets of estimates will be produced and displayed. If there are no excluded instruments, only the estimates using the generated instruments are displayed. If there are excluded instruments but too few to produce identification by the order condition, the estimates using only generated instruments and those produced by both generated and excluded instruments will be displayed. Unlike `ivreg2` or `ivregress`, `ivreg2h` allows the syntax

```
ivreg2h depvar exogvar (endogvar = [varlist_iv]) [if] [in] [, options]
```

because after augmentation with the generated regressors, the order condition for identification will be satisfied. The resulting estimates are stored in the `ereturn list` and as a set of estimates named `GenInst` and, optionally, `GenExtInst`.

The Pagan and Hall (1983) tests referenced above are available from the `ivreg2` package of Baum, Schaffer, and Stillman (2003) using the `ivhettest` command. The default test does not assume normality of the errors.

4.1 Stored results

In the `estimates table` output, the displayed results `j`, `jdf`, and `jp` refer to the Hansen J statistic, its degrees of freedom, and its p -value. If independent and identically distributed errors are assumed and a Sargan test is displayed in the standard output, the Sargan statistic, its degrees of freedom, and p -value are displayed in `j`, `jdf`, and `jpval` because the Hansen and Sargan statistics coincide in that case. The results of the most recent estimation are stored in the `ereturn list`.

5 Examples of usage

In this example from Lewbel (2012), centering of regressors is used only to match the published results.

```
ssc install center // (if needed)
ssc install bcuse // (if needed)
bcuse engeldat
center age-twocars, prefix(z_)
ivreg2h foodshare z_* (lrtotexp=), small robust
ivreg2h foodshare z_* (lrtotexp = lrinc), small robust
ivreg2h foodshare z_* (lrtotexp = lrinc), small robust gmm2s z(z_age-z_agesp2)
```

The following is an example with panel data and heteroskedastic and autocorrelated standard errors:

```
webuse grunfeld, clear
ivreg2h invest L(1/2).kstock (mvalue=), fe
ivreg2h invest L(1/2).kstock (mvalue=L(1/4).mvalue), fe robust bw(2)
```

6 Additional comments

Here we provide answers to additional questions that have been asked about the estimator.

1. Can validity of the estimator be tested?

Partially. The tests discussed in the previous sections are examples.

2. What if Y_1 or Y_2 is discrete?

The estimator may still be valid in this case. Lewbel (2018) gives one set of conditions that suffice for validity of the estimator. However, the factor structure given by assumption A1 will generally not hold if Y_1 or Y_2 is discrete, so it is much harder to justify application of the estimator. One might still apply the tests discussed in the previous sections to provide some evidence to rationalize the estimator in this case.

3. What does it mean if coefficient estimates are close to those from ordinary least squares?

In any application of instrumental-variables estimators, coefficient estimates can be close to ordinary least squares either by chance or if the instruments are highly correlated with the endogenous regressors. The same is true of constructed instruments.

4. Can the estimator be used with more than one endogenous regressor?

Conditions for validity of the estimator have been proven for one endogenous regressor. The estimator may be valid with multiple endogenous regressors, but the exact conditions required for validity in that case have not been shown.

5. Can I use functions of the constructed instruments as additional instruments?

No. The ε_1 errors are uncorrelated with the constructed instruments but may not be conditionally mean zero conditioning on the instruments. This means that unless you make additional strong assumptions, you cannot, for example, use squares of the constructed instruments or interactions of the constructed instruments with exogenous regressors as additional instruments.

6. Can I use the constructed instruments to estimate local average treatment effects?

No, except under very strong conditions. The method does not construct instruments designed to satisfy the assumptions for local average treatment-effects

estimation. It constructs instruments in the traditional structural model sense, where linear model coefficients are fixed constants. This means that if the endogenous regressor is a measure of treatment, then the constructed instrument is valid for estimating a treatment effect only if the treatment effect is homogeneous, that is, the same for everyone in the population.

7. What if I have additional instruments?

This is the best-case scenario because those external instruments can be used along with the constructed instruments in the second step of the estimator (as discussed earlier). In particular, one of the best uses of the constructed instruments is to provide overidentifying information for model tests and robustness checks. For example, one could apply the overidentification tests discussed in the previous sections to estimates based on both constructed and external instruments. If validity is rejected, then either the model is misspecified or at least one of these instruments is invalid. If validity is not rejected, it is still possible that the model is wrong or the instruments are invalid, but one would at least have increased confidence that both the external and constructed instruments are valid. More informally, one might simply compare the estimated coefficients based on constructed instruments with those based on external instruments.³ If they are numerically similar, that increases confidence in the robustness of the model because the two estimators based on very different identifying assumptions are yielding similar results. More generally, identification based on constructed instruments is preferably not used in isolation but rather is ideally used in conjunction with other means of obtaining identification, both as a way to check robustness of results to alternative identifying assumptions and to increase estimation efficiency.

7 Conclusions

In the few years since the heteroskedasticity-based estimator was proposed, it has been cited more than 500 times according to Google Scholar. But as with any identification method that is based largely on structure and functional form, one must be cautious about interpreting the results. This article should help ensure that the estimator is applied appropriately.

8 References

Baum, C. F., and M. E. Schaffer. 2012. *ivreg2h*: Stata module to perform instrumental variables estimation using heteroskedasticity-based instruments. Statistical Software Components S457555, Department of Economics, Boston College. <https://ideas.repec.org/c/boc/bocode/s457555.html>.

Baum, C. F., M. E. Schaffer, and S. Stillman. 2003. Instrumental variables and GMM: Estimation and testing. *Stata Journal* 3: 1–31.

3. As discussed earlier, *ivreg2h* automatically provides these estimates.

———. 2007. Enhanced routines for instrumental variables/generalized method of moments estimation and testing. *Stata Journal* 7: 465–506.

Breusch, T. S., and A. R. Pagan. 1979. A simple test for heteroscedasticity and random coefficient variation. *Econometrica* 47: 1287–1294.

Erickson, T., and T. M. Whited. 2002. Two-step GMM estimation of the errors-in-variables model using high-order moments. *Econometric Theory* 18: 776–799.

Hansen, L. P. 1982. Large sample properties of generalized method of moments estimators. *Econometrica* 50: 1029–1054.

Klein, R., and F. Vella. 2010. Estimating a class of triangular simultaneous equations models without exclusion restrictions. *Journal of Econometrics* 154: 154–164.

Lewbel, A. 1997. Constructing instruments for regressions with measurement error when no additional data are available, with an application to patents and R&D. *Econometrica* 65: 1201–1213.

———. 2012. Using heteroscedasticity to identify and estimate mismeasured and endogenous regressor models. *Journal of Business and Economic Statistics* 30: 67–80.

———. 2018. Identification and estimation using heteroscedasticity without instruments: The binary endogenous regressor case. *Economics Letters* 165: 10–12.

———. Forthcoming. The identification zoo: Meanings of identification in econometrics. *Journal of Economic Literature*.

Pagan, A. R., and D. Hall. 1983. Diagnostic tests as residual analysis. *Econometric Reviews* 2: 159–218.

Prono, T. 2014. The role of conditional heteroskedasticity in identifying and estimating linear triangular systems, with applications to asset pricing models that include a mismeasured factor. *Journal of Applied Econometrics* 29: 800–824.

Rigobon, R. 2003. Identification through heteroskedasticity. *Review of Economics and Statistics* 85: 777–792.

Sargan, J. D. 1958. The estimation of economic relationships using instrumental variables. *Econometrica* 26: 393–415.

Schaffer, M. E. 2002. ivhettest: Stata module to perform Pagan–Hall and related heteroskedasticity tests after IV. Statistical Software Components S428801, Department of Economics, Boston College. <https://ideas.repec.org/c/boc/bocode/s428801.html>.

———. 2005. xtivreg2: Stata module to perform extended IV/2SLS, GMM and AC/HAC, LIML, and k -class regression for panel-data models. Statistical Software Components S456501, Department of Economics, Boston College. <https://ideas.repec.org/c/boc/bocode/s456501.html>.

White, H. 1980. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. *Econometrica* 48: 817–838.

About the authors

Christopher F. Baum is a professor of economics and social work at Boston College. He is the coauthor of several Stata commands and the author of two Stata Press books, and he maintains the SSC archive.

Arthur Lewbel is the Barbara A. and Patrick E. Roche Professor of Economics at Boston College and a Fellow of the Econometric Society. He has authored numerous seminal articles on the subject of identification in econometric models.