%‘““‘“\N Ag Econ sxes
/‘ RESEARCH IN AGRICUITURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

1eck for updates

The Stata Journal (2019)
19, Number 3, pp. 667684 DOL: 10.1177/1536867X 19874242

parallel: A command for parallel computing

George G. Vega Yon Brian Quistorff
University of Southern California Microsoft Al & Research
Los Angeles, CA Redmond, WA
vegayon@usc.edu Brian.Quistorff@microsoft.com

Abstract. The parallel package allows parallel processing of tasks that are not
interdependent. This allows all flavors of Stata to take advantage of multiprocessor
machines. Even Stata/MP users can benefit because many community-contributed
programs are not automatically parallelized but could be under our framework.

Keywords: st0572, parallel, parallel initialize, parallel numprocessors, parallel do,
parallel bs, parallel sim, parallel append, parallel clean, parallel version, paral-
lel printlog, parallel viewlog, parallel computing, simulations, high performance
computing

1 Parallel computing

Most computers have multiple processors. Stata uses only one processor unless you are
using Stata/MP with certain built-in commands.? Many tasks, however, are logically
easy to parallelize. These tasks, called “embarrassingly parallel”, have no dependencies
(or need for communication) between the parallel tasks and include common tasks,
for example, reshaping a large dataset, bootstrapping, the jackknife, and Monte Carlo
simulations. In this article, we present the package parallel, which parallelizes these
tasks.?

In general, parallel creates multiple “child” instances of Stata, each of which has
its own copy of the data it is supposed to work with. With parallel, the user can dis-
tribute embarrassingly parallel tasks across those instances, taking advantage of multiple
processors. The primary use is to invoke parallel with a command (or do-file) and
distribute the load across N parallel child processes. It proceeds as follows:

1. parallel splits the dataset into N pieces.

2. parallel starts N new instances of Stata called child processes; the original is
the parent. In each child process, one of the pieces of the split dataset is loaded,
the command is executed, and the resultant data are saved.

3. parallel waits for the child processes to finish, then aggregates the resultant

datasets and loads them into memory.

This is diagrammed in figure 1. Note that this is a setting with “distributed” rather
than shared memory between the child processes.

1. For a list of commands explicitly parallelized, see http: //www.stata.com /statamp / statamp.pdf.
2. More “fine-grained” parallelism, where tasks need to communicate frequently, could be handled by
our package, but there is no direct support.

© 2019 StataCorp LLC st0572

http://www.stata.com/statamp/statamp.pdf
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1536867X19874242&domain=pdf&date_stamp=2019-09-20

668 parallel

Initial (parent) Stata instance

globals programs loaded with data plus user-
Data . defined globals, programs,
Mata objects ~Mata programs Mata objects, and Mata pro-
grams.

/

/ Splitting the dataset

z N TN

I N new Stata child instance
Child 1 Child 2 Child 3 Child N (batch mode) started. Pro-
grams, globals, Mata objects,

and Mata programs are passed

‘ ‘ ‘ ‘ ‘ to them.
Task (Stata batch mOde) The same algorithm (task) is
simultaneously applied over the

l l l l child processes.

Child 1’ Child 2 Child 3’ PR Chi!d After every instance stops, the
N data are aggregated.

T
|
|
|
|
|
1

Passing
objects

Appending the dataset

\/ // Parent Stata instance loaded

with the new data.
D globals programs
ata’ ,
Mata objects Mata programs User-defined globals, programs,
Mata objects, and Mata pro-

grams remain unchanged.

Figure 1. How parallel works

Two considerations limit the parallelization in practice. First, it will never be useful
to use more child processes than the number of processors on the machine. Second,
processing a task in parallel with parallel uses more memory (that is, RAM). The
user is trading memory capacity for processing capacity. Therefore, there is likely to be
little benefit if a sequential setup would already use almost all the system memory. If
run in parallel, the dataset is split, so the child processes’ memory will add up to the
same amount of memory used in the parent Stata instance plus the amount of memory
that Stata uses while doing its computation. Attempting to use more memory than
is available on the system will cause performance degradations and possibly program
errors.

Some existing solutions can take advantage of multiprocessor systems while imple-
menting a shared memory model. Stata/MP is a flavor of Stata where internal routines
can take advantage of multiple processors on a machine. parallel allows this for generic
commands, which both expands the set of possible parallelizations and allows this for
other flavors of Stata. This command is similar to R’s parallel package (R Core Team
2018) and MATLAB’s parallel toolbox (Sharma and Martin 2009).

G. G. Vega Yon and B. Quistorff 669

The rest of this article introduces more details about the usage of the command and
provides examples and benchmarks to help the reader better understand the potential
benefits of using parallel.

2 A command for parallel computing

In this section, we discuss the syntax of the parallel subcommands, technical details
of execution, and results returned from the commands.

2.1 Syntax and options

A typical program will use separate parallel subcommands for initialization, parallel
task execution, cleanup, and possibly diagnostics (for when the user needs to debug
failures reported by parallel).

Initialization

To initialize the parallel setup, use the initialize subcommand:

parallel initialize [#] [, force statapath(stata_path)

includefile(filename) hostnames (string) ssh(string) procexec (int)]

This command sets the number of child processes to launch when parallelizing later
tasks. Options are as follows:

specifies the number of child processes to use. If it is omitted, the default is to use
max(| (num processors) x 0.75],1). If there are multiple processors, the default will
leave some free for other computer interactions, which should be fine for testing on
a personal computer. Note that if you are using Stata/MP with child tasks that are
automatically parallelized by Stata, you should take care with this option and the
processors() option for the execution so that you do not inadvertently use more
processors than are available.

force prevents slowdowns due to context switching between tasks. There is a soft limit
that restricts setting the number of child processes to be more than the number of
processors on the system. Use this option to override the limit.

statapath (stata_path) overrides the default and forces parallel to use a specific path
to the executable in the rare circumstance that this is hard to automatically identify
(for example, network-mapped drives). By default, parallel tries to automatically
identify Stata’s executable path.

670 parallel

includefile(filename) specifies that this file will be included in the child processes
before the parallelized tasks are executed. This allows one to copy over preferences
that parallel does not copy automatically (see section 2.3).

hostnames (string) specifies a space-delimited list of hostnames. For the local machine,
use localhost. Work will be assigned in the order of the list, and the list elements
will be reused if the number of child processes is longer than the list. An example
would be localhost node2 node3. The default is hostnames(localhost). Leave
blank for local execution.

ssh(string) specifies the command used to connect to remote machines. The default is
ssh(ssh). This option is not needed for local execution.

procexec (int) specifies on Windows how child processes are spawned. The default is
procexec(2), which will launch them in a hidden desktop (they can still be seen
in the task manager) so that the child applications do not briefly steal the window
focus. With value 1, the child processes will be launched in the user’s desktop. They
will launch auto-minimized but may still briefly steal the focus.

Use the following subcommand to determine the number of processors on a system
(c(processorsmach) returns this on Stata/MP, but it is not available on the other
versions):
parallel numprocessors
Parallel task execution

The following are subcommands that execute tasks in parallel:

parallel [, by (varlist) force nodata setparallelid(pll_id) e:recution,options]:

command

parallel do filename [, by (varlist) force nodata setparallelid(pll_id)

execution_options }
parallel bs [, execution_options bs,options} [: command]
parallel sim [, execution_options sim,options] [: command]
parallel append [ﬁles}, do (command | dofile) [ea:ecution,options append,options]

[. command }

files specifies the explicit file or files to process.

G. G. Vega Yon and B. Quistorff 671

The : (prefix) notation for parallel and the do subcommand are the main sub-
commands, while the others are helper utilities. Their usage is shown in section 3.

Options are as follows:

by (varlist) tells the command which observations the current dataset can be divided
through, avoiding splitting stories (panels) over two or more child processes.

force overrides the restriction on using more child processes than the number of pro-
cessors on your machine. When using by (), parallel checks whether the dataset
is properly sorted. The force option skips this check. This option is assumed when
specifying hostnames ().

nodata tells parallel not to use loaded data and thus not to try splitting at the
beginning or appending anything at the end.

setparallelid(pll_id) forces parallel to use a specific ID.
execution_options include the following:

keep keeps auxiliary files generated by parallel. Use this and the next option with
care because there can be many files that take up space.

keeplast keeps auxiliary files and removes those saved prior to the current execution.
noglobal avoids passing the current session’s global macros to the child processes.

programs (namelist) specifies a list of programs to be passed to each child process.
This is useful for programs not in the ADOPATH. To pass them, parallel needs
to print the contents of those programs to the output window. If parallel
is being run from inside an ado-file (say, my_cmd.ado) and will need to access
auxiliary local subroutines (other programs defined in the ado-file), then their
names must be passed in as main_command_name.local_subroutine_name (for
example, my_cmd. aux_prog) for them to be accessible.

mata specifies if the algorithm needs to use Mata objects. This option causes each
child process to receive every Mata object loaded in the current session (including
functions). Note that when Mata objects are loaded into the child processes, they
will have different locations. Therefore, pointers may no longer be accurate.

randtype (current | datetime | random.org) tells parallel whether to use the cur-
rent random-number generator seed (default), the current datetime, or a ran-
dom.org application programming interface (API) to generate the seeds for each
child process.

3. The semantics for by are not the same as for Stata. When Stata implements by, the command
that is run will see only a section of the data where the by-variables are the same. parallel’s
semantics are that no observations with the same by-values will be in different child processes. It
pools together combinations when there are fewer child processes than by-variable combinations.
If Stata-style semantics are needed, the solution is to add by in the subcommand. For example,
parallel, by(byvar): by byvar: egen x.max = max(x).

672 parallel

seeds (numlist) specifies that the user can pass specific random seeds to be used
within each child process.

processors (integer) specifies, if running on Stata/MP, the number of processors
each child process should use. The default is processors(0), which means to
take no specific change in the child processes.

timeout (integer) specifies, if a child process has not started, the time in seconds
that parallel should wait until it assumes that there was a connection error
and thus the child process will not start. The default is timeout (60).

outputopts (namelist) allows generic file-based appending. Imagine a nonparallel
setup where a program generates multiple outputs and the extra outputs are
stored in files as in

. my_prog, outputl(outputfilel.dta) output2(outputfile2.dta)
With parallel, we add the option outputopts(outputl output2) as in

. parallel, outputopts(outputl output2): my_prog, outputl(outputfilel.dta)
> output2(outputfile2.dta)

This causes parallel to run the parallel tasks with their own pair of temporary
files passed in for outputl and output2 and then aggregates those to create
outputfilel.dta and outputfile2.dta.

deterministicoutput eliminates displayed output that would vary depending on
the machine (for example, timers, seeds, and number of parallel child processes)
so that log files can be easily compared across runs. Errors are still printed.

bs_options specifies further options to be passed to the official bootstrap command,
including the optional reps() parameter.

expression(exp_list) specifies an expression list be passed to the official bootstrap
command.

sim_options specifies further options to be passed to the official simulate command,
including the required reps() parameter.

expression(exp_list) specifies an expression list be passed to the official simulate
command.

do (command | dofile) specifies tasks to run in parallel. Note that parallel do does not
support passing options to the do-file. If you need arguments, then use the prefix
style. do() is required.

append_options include the following;:

expression(string) specifies an expression representing filenames in the form of

"hfmts, numlistl [, numlist? [s e]] ". See the Append example below for
more details.

if (4f) and in(in) open the file using if and in accordingly.

G. G. Vega Yon and B. Quistorff 673

Cleanup

Log files from parallel execution are saved so that they can be inspected by the user.
Use the clean subcommand to remove these and any other auxiliary files that have
been saved:

parallel clean [, event (pll_id) all iorce]

Options are as follows:

event (pll_id) specifies which executed (and stored) event’s (an invocation of parallel)
files should be removed.

all tells parallel to remove every remaining auxiliary file generated in the current
directory.

force forces the command to remove (apparently) in-use auxiliary files. Otherwise,
they will not get deleted.

If neither event() nor all is specified, parallel will use the most recent run’s
pll_id.
Diagnostic tools

Additionally, there are some diagnostic tools:

parallel version

This command returns the version both to the screen and programmatically.

parallel printlog [#] [, gvent(pll,id)]

parallel viewlog [#] [, event (pll,id)]

These commands allow users to view logs of the child processes. The initial part
of the log file will be from commands generated by parallel for setting up the child
process (loading data, global macros, settings, etc.). The final part of the log file is
where the user’s task is run.

specifies which child process number of an event to display (default is 1).
The option for parallel printlog and parallel viewlog is as follows.

event (pll_id) specifies which event’s log file should be displayed.

674 parallel

2.2 Stored results

The primary result of parallel is to return a transformed dataset. In addition,
parallel stores the following in r():

Scalars
r(plln) number of parallel child processes last used
r(pll_t_fini) time spent appending and cleaning
r(pll_t_calc) time spent completing the parallel job
r(pll_t_setu) time spent setting up (before the parallelization) and finishing
the job (after the parallelization)
r(pll_errs) number of child processes that stopped with an error
Macros
r(pll_id) ID of the last parallel instance executed (needed to use
parallel clean)
r(plldir) directory where parallel ran and stored the auxiliary files
r(pll_seeds) seeds used within each child process

parallel bs and parallel sim store the following in e():

Scalars
e(pll) internal usage for bs and sim subcommands

parallel version stores the following in r():

Macros
r(pll_vers) current version of the command

parallel numprocessors stores the following in r():

Scalars
r (numprocessors) number of logical processors on the system

parallel stores the following global macros:

Global macros

LAST_PLL_DIR copy of r(pll_dir)

LAST_PLLN copy of r(pllmn)

LAST_PLL_ID copy of r(pll_id)

PLL_LASTRNG number of times that parallel_randomid() has been executed
PLL_STATA_PATH, internal usage; PLL_CLUSTERS is deprecated

PLL_CLUSTERS,
PLL_CHILDREN,
USE_PROCEXEC

2.3 Technical details

parallel does not change the random-number generator state upon completion. Sub-
commands that invoke randomization functions restore the state before finishing.

Log files from the children are stored in c(tmpdir) so that they can be inspected by
the user. The user will likely want to delete these periodically with parallel clean,
all.

G. G. Vega Yon and B. Quistorff 675

Given N child processes, within each child process, parallel creates the macros
pll_id (equal for all the child processes) and pl1l_instance (ranging 1 up to N, equaling
1 inside the first child process and N inside the last child process), both as global and
local macros. This allows the user to set different tasks or actions depending on the child
process number. Additionally, the global macro PLL_CHILDREN (equal to N) is available
within each child process. Note that the locals will not be available in programs that
are called from parallel (in prefix or do-file setup) but will be available in a script
called from parallel do.

When you launch child Stata processes, several settings are automatically copied
over. These include the PLUS and PERSONAL system directories, the global S_ADO, the
Mata library search index, and the tempname or tempvar state. To start child processes
with additional setting changes, use the includefile() option.

Child processes are managed. If the command is stopped from the parent process,
then all child processes will be killed directly. The parent process can recover both from
errors in the child Stata program and if child Stata processes are killed by the operating
system. Child processes are launched using the shell on Mac 0S and Unix or Linux
machines. On Windows machines, a compiled plugin launches the child processes using
the Win32 API so that it can be used in batch mode (batch-mode Stata on Windows
will not execute shell commands) and so that the child processes do not show a visual
window that interrupts the user by flashing on the screen (there is no provided console-
only version of Stata on Windows).

Results not explicitly saved in the child processes’ datasets will not be available
afterward (for example, matrices, scalars, Mata objects, and returns). If the task to be
parallelized returns results in this format (for example, regression), then modifications
must be used to store (and later use) these results in either the primary dataset or
secondary files (see the outputopts() option).

Although parallel passes through programs, macros, and Mata objects, it currently
cannot do the same with matrices or scalars.

If the number of tasks to be done is less than the number of child processes, parallel
will temporarily reduce the number of child processes. This is reported in the global
macro LAST_PLL_N.

Expressions run in the child processes that contain _n or N will be evaluated locally
to the child dataset. These expressions may therefore be different if run in parallel
than without parallel.

2.4 Extending parallel

One of the key features of parallel lies in its developer-friendly design. Motivated by
ease of code maintenance, parallel’s design is a rich and thoroughly documented API
that facilitates the creation of new routines. Mostly implemented in Mata, parallel’s
API contains functions for splitting datasets, exporting Mata and Stata routines, writing

676 parallel

do-files to be executed by the child processes, launching Stata instances, monitoring child
processes, and collecting the results generated by the child instances.

We know of at least three commands that use the API: eventstudy2 (Kaspereit
2015), miparalle (Mak 2014), and synth_runner (Galiani and Quistorff 2017)—the
last developed by one of us.

3 Examples

In this section, we discuss basic usage of the commands in some common cases. The
first demonstrates how parallel can be initialized, but the latter cases assume this has
already been done.

3.1 Subcommand examples

b Prefix example
A minimal example of using parallel is

. sysuse auto
(1978 Automobile Data)

. parallel initialize 2
N Child processes: 2
Stata dir: C:\Program Files (x86)\Statal5/StataMP-64.exe

. parallel: generate price2 = price*price

Parallel Computing with Stata
Child processes: 2

pll_id ¢ <unique ID>
Running at : <pwd>
Randtype : datetime

Waiting for the child processes to finish...
child process 0001 has exited without error...
child process 0002 has exited without error...

Enter -parallel printlog #- to checkout logfiles.

. drop price2

This example illustrates that many simple tasks can be parallelized. This particular
task was not executed faster in parallel, because parallel execution has its own overhead
and the task was quite easy.

4

G. G. Vega Yon and B. Quistorff 677

The next example shows the usage of the do subcommand.

b Do-file example

Suppose that we had the existing do-file

begin make_polynomial.do
generate price2 = pricexprice
generate price3 = price2*price
generate price4 = price3*price

end make_polynomial.do
We can execute it either sequentially or in parallel using

. parallel do make_polynomial.do

4
b Bootstrap example
A simple sequential bootstrap would be
. sysuse auto, clear
. bs: regress price c.weig##c.weigh foreign rep
When parallelized, it becomes
. parallel bs: regress price c.weig##c.weigh foreign rep
d

b Simulation example

Suppose we have the following simulation program:

begin lnsim program
program define lnsim, rclass
version 14
syntax [, obs(integer 1) mu(real 0) sigma(real 1)]
drop _all
set obs ~
tempvar z
generate “z”~ = exp(rnormal("mu”, sigma’))
summarize "z~
return scalar mean = r(mean)
return scalar Var r(Var)
end

obs

end lnsim program

678 parallel

If we were to run it sequentially, we would use
. simulate mean=r(mean) var=r(Var), reps(10000): lnsim, obs(100)
To run it in parallel, we could instead use a familiar syntax,

. parallel sim, expression(mean=r(mean) var=r(Var)) reps(10000):
> lnsim, obs(100)

b Append example

Imagine we have several datasets named income.dta stored in a set of folders ranging
from 2008_01 up to 2012_12, that is, a total of 60 files ordered monthly that may look
like this:

2008_01/income.dta
2008_02/income.dta
2008_03/income.dta
(output omitted)
2010_01/income.dta
2010_02/income.dta
2010_03/income.dta
(output omitted)
2012_10/income.dta
2012_11/income.dta
2012_12/income.dta

Now imagine that for all of those files, we would like to execute the following program:

begin myprogram program
program def myprogram

generate female = (gender == "female")
collapse (mean) income, by(female) fast
end

end myprogram program

Instead of writing a forvalues or foreach loop (which would be the natural solution
for this situation), we can use parallel append,

. parallel append, do(myprogram) prog(myprogram)
> expression("%g_%02.0f/income.dta, 2008/2012, 1/12")

where element by element, we are telling parallel the following:

e do(myprogram): execute the command myprogram;

e prog(myprogram), where myprogram is a user-written program that is passed to
child processes; and

e expression("%g-%02.0f/income.dta, 2008/2012, 1/12"): this should process
files 2008_01/income.dta up to 2012_12/income.dta.

G. G. Vega Yon and B. Quistorff 679

Besides the simplicity of its syntax, the advantage of using parallel append lies in
doing so in a parallel fashion; that is, instead of processing one file at a time, parallel
manages to process these files in groups of as many files as child processes are set.
Step-by-step, parallel does the following:

1. it distributes groups of files across child processes;
2. once each child process starts, for each dataset, parallel

a. opens the file using if and in qualifiers;
b. executes the command or do-file specified by the user; and

c. stores the results in a temporary dataset; and

3. finally, once all the files have been processed, parallel appends all the resulting
files into a single file.

3.2 Parallelizing a loop

If a user has a loop where the processing in each iteration is independent of the others
and the output can be aggregated easily, then it is easily transformed using parallel.

Suppose we want to parallelize a general loop

forvalues i=1/ num_total” {
// work for i

}

We can transform this so that a setup can be done either in parallel or sequentially.

local n_proc = <number set by user>
save currdata.dta, replace
drop _all
set obs “num_total”
generate long i = _n
if “n_proc™>1 {
parallel initialize “n_proc~
parallel: parfor_task
}
else {
parfor_task

}

program parfor_task
local num_task = _N
mkmat i, matrix(tasks_i)
use currdata.dta, clear
forvalues j=1/"=_N" {
local i = tasks_i[j ,1]
// work for i
}
// put output into main data
end

680 parallel

3.3 Consistency

For many tasks, we will want to ensure that there is exact consistency between mul-
tiple runs of a program. Deterministic programs virtually ensure this. With random
functions, a sequential program is usually made consistent by specifying a fixed random
seed at the beginning of the program. If one is always using the same number of child
processes, then the same can be achieved by prespecifying the seeds with the seeds ()
option.

A similar notion of sequential consistency guarantees that results do not differ be-
tween sequential and parallel operations. Again, for deterministic programs, this is
straightforward to check. If the program has a random component, then you must take
more care. To do this, provide the seed for each repetition. You can then build upon
the previous example about loops (section 3.2) so that the tasks are split to the child
processes and show how to collect the output.

b Sequential consistency example
Here we do it with a custom bootstrap implementation:

set seed 1337
sysuse auto, clear
parallel initialize 2

cap program drop do_work
program do_work
args main_data
local num_rep = _N
tempname tasks pfile
mkmat n seed, matrix(tasks”)
quietly use ""main_data’", clear
tempfile estimates
postfile “pfile” long(n seed) float(b_mpg) using " estimates~"
forvalues i=1/"num_rep” {
local seedi = “tasks ["i7,2]
set seed “seedi”
preserve
bsample
quietly regress price mpg
post “pfile” ("="tasks [*i",1]") ("seedi”) (_b[mpgl)
restore
}
postclose “pfile”
use "“estimates”™", clear
end

tempfile maindata
save "“maindata
drop _all
generate long seed = .

quietly set obs 99 // number of reps

replace seed = int((-1*c(minlong) "-1)*runiform())
generate long n=_n

local final_seed = c(seed)

parallel, program(do_work): do_work "maindata“"
mata: rseed(st_local("final_seed"))

sort n

G. G. Vega Yon and B. Quistorff 681

The output will be the same no matter the number of child processes or if do_work
is run without parallel.

d

3.4 Parallelizing user commands

A third-party Stata package developer with easily parallelizable tasks can write his or
her packages to take advantage of parallel if it is installed. We suggest that parallel
be a recommended dependency rather than a required one because users may be on
machines with limited resources. The most common example would be wanting to
parallelize an existing loop so one can follow the examples of the parallel for loops or
the sequential consistency example. One can put that secondary program in the original
ado-file (in which case, use the myado.ado.subtask form), or one can make a separate
file.

3.5 Debugging

The parallel command will issue an error if either it or one of its child processes
encounters an error. The first step toward debugging this is to look at the log files
(using, for example, parallel viewlog). If this does not show enough information,
you can turn on trace in the executed task or print custom diagnostic information.

4 Benchmarks

To assess the speed gains obtained when using parallel, we present what we think
are the two most relevant uses of the command: bootstrapping and simulations. We
compared the performance of running each routine on a computer with at least four
processors in three ways:* serial, parallel using two child processes, and parallel using
four child processes. While the tasks on which we performed the comparisons were
rather simple (and not particularly time consuming because all of them took less than
a minute to complete), they are useful to illustrate the benefits of using parallel.

Keep in mind that, as we will see, the lack of perfectly linear speed gains is due to the
simplicity of the problem with respect to the time that it takes to compute it serially.
On the other hand, overall, as the problem size (number of simulations, resamplings,
etc.) increases, the speed gains approach linear speedups.

4.1 Bootstrapping

In this first benchmark, we use auto.dta, which is shipped with Stata. After expanding
each observation 10 times—so the size of the problem increases—we perform a bootstrap
of a linear regression model as follows:

4. Tests were run using Stata/IC 12.1 on a Unix machine with an Intel i7-4790 CPU @ 3.60GHz with
eight processors. The code used to perform the benchmarks and generate the figures and tables is
available at the project’s website.

682

sysuse auto, clear
expand 10
global size 1000 // 2000, 4000

// Serial fashion
bs, rep($size) nodots: regress mpg weight gear foreign

// Parallel fashion
parallel initialize 2

parallel

parallel bs, rep($size) nodots: regress mpg weight gear foreign

parallel initialize 4

parallel bs, rep($size) nodots: regress mpg weight gear foreign

For each number of repetitions (1,000, 2,000, 4,000), we ran the problem 1,000 times
and recorded the average computing time. The results are presented in table 1.

Table 1. Computing times for each run of a basic bootstrap problem. For each given
problem size, each row shows the time in seconds that each method took on average to

complete the task.

Problem size Serial Two clusters Four clusters
1,000 2.93s 1.62s 1.09s
2,000 5.80s 3.13s 2.03s
4,000 11.59s 6.27s 3.86s

4.2 Simulations

In the case of simulations, we perform a simple Monte Carlo experiment, which has
two main steps: i) generate 1,000 observations as Y = X + ¢, where X ~ N(0,1),
e ~ N(0,1), and 8 = 2; and ii) obtain the parameter estimate of 8. The code is as

follows:

prog def mysim, rclass
// Data-generating process
drop _all
set obs 1000
generate eps =
generate X
generate Y =

// Estimation

regress Y X

matrix define ans =

return scalar beta =
end

rnormal ()
rnormal ()
X*2 + eps

e(b)
ans[1,1]

// Serial fashion
simulate beta=r(beta), reps($size) nodots: mysim

// Parallel fashion

parallel initialize 2
parallel
parallel
parallel

initialize 4

sim, reps($size) expression(beta=r(beta)) nodots:

sim, reps($size) expression(beta=r(beta)) nodots:

mysim

mysim

G. G. Vega Yon and B. Quistorff 683

As before, for each number of simulations (1,000, 2,000, 4,000), we ran the problem
1,000 times and recorded the average computing time. The results are presented in
table 2.

Table 2. Computing times for each run of a simple Monte Carlo exercise. For each given
problem size, each row shows the time in seconds that each method took on average to
complete the task.

Problem size Serial Two clusters Four clusters

1,000 2.19s 1.18s 0.73s
2,000 4.36s 2.29s 1.33s
4,000 8.69s 4.53s 2.55s

5 Discussion

5.1 Development and feedback

Development is done at https: // github.com / gvegayon / parallel /. If you want to report
a bug or request a feature, check first if there is an existing GitHub issue. Please also
try the latest development version to see whether the problem has been solved already
(see section 6). If these do not resolve the concern, please submit an issue at the GitHub
address so that anyone available may help to solve the issue. The issue will prompt for
the details such as the steps to reproduce the problem and the output of creturn list.
The GitHub page also has a Wiki with a larger gallery of examples of parallelizing tasks.

5.2 Conclusion

The parallel package allows users to take advantage of multiprocessor machines for
many generic tasks with a minimum of additional complexity. For tasks where the
processor is the limiting factor and that are easily parallelizable, parallel may sig-
nificantly speed up execution. We hope that this package is used not just for ad hoc
processes but integrated into other packages as a recommended package.

6 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 19-3
. net install st0572 (to install program files, if available)
. net get st0572 (to install ancillary files, if available)

https://github.com/gvegayon/parallel/

684 parallel

The latest stable versions of parallel can be installed from a GitHub URL,’

. net install parallel,
> from(https://raw.github.com/gvegayon/parallel/stable/)

. mata mata mlib index

If you would like the latest development version, use master instead of stable in the
URL. If you are switching the source of the installation materials (for example, if moving
from Statistical Software Components to GitHub versions), then uninstall the program
before installing the new version.

. ado uninstall parallel

An older version of the package is available at the Statistical Software Components.
However, it is not kept as up to date, so we recommend the GitHub version.

7 References

Galiani, S., and B. Quistorff. 2017. The synth_runner package: Utilities to automate
synthetic control estimation using synth. Stata Journal 17: 834-849.

Kaspereit, T. 2015. eventstudy2: Stata module to perform event studies with complex
test statistics. Statistical Software Components S458086, Department of Economics,
Boston College. https: //ideas.repec.org /¢ /boc /bocode /s458086.html.

Mak, T. 2014. miparallel: Stata module to perform parallel estimation for multiple im-
puted datasets. Statistical Software Components S457822, Department of Economics,
Boston College. https: //ideas.repec.org /c /boc /bocode /457822 . html.

R Core Team. 2018. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria. http: // www.R-project.org.

Sharma, G., and J. Martin. 2009. MATLAB®: A language for parallel computing.
International Journal of Parallel Programming 37: 3—36.

About the authors

George G. Vega Yon is a research programmer at the University of Southern California.

Brian Quistorff is an economic researcher at Microsoft Al & Research.

5. Stata 13 and earlier cannot install from a GitHub URL, so download a zip file of the repository
(https: // github.com / gvegayon / parallel / archive / stable.zip), unzip the file, and replace the URL
above with the full path to the files.

https://ideas.repec.org/c/boc/bocode/s458086.html
https://ideas.repec.org/c/boc/bocode/s457822.html
http://www.R-project.org
https://github.com/gvegayon/parallel/archive/stable.zip

	Table of Contents
	Articles and Columns
	Modeling count data with marginalized zero-inflated distributionsto.44em.to.44em.T. H. Cummings and J. W. Hardin
	kg_nchs: A command for Korn–Graubard confidence intervals and National Center for Health Statistics' Data Presentation Standards for Proportionsto.44em.to.44em.B. W. Ward
	konfound: Command to quantify robustness of causal inferencesto.44em.to.44em.R. Xu, K. A. Frank, S. J. Maroulis, and J. M. Rosenberg
	Estimation of pre- and posttreatment average treatment effects with binary time-varying treatment using Statato.44em.G. Cerulli and M. Ventura
	Visualizing effect modification on contraststo.44em.N. H. Bruun
	Two-sample instrumental-variables regression with potentially weak instrumentsto.44em.to.44em.J. Choi and S. Shen
	Added-variable plots with confidence intervalsto.44em.J. L. Gallup
	cvauroc: Command to compute cross-validated area under the curve for ROC analysis after predictive modeling for binary outcomesto.44em.to.44em.M. A. Luque-Fernandez, D. Redondo-Sánchez, and C. Maringe
	The fayherriot command for estimating small-area indicatorsto.44em.to.44em.C. Halbmeier, A.-K. Kreutzmann, T. Schmid, and C. Schröder
	intcount: A command for fitting count-data models from interval datato.44em.to.44em.S. Pudney
	parallel: A command for parallel computingto.44em.G. G. Vega Yon and B. Quistorff
	Estimation of dynamic panel threshold model using Statato.44em.to.44em.M. H. Seo, S. Kim, and Y.-J. Kim
	gidm: A command for generalized inflated discrete modelsto.44em.to.44em.Y. Xia, Y. Zhou, and T. Cai
	Speaking Stata: The last day of the monthto.44em.N. J. Cox
	Review of Richard Valliant and Jill A. Dever's Survey Weights: A Step-by-Step Guide to Calculationto.44em.S. G. Heeringa
	Review of William Gould's The Mata Book: A Book for Serious Programmers and Those Who Want to Beto.44em.B. Jann

	Notes and Comments
	Stata tip 131: Custom legends for graphs that use translucencyto.44em.T. P. Morris
	Stata tip 132: Tiny tricks and tips on ticksto.44em.N. J. Cox and V. Wiggins

	Software Updates
	announce44.pdf
	Articles and Columns
	Notes and Comments

