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Abstract. In this article, we describe the gidm command for fitting generalized
inflated discrete models that deal with multiple inflated values in a distribution.
Based on the work of Cai, Xia, and Zhou (Forthcoming, Sociological Methods &
Research: Generalized inflated discrete models: A strategy to work with multi-
modal discrete distributions), generalized inflated discrete models are fit via max-
imum likelihood estimation. Specifically, the gidm command fits Poisson, negative
binomial, multinomial, and ordered outcomes with more than one inflated value.
We illustrate this command through examples for count and categorical outcomes.
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1 Introduction

Social science researchers have long recognized the inflation of certain values for discrete
variables. For example, the number of children born within a family is concentrated
on values of 0, 1, and 2 (Poston and McKibben 2003). Inflation brings challenges to
traditional discrete models. For instance, the observed proportions for the inflated
values exceed the probabilities that regular distributions would allow. If not modeled
properly, inflations might lead to biased estimates and incorrect inferences (Lambert
1992).

Past decades have witnessed a rapid development of inflated models. Scholars
have extended the inflation models not only on the forms of discrete distributions
but also on allowing the number of inflation points to be more than one. To ad-
dress an excess of zero counts in data, Lambert (1992) proposed a zero-inflated Pois-
son (ZIP) model that implements two separate models—a Poisson count model and a
logit model for predicting excessive zeros. In the same vein, the zero-inflated frame-
work has been applied to other discrete distributions, such as zero-inflated negative
binomial (ZINB) regression (Ridout, Hinde, and DeméAtrio 2001); the zero-inflated bi-
nomial model (Diop, Diop, and Dupuy 2016; Hall 2000; Vieira, Hinde, and Demetrio
2000); zero-inflated multinomial regression (Diallo, Diop, and Dupuy 2018); the inflated
ordered logistic model (Bagozzi and Mukherjee 2012); and the zero-inflated ordered pro-
bit (zI0P) model (Bagozzi et al. 2015).
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Recently, scholars have extended the zero-inflated models to allow for an arbitrary
number of inflation points. For example, Lin and Tsai (2013) proposed a zero-k-inflated
Poisson model that allows a second inflation point at the value k besides zero. Begum,
Mallick, and Pal (2014) suggested a generalized inflated Poisson (GIP) model to ad-
dress multiple inflations for responses in categorical forms. The most recent work by
Cai, Xia, and Zhou (Forthcoming) has further extended GIP to a general form and intro-
duced a generalized inflated discrete model (GIDM), which uses arbitrary and multiple
inflations for a wide range of discrete probability distributions, such as multinomial,
ordinal, Poisson, and zero truncated Poisson.

Despite the recent theoretical development of inflated models, the implementation
has been lacking, especially for Stata users. Prior to Stata 15, zip and zinb were the
only two available commands for modeling zero-inflated counts. Stata 15 introduced
the ZIOP model via the command zioprobit. To the best of our knowledge, GIDM
has not been integrated into Stata. To fill this gap, we developed the gidm command
to implement the GIDMs, including the GIP, generalized inflated negative binomial,
generalized inflated multinomial, and generalized inflated ordered models.

The rest of this article is organized as follows: Section 2 gives a brief introduction
of GIDM, focusing on estimation. Section 3 explains the syntax and options of the
gidm command. Sections 4 and 5 present illustrations using two well-known examples:
the number of fish caught in a state park and the fictional data on smoking habits.
Section 6 discusses issues such as the goodness of fit, nonconvergence problems, and
further directions of development.

2 The GIDM

Following Begum, Mallick, and Pal (2014), Cai, Xia, and Zhou (Forthcoming) suggested
a general framework of inflated values for discrete outcomes. Suppose Y is a discrete
random variable that has inflated probabilities at values ki,...,kn € {0,1,2,...}. The
probability mass function (PMF) could be written as

7TZ+(1—Z:117TZ)XP(]€|)\) lfk’:kh,km

Y:k>\, 271§§ = m 1 )
(Y = kA m 1 < <m) {u—zi_m)xzo(mx) kARl Si<m

where p(Y = k|)) is a discrete PMF with the parameter A for outcome k, m; is the
probability of inflation at the value k; with 1 <+¢ < m, and Z:’;l m; € (0,1).

The above parameterization suggests that the PMF can be considered a combination
of probabilities for several binary outcomes and one regular discrete outcome. If the
value k; for a respondent falls in the set of inflated values kq,...,k, € {0,1,2,...},
the PMF is a sum of two components: m; denoting the chance of inflation for value
ki and (1 — Y%, m) x p(k;|\) indicating the conditional probability for value k; from
the regular discrete PMF, for example, Poisson, negative binomial, etc. If k; does not
belong to the set of inflated values, the PMF shrinks to the conditional probability of
(1= m) X p(k;]A). The probability of inflation at the value k;, 7; could also depend
on covariates. For example, if a logit model is specified,
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where zs and =; is the vector of predictors for the sth observation and the vector of
corresponding parameters, respectively. A probit model could be derived if a probit

function is specified for ;.

The GIDM offers a framework that covers all the inflated models commonly seen in
social sciences, such as ZIP, ZINB, GIP, generalized inflated negative binomial, generalized
inflated multinomial, and generalized inflated ordered. Once the GIDM is specified, the
full likelihood function L(0) can be constructed accordingly. The maximum likelihood
estimator of the unknown parameter of 6 can be obtained by solving the score function:

OlogL(0) 0
06

The Fisher information matrix can be obtained by taking the second derivative of
the log likelihood with respect to 8. The unknown parameters @ can be estimated
by method of moments (Hansen 1982), direct maximum likelihood (Cai, Xia, and Zhou
Forthcoming), or maximum likelihood via the expectation-maximization algorithm (Be-
gum, Mallick, and Pal 2014). Diallo, Diop, and Dupuy (2018) provided a rigorous inves-
tigation of the maximum likelihood estimator in terms of the identifiability, existence,
consistency, and asymptotic normality under classical regularity conditions.

The gidm command maximizes the log likelihood of GIDM using Stata’s ml com-
mand (Gould, Pitblado, and Poi 2010). The gidm command supports the specification
of the following distributions: Poisson, negative binomial, ordinal logistic and probit,
and multinomial logistic and probit. Binomial distribution is not singled out in the
gidm command, because it can be estimated as a two-category case of multinomial
distribution.

3 The gidm command

3.1 Description

The gidm command fits a GIDM of depvar on several sets of indepvars and wvarlistN.
The depvar is a nonnegative integer of the response variable. The indepvars is a set
of explanatory variables for depvar, whereas varlist1 to varlistN are sets of explanatory
variables for modeling the probabilities of inflation at each of the points corresponding
to the values specified in the numlist in the option inflation(numlist). Specifically,
an intercept-only model can be specified as (_con).
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3.2 Syntax

gidm (depvar indepvars) (varlistl) [ (varlistN)] [zf] [m] [weight},

inflation(numlist) link(string) [noinitial vce (veetype) level (#)

display_options maximize,options]

3.3 Options

inflation(numlist) specifies the list of values at which the inflations are assumed. The
number of elements in numlist must be the same as the number of equations specified
by indepvars and wvarlist ... varlistN. inflation() is required.

link(string) defines the distribution for both of the noninflated and the inflated parts.
We use a four-letter combination to represent each model. The first two letters,
for example, 1g for logit and pb for probit, indicate the functional form for the
inflated part, and the last two letters refer to the distribution of outcome. The
supported distributions for the outcome are Poisson (po), negative binomial (nb),
multinomial (ml), cumulative logit (c1), and cumulative probit (cp). For instance,
the keyword lgpo refers to a logit-inflated Poisson, and pbcp is a probit-inflated
cumulative probit. 1link() is required. A summary of the keywords of models
supported by the gidm command is given in table 1.

Table 1. Link options

Option link (string)

Outcome Model Logit inflations  Probit inflations
Poisson lgpo pbpo
Count Negative binomial lgnb pbnb
Multinomial lgml pbml
Category  Ordered logit lgcl pbcl
Ordered probit lgcp pbcp

noinitial suppresses the default initial values that are from results of the separately fit
model parts. For example, with 1ink(1gpo), the default initial values are obtained
from a separately fit Poisson model for the main part and logistic regressions for the
inflated parts.

vce (vcetype) specifies the type of standard error reported, which includes types that are
derived from asymptotic theory (oim, opg), that are robust to some kinds of misspec-
ification (robust), that allow for intragroup correlation (cluster clustvar), and that
use bootstrap or jackknife methods (bootstrap, jackknife); see [R| vce_option.

level(#); see [R] Estimation options.
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display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat (%fmt),
pformat (%,fmt), sformat (%fmt), and nolstretch; see [R] Estimation options.

mazimize_options: difficult, technique (algorithm_spec), iterate (#), [@]liog,
trace, gradient, showstep, hessian, showtolerance, tolerance (#),
ltolerance(#), nrtolerance(#), nonrtolerance, and from(init_specs); see
[R] Maximize. These options are seldom used.

Setting the optimization type to technique(bhhh) resets the default wvcetype to
vce (opg).

3.4 Stored results

gidm stores the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k_eq) number of equations in e(b)
e(k_eq_model) number of equations in overall model test
e(k_dv) number of dependent variables
e(df_m) model degrees of freedom
e(11) log likelihood
e(chi2) X2
e(p) significance of model test
e(rank) rank of e (V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise
Macros
e(cmd) gidm
e(depvar) name of dependent variable
e(chi2type) Wald or LR; type of model chi-squared test
e(vce) vcetype specified in vce ()
e(opt) type of optimization
e(ml_method) type of m1 method
e(which) max or min; whether optimizer is to perform maximization or
minimization
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) bV
Matrices
e(b) coefficient vector
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance—covariance matrix of the estimators
Functions

e(sample) marks estimation sample
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4 The number of fish caught example: The inflated
count models

The number of fish caught dataset is used to showcase the capability of the gidm com-
mand for fitting inflated count models. The dependent variable is the number of fish
caught for each individual (count). The independent variables include whether the
individuals brought a camper (camper), how many adult people were in the group
(persons), and how many children were in the group (child). Figure 1 shows that
there are large proportions of visitors who did not harvest any fish (56.8%), or only one
(12.4%), although the average number of fish caught was 3.296.
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Figure 1. Histogram of fish count

We first run Stata’s zip command with the variables child and camper as the
predictors for the number of fish caught. The variable persons is set as the only
predictor for the probability of inflation—the excess zeros. Then, the same model is
fit using the gidm command. Notice that the zip command specifies the dependent
variable and the predictors of the Poisson part in the main part of the command and
uses the option inflate() to specify variables that predict the inflation. The gidm
command allows users to specify the predictors of both the Poisson and the inflated
parts in the main body and separates them by parentheses for the Poisson part and the
inflated part. Two options, inflation() and 1ink(), are used to define the value at
which inflation is assumed and the distribution of outcome, respectively.
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. webuse fish
(Fictional fishing data)

. zip count child camper, inflate(persons)

Fitting constant-only model:

Iteration O: log likelihood = -1347.807
Iteration 1 log likelihood = -1315.5343
Iteration 2: log likelihood = -1126.3689
Iteration 3: log likelihood = -1125.5358
Iteration 4 log likelihood = -1125.5357
Iteration 5: log likelihood = -1125.5357
Fitting full model:
Iteration O: log likelihood = -1125.5357
Iteration 1 log likelihood = -1044.8553
Iteration 2: log likelihood = -1031.8733
Iteration 3: log likelihood = -1031.6089
Iteration 4 log likelihood = -1031.6084
Iteration 5: log likelihood = -1031.6084
Zero-inflated Poisson regression Number of obs 250
Nonzero obs 108
Zero obs = 142
Inflation model = logit LR chi2(2) = 187.85
Log likelihood = -1031.608 Prob > chi2 = 0.0000
count Coef. Std. Err. z P>|z]| [95% Conf. Intervall
count
child -1.042838 .0999883  -10.43  0.000 -1.238812 -.846865
camper .8340222 .0936268 8.91  0.000 .650517 1.017527
_cons 1.597889 .0855382 18.68  0.000 1.430237 1.76554
inflate
persons -.5643472 .1629638 -3.46  0.001 -.8837503 -.244944
_cons 1.297439 .3738522 3.47 0.001 .5647022 2.030176
. gidm (count child camper) (persons), inflation(0) link(lgpo)
Iteration O: log likelihood = -1143.8173
Iteration 1 log likelihood = -1052.681
Iteration 2: log likelihood = -1031.6311
Iteration 3: log likelihood = -1031.6084
Iteration 4 log likelihood = -1031.6084
Number of obs 250
Wald chi2(2) 177.74
Log likelihood = -1031.6084 Prob > chi2 = 0.0000
count Coef. Std. Err. z P>|z| [95% Conf. Intervall
count
child -1.042838 .0999883  -10.43  0.000 -1.238812  -.8468651
camper .8340222 .0936268 8.91  0.000 .650517 1.017527
_cons 1.597889 .0855382 18.68  0.000 1.430237 1.76554
inf_at_0
persons -.5643472 .1629638 -3.46  0.001 -.8837504  -.2449441
_cons 1.297439 .3738523 3.47 0.001 .5647023 2.030176
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Comparing the estimates obtained from the two commands, we see that the coeffi-
cients, the standard errors, the p-values, and the confidence intervals are the same past
the fourth decimal place. If a ZINB model is specified, the gidm command generates the
same estimates, standard errors, and p-values compared with those obtained from the
zinb command, although the latter outputs more information. Users can get exponenti-
ated coefficients and a description of the dependent variable. Thus, the gidm command
provides a convenient and integrated alternative to estimate both ZIP and ZINB models.

. zinb count child camper, inflate(persons)

Fitting constant-only model:

Iteration O: log likelihood = -519.33992
Iteration 1: log likelihood = -471.96077
Iteration 2: log likelihood = -465.38193
Iteration 3: log likelihood = -464.39882
Iteration 4: log likelihood = -463.92704
Iteration 5: log likelihood = -463.79248
Iteration 6: log likelihood = -463.75773
Iteration 7: log likelihood = -463.7518
Iteration 8: log likelihood = -463.75119
Iteration 9: log likelihood = -463.75118
Fitting full model:
Iteration 0: log likelihood = -463.75118 (not concave)
Iteration 1: log likelihood = -440.43162
Iteration 2: log likelihood = -434.96651
Iteration 3: log likelihood = -433.49903
Iteration 4: log likelihood = -432.89949
Iteration 5: log likelihood = -432.89091
Iteration 6: log likelihood = -432.89091
Zero-inflated negative binomial regression Number of obs = 250
Nonzero obs = 108
Zero obs = 142
Inflation model = logit LR chi2(2) 61.72
Log likelihood = -432.8909 Prob > chi2 = 0.0000
count Coef. Std. Err. z P>|z| [95% Conf. Intervall
count
child -1.515255 .1955912 -7.75 0.000 -1.898606 -1.131903
camper .8790514 .2692731 3.26 0.001 .3512857 1.406817
_cons 1.371048 .2561131 5.35 0.000 .8690758 1.873021
inflate
persons -1.666563 .6792833 -2.45 0.014 -2.997934  -.3351922
_cons 1.603104 .8365065 1.92 0.055 -.036419 3.242626
/1nalpha .9853533 .17595 5.60 0.000 .6404975 1.330209
alpha 2.678758 .4713275 1.897425 3.781834
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. gidm (count child camper) (persons), inflation(0) link(lgnb)

Iteration O: log likelihood = -483.16863
Iteration 1: log likelihood = -441.51271
Iteration 2: log likelihood = -433.92875
Iteration 3: log likelihood = -432.98746
Iteration 4: log likelihood = -432.89348
Iteration 5: log likelihood = -432.89092
Iteration 6: log likelihood = -432.89091
Log likelihood = -432.89091 Number of obs = 250
count Coef. Std. Err. z P>|z| [95% Conf. Intervall
count
child -1.515255 .1955913 -7.75 0.000 -1.898607 -1.131903
camper .8790513 .2692732 3.26 0.001 .3512856 1.406817
_cons 1.371049 .256113 5.35 0.000 .8690765 1.873021
inf_at_0
persons -1.666554 .6792729 -2.45 0.014 -2.997904  -.3352032
_cons 1.603094 .8364998 1.92 0.055 -.0364153 3.242604
lnalpha
_cons .9853527 .1759497 5.60 0.000 .6404975 1.330208

Including extra inflation points is straightforward—by adding sets of predictors in the
main part of the command and specifying additional inflation points in the inflation()
option. For example, a zero-one-inflated Poisson model (Melkersson and Olsson 1999)
can be specified as follows:

. gidm (count child camper) (persons) (persons), inflation(0 1) link(lgpo)

Iteration O: log likelihood = -1109.1181

Iteration 1: log likelihood = -993.45106
Iteration 2: log likelihood = -909.73629
Iteration 3: log likelihood = -908.6897
Iteration 4: log likelihood = -908.68566
Iteration 5: log likelihood = -908.68566
Number of obs = 250
Wald chi2(2) = 137.48
Log likelihood = -908.68566 Prob > chi2 = 0.0000
count Coef.  Std. Err. z P>|z| [95% Conf. Intervall
count
child -1.031535 .1164113 -8.86  0.000 -1.259697 -.8033725
camper .8208807 .0977577 8.40 0.000 .6292792 1.012482
_cons 1.861406 .0893422 20.83 0.000 1.686299 2.036514
inf_at_0
persons -.4432465 .1484102 -2.99 0.003 -.734125  -.1523679
_cons 1.134845 .3550344 3.20 0.001 .4389906 1.8307
inf_at_1
persons -.6008594 .2193122 -2.74 0.006 -1.030703 -.1710154
_cons -.8175616 .4524518 -1.81 0.071 -1.704351 .0692277
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The results indicate that the number of people contributes not only to the inflation
at value 0 but also to that at value 1. The more people in a group, the less likely the
number of fish caught will be 0 or 1.

5 The tobacco example: The inflated cumulative probit
and logit models

We use the tobacco data to show how to implement the inflated ordered logistic and
probit models. Suppose we are interested in factors that contribute to the number of
cigarettes smoked per day by an individual. The dependent variable tobacco mea-
sures the number of cigarettes smoked in a day and has been grouped into four levels:
0 cigarettes, 1 to 7 cigarettes/day, 8 to 12 cigarettes/day, and more than
12 cigarettes/day coded as 0, 1, 2, and 3, accordingly. The independent variables
included are female, income, and age. Usually, the natural choice for the ordered out-
comes is either an ordered logistic or a probit model with a proportional odds assump-
tion, which assumes that the effects of independent variables are the same for different
levels of responses and that the only difference lies in the intercepts and thresholds.
Because the descriptive statistics show that 63.1% of respondents were nonsmokers, it
is reasonable to assume a zero-inflated model with probit or logit for the inflation part.
We use both the command gidm and the Stata command zioprobit to fit a ZIOP.
Besides the independent variables, two additional variables—whether a parent smoked
(smoking) and whether a respondent’s religion discourages smoking (religion)—are
also enclosed to account for the inflation on zeros. The output below shows that the
results obtained from both commands are identical.
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. webuse tobacco, clear
(Fictional tobacco consumption data)

. zioprobit tobacco female income age,
> inflate(female income age parent i.religion)

Iteration O: log likelihood = -15393.004
Iteration 1: log likelihood = -13583.121 (not concave)
Iteration 2: log likelihood = -13568.745
Iteration 3: log likelihood = -13521.797
Iteration 4: log likelihood = -13519.044
Iteration 5: log likelihood = -13518.998
Iteration 6: log likelihood = -13518.998
Zero-inflated ordered probit regression Number of obs = 15,000
Wald chi2(3) = 1356.58
Log likelihood = -13518.998 Prob > chi2 = 0.0000
tobacco Coef. Std. Err. z P>|z]| [95% Conf. Intervall
tobacco
female -.1835352 .0318024 -5.77  0.000 -.2458667  -.1212037
income .1528552 .0042382 36.07 0.000 .1445485 .1611619
age -.1461085 .0078566 -18.60  0.000 -.1615072  -.1307098
inflate
female -.1858712 .0492558 -3.77  0.000 -.2824108 -.0893316
income -.0794141 .0079746 -9.96  0.000 -.0950441  -.0637841
age .1393169 .0167948 8.30 0.000 .1063997 .1722341
parent .7T796176 .0496775 15.69  0.000 .6822515 .8769836
religion
discourage. . -.3316872 .0619942 -5.35  0.000 -.4531935 -.2101808
_cons . 1640407 .0822251 2.00 0.046 .0028825 .3251988
/cutl -.0261029 .0523262 -.1286603 .0764546
/cut2 1.20342 .0429703 1.1192 1.28764
/cut3 1.851093 .0451114 1.762676 1.939509
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. gidm (tobacco female income age) (female income age parent i.religion),
> inflation(0) link(pbcp)

Iteration O: log likelihood = -16315.766

Iteration 1: log likelihood = -13678.854 (not concave)
Iteration 2: log likelihood = -13584.028
Iteration 3: log likelihood = -13522.021
Iteration 4: log likelihood = -13519.123
Iteration 5: log likelihood = -13518.998
Iteration 6: log likelihood = -13518.998
Number of obs = 15,000
Wald chi2(3) = 1356.58
Log likelihood = -13518.998 Prob > chi2 = 0.0000
tobacco Coef. Std. Err. z P>|z| [95% Conf. Intervall
tobacco
female -.1835352 .0318024 -5.77  0.000 -.2458667  -.1212037
income .1528551 .0042382 36.07 0.000 .1445484 .1611618
age -.1461085 .0078566 -18.60  0.000 -.1615072  -.1307098
inf_at_0
female -.1858712 .0492558 -3.77  0.000 -.2824108 -.0893316
income -.0794142 .0079746 -9.96  0.000 -.0950442 -.0637842
age .1393171 .0167948 8.30 0.000 .1063999 .1722343
parent .779618 .0496775 15.69  0.000 .6822519 .8769841
religion
discourage. . -.3316874 .0619942 -5.35  0.000 -.4531938 -.210181
_cons .1640411 .0822251 2.00 0.046 .0028829 .3251993
cutl
_cons -.0261025 .0523262 -0.50 0.618 -.1286599 .076455
cut2
_cons 1.20342 .0429703 28.01  0.000 1.1192 1.287641
cut3
_cons 1.851093 .0451114 41.03 0.000 1.762676 1.939509
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Stata does not have a command to fit a zero-inflated ordered logistic model; however,
it can be easily done in the command gidm by changing the string of the 1ink (string)
option to 1gcl as follows.

. gidm (tobacco female income age) (female income age parent i.religion),
> inflation(0) link(1lgcl)

Iteration O: log likelihood = -16351.374
Iteration 1: log likelihood = -13771.219 (not concave)
Iteration 2: log likelihood = -13695.636
Iteration 3: log likelihood = -13553.223
Iteration 4: log likelihood = -13549.972
Iteration 5: log likelihood = -13549.769
Iteration 6: log likelihood = -13549.769
Number of obs = 15,000
Wald chi2(3) = 1390.29
Log likelihood = -13549.769 Prob > chi2 = 0.0000
tobacco Coef.  Std. Err. z P>|z| [95% Conf. Interval]
tobacco
female -.3034075 .057619 -5.27  0.000 -.4163387 -.1904763
income .2578177 .0070776 36.43 0.000 .243946 .2716895
age -.2609338 .0141618 -18.43  0.000 -.2886904  -.2331771
inf_at_0
female -.29743 .0757984 -3.92  0.000 -.445992  -.1488679
income -.1050113 .0128231 -8.19  0.000 -.1301442  -.0798784
age .2049737 .0266435 7.69 0.000 .1527533 .2571941
parent 1.176933 .0756198 15.66  0.000 1.028721 1.325145
religion
discourage. . -.5024576 .0946602 -5.31  0.000 -.6879881  -.3169271
_cons .045011 .1238729 0.36 0.716 -.1977754 .2877975
cutl
_cons -.2605849 .0948355 -2.75 0.006 -.4464592  -.0747107
cut2
_cons 1.909322 .0792913 24.08 0.000 1.753914 2.06473
cut3
_cons 3.124181 .0852814 36.63 0.000 2.957032 3.291329

The results from the ZIOP and zero-inflated ordered logistic models suggest that the
income is positively associated with tobacco use, while age and gender are negatively
correlated. Furthermore, with smoking parents, one is expected to more likely be a
smoker or less likely be a nonsmoker. Interestingly, the effect of income is two-fold:
income increases the chance to be a nonsmoker; while once started smoking, higher
income is correlated to more cigarettes consumed per day.

Because of different parameterization, the sign of coefficients using a probit link is
opposite to that using a logit link, although the size of coefficients is very close (Moore
2013). As a simple illustration, we can extend the inflation part to include the value
1 to see whether age contributes to light smoking by using a logit link. According to



Y. Xia, Y. Zhou, and T. Cai 711
the result below, age also reduces the chance of inflation at the category of 1 to 7
cigarettes/day.

. gidm (tobacco female income age) (income) (age), inflation(0 1) link(lgcl)

Iteration O: log likelihood = -16147.772
Iteration 1: log likelihood = -15490.793 (not concave)
Iteration 2: log likelihood = -15236.3 (not concave)
Iteration 3: log likelihood = -14576.662 (not concave)
Iteration 4: log likelihood = -14508.358
Iteration 5: log likelihood = -14024.87 (not concave)
Iteration 6: log likelihood = -13933.834
Iteration 7: log likelihood = -13900.487
Iteration 8: log likelihood = -13896.787
Iteration 9: log likelihood = -13896.007
Iteration 10: 1log likelihood = -13895.832
Iteration 11: 1log likelihood = -13895.789
Iteration 12: 1log likelihood = -13895.779
Iteration 13: 1log likelihood = -13895.777
Iteration 14: 1log likelihood = -13895.777
Iteration 15: 1log likelihood = -13895.777
Iteration 16: 1log likelihood = -13895.777
Number of obs 15,000
Wald chi2(3) 71.69
Log likelihood = -13895.777 Prob > chi2 0.0000
tobacco Coef.  Std. Err. z P>|z| [95% Conf. Intervall
tobacco
female -.1874566  .1082809 -1.73 0.083 -.3996833 .0247701
income .1106495 .013469 8.22  0.000 .0842507 .1370483
age -.030557  .0270018 -1.13 0.258 -.0834795 .0223655
inf_at_0
income .0939271 .0030189 31.11  0.000 .0880102 .0998439
_cons -1.127461 .0248864 -45.30 0.000 -1.176237 -1.078684
inf_at_1
age -.0680538  .0054307 -12.53  0.000 -.0786978  -.0574098
_cons 1.377042  .0318481 43.24  0.000 1.314621 1.439463
cutl
_cons -22.0358  7834.393 -0.00 0.998 -15377.16 15333.09
cut2
_cons -17.46215 758.249 -0.02 0.982 -1503.603 1468.679
cut3
_cons 1.229678  .1634936 7.52  0.000 .9092367 1.55012

One may wonder what if the proportional odds assumption does not hold, for exam-
ple, the effects of independent variables vary by categories of the dependent variable.
We can fit an inflated multinomial logit or probit model by changing the string of the
link(string) option to 1gml or pbml, respectively. The output is as follows.
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. gidm (tobacco female income

Generalized inflated discrete models

age) (income) (income), inflation(0 3) link(lgml)

Iteration O: log likelihood = -16528.45
Iteration 1: log likelihood = -13998.131 (not concave)
Iteration 2: log likelihood = -13830.753
Iteration 3: log likelihood = -13813.182
Iteration 4: log likelihood = -13770.342
Iteration 5: log likelihood = -13757.115
Iteration 6: log likelihood = -13752.886
Iteration 7: log likelihood = -13750.136
Iteration 8: log likelihood = -13749.212
Iteration 9: log likelihood = -13748.643 (not concave)
Iteration 10: 1log likelihood = -13748.365
Iteration 11: 1log likelihood = -13748.217
Iteration 12: 1log likelihood = -13748.12
Iteration 13: 1log likelihood = -13748.117
Iteration 14: 1log likelihood = -13748.117
Number of obs 15,000
Wald chi2(3) 251.97
Log likelihood = -13748.117 Prob > chi2 0.0000
Coef.  Std. Err. z P>|z| [95% Conf. Intervall
cons_0
female 1.215171 .158328 7.68 0.000 .9048542 1.525488
income -.7047131 .0458645 -15.37  0.000 -.7946059  -.6148203
age .5636431 .055056 10.24  0.000 .4557354 .6715508
_cons 1.075239 .3718305 2.89 0.004 . 346465 1.804014
cons_1
female .4551338 .0953795 4.77 0.000 .2681934 .6420742
income -.2465465 .0127899  -19.28  0.000 -.2716143  -.2214787
age .1258706 .0245793 5.12  0.000 .077696 .1740453
_cons 2.902104 .142925 20.31  0.000 2.621976 3.182232
cons_2
female .2010796 .1076831 1.87 0.062 -.0099754 .4121345
income -.0947244 .0139959 -6.77  0.000 -.1221558  -.0672931
age .0287424 .0276511 1.04 0.299 -.0254528 .0829377
_cons 1.099314 .1610094 6.83 0.000 .7837415 1.414887
inf_at_0
income -.0108989 .0086969 -1.25 0.210 -.0279444 .0061467
_cons .2640432 .0999661 2.64 0.008 .0681133 .4599732
inf_at_3
income .7523712 .4193545 1.79 0.073 -.0695484 1.574291
_cons -17.36523 8.664376 -2.00 0.045 -34.34709  -.3833643
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. gidm (tobacco female income

age) (income) (income), inflation(0 3) link(pbml)

Iteration O: log likelihood = -16220.104
Iteration 1: log likelihood = -13962.643 (not concave)
Iteration 2: log likelihood = -13853.146
Iteration 3: log likelihood = -13829.418
Iteration 4: log likelihood = -13768.762
Iteration 5: log likelihood = -13765.281
Iteration 6: log likelihood = -13754.064
Iteration 7: log likelihood = -13751.16
Iteration 8: log likelihood = -13750.203
Iteration 9: log likelihood = -13749.161
Iteration 10: 1log likelihood = -13749.134
Iteration 11: 1log likelihood = -13748.623
Iteration 12: 1log likelihood = -13748.554
Iteration 13: 1log likelihood = -13748.525
Iteration 14: log likelihood = -13748.517 (not concave)
Iteration 15: 1log likelihood = -13748.5 (not concave)
Iteration 16: log likelihood = -13748.469 (not concave)
Iteration 17: log likelihood = -13748.436 (not concave)
Iteration 18: 1log likelihood = -13748.047
Iteration 19: 1log likelihood = -13747.92
Iteration 20: 1log likelihood = -13747.913
Iteration 21: 1log likelihood = -13747.913
Number of obs 15,000
Wald chi2(3) = 250.85
Log likelihood = -13747.913 Prob > chi2 0.0000
Coef. Std. Err. z P>|z| [95% Conf. Intervall
cons_0
female 1.216532 .1584682 7.68 0.000 .9059403 1.527124
income -.7033618 .0458969 -15.32  0.000 -.7933181  -.6134056
age .5631134  .0551083 10.22  0.000 .4551032 .6711236
_cons 1.066075 .3724674 2.86 0.004 .3360528 1.796098
cons_1
female .4562997 .0955166 4.78 0.000 .2690906 .6435087
income -.2451173 .0129632 -18.91 0.000 -.2705246 -.21971
age .1251771 .0246397 5.08 0.000 .0768841 .1734701
_cons 2.89424 .143226 20.21  0.000 2.613522 3.174958
cons_2
female .2024173 .1078523 1.88 0.061 -.0089692 .4138039
income -.0930536 .0142137 -6.55  0.000 -.120912 -.0651953
age .0278977 .0277332 1.01 0.314 -.0264583 .0822537
_cons 1.090347 .1614318 6.75 0.000 . 773946 1.406747
inf_at_0
income -.0068457 .0054366 -1.26  0.208 -.0175012 .0038098
_cons .1655876 .0624756 2.65 0.008 .0431376 .2880376
inf_at_3
income .3094754  .1265657 2.45 0.014 .0614112 .5575396
_cons -7.370308  2.448976 -3.01 0.003 -12.17021  -2.570403
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Based on the results from both models, the effects of independent variables do vary
across the categories with respect to the reference group. For instance, with respect
to the reference category, the effect size of income reduces (for example, —0.705 versus
—0.247 versus —0.095), while the category of frequency of smoking increases. Note that
the estimated standard error of the intercept for inflation at 3 is large, although the z
test reaches significance at the conventional 5% level, which is a sign that the inflation
at 3 might not exist. In sum, the gidm command offers a flexible parameterization that
allows for multiple inflated values as well as link functions.

6 Discussion

Traditionally, the Vuong (1989) test is used to evaluate goodness of fit for the inflated
models. However, a recent study suggests that the Vuong test is not appropriate for
testing possible inflation (Wilson 2015). Because Stata 15 removed the Vuong test from
their zip, zinb, and zioprobit commands,! in the current study, we use only the
Akaike information criterion (AIC) and Bayesian information criterion (BIC) as criteria
to compare the goodness of fit across models. For instance, in the number of fish caught
example, the AIC and BIC for the inflated and the regular models can be calculated as
follows.

. webuse fish, clear
(Fictional fishing data)

. *ZIP model

. quietly gidm (count child camper) (persons), inflation(0) link(lgpo)
. display "AIC = " -2xe(1l)+2*e(rank) /*AIC*/

AIC = 2073.2168

. display "BIC = " -2xe(11) + log(e(N))*e(rank) /*BIC*/

BIC = 2090.8241

. *Poisson model
. quietly poisson count child camper

. display "AIC = " -2%xe(1l)+2%e(rank) /*AICx/
AIC = 2723.1858
. display "BIC = " -2xe(11) + log(e(N))*e(rank) /*BIC*/

BIC = 2733.7502

The values of the AIC and BIC for the ZIP model are much lower than that of the
regular Poisson, which indicates the ZIP fits the data better.

When one optimizes the likelihood function of the GIDM, most of the models imple-
mented in the gidm command require only 1£0 or 1f1 (Gould, Pitblado, and Poi 2010)
to converge. However, sometimes numerical issues such as nonconvergence, or overflow,
may occur if the empirical derivatives of the likelihood function are hard to evaluate
numerically. The most common explanation for the numerical issues might be model
misspecification, especially for the inflation part. Users should be cautious about the
number of values and predictors enclosed for the inflation part. It is helpful to start
with a simple model, for example, intercept only for the inflation part, and then build
upon it.

1. See https: // www.stata.com / help.cgi?j_-vuong for details.
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If the model is correctly specified, one way to improve numerical stability is to
fit the model using 1£f2 (Gould, Pitblado, and Poi 2010). Although it is feasible, the
Hessian matrix may still be expensive or cumbersome to evaluate; for instance, the
computational recourses required for calculating the second derivative for an ordinal or
multinomial outcome with multiple inflations might be large. An alternative is to replace
the gradient or Hessian with less expensive approximations. For instance, suppose a
multinomial random variable Y has inflated probabilities at categories ki,...,k, €
{0,1,2,...}; the PMF for each of the observations could be written as

7Ti+(l—zgl7ri)><p(/€) ifk:kl,...,km

Y =k|B,,m,1 <1< = m i ;
p( 1By, mi 1 < i< m) {(1_2“7”“]9(1@) if b # ki, 1 <i<m

where p(k) = px {exp( $Bi) /AL + Zk 1exp(xsBy)}, px = 1 — Zk 1 Pk, and
m; = {1 + exp(—zs7v,;)}. If we define the indicator as J; := 11@71@1,..., k.., then the log

likelihood is

K Ji x I(ys = k) x log{m + (1 = Y1, m) X pr}+
o8t = Z ( ) X I(ys = k) x {log(1 = 7 ;) +10g<pk>}> T

The first derivative with respect to p; is as follows.

OlogL K (Jix I(ys = k) x (i gnl ) xpr gii +
i S\ a-gx I(ys = k) x (L)
Because the term
-3 m _ 1 <1
mit (L= 200 ™) X e fosSe Pk T Dk
e dlogl, & 1 dpy,
o, = 2 {I(ys =B ap; }

It reaches to equality if 7; is zero. Thus, a majorization of the first derivative can be
derived. If we look further, the diagonal elements of the second derivative yield

Ji x I(ys = k)x
2
0%logl Y op s op) |
opr Z i+ (1=, i) xpr OP] mi+(1=7, 7 ) xpr OPs

J k=1 5
(1—Ji)xI(yS:k)xixi:§

However, (GzlogL)/(E)p?) is negative only if py < (1/2). If pr > (1/2), the Hessian
might not be positive definite. Therefore, it is necessary to check model specification to
make sure that p, < (1/2). If we define the inflation factor as F = m;/(1 — > 1", ™),
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figure 2 summarizes the relationship between the size of the inflation factor and the
second derivative. Numerical issues may emerge if the inflation factor is small and the
probability p; is large. In other words, if data show a high percentage for one category,
but the relative chance of inflation for that category is small, the model is likely to have
nonconverge issues.

Figure 2. Relationship between the inflation factor and the second derivative

According to our experiment, even under a mild or severe situation, for example,
the percentage of p,, > (1/2) is higher than 65%, all three methods, 1£0, 1f1, and 1£2,
yield reasonable estimates, with a convergence rate of about 90%, especially for the 1f1
method, which requires fewer numbers of iterations and Hessian calls.

The current implementation can be further extended in several ways. A direct ex-
tension is to allow for continuous or truncated outcomes such as linear or zero-truncated
models. Another useful extension might be to support predictions after estimation. At
present, we are working on adding predictions, residuals, influence statistics, and the
like. In addition, although the option vce () offers robust standard errors to account for
clustering, a more efficient method would be to allow random effects. Therefore, future
work will also cover random- and fixed-effects models.

Nevertheless, the GIDM framework is a powerful tool for analyzing inflated outcomes.
Despite the recent development of the generalized inflation models, the modeling choices
for Stata users are limited. We developed the gidm command, which supports various
distributions, to fit the most recent version of the inflated models—the GIDM. Mean-
while, the traditional single-value inflated models are also available as special cases in
the gidm command. We hope the gidm command developed in this article will be useful
for Stata users when dealing with inflation problems.
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8 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 19-3
. net install st0574 (to install program files, if available)
. net get st0574 (to install ancillary files, if available)
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