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Abstract. In this article, I describe a community-contributed command, intcount,
that fits one of several regression models for count data observed in interval form.
The models available are Poisson, negative binomial, and binomial, and they can
be fit in standard or zero-inflated form. I illustrate the command with an applica-
tion to analysis of data from the UK Understanding Society survey on the demand
for healthcare services.
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1 Introduction

Many survey variables are naturally nonnegative integer-valued counts, for example,
the number of times an action or event has occurred within a given observation period.
Count-data regression models based on distributions, such as the Poisson and negative
binomial models, are widely used to analyze these variables.

But complications arise when survey questions are not designed to reveal the count
exactly. Survey designers sometimes argue that questions may yield more reliable (albeit
less detailed) data if they ask the respondent to place the count within one of a number
of prespecified intervals, rather than to report a specific figure.

Interval observation of count data causes difficulty in the estimation of count-data
regressions, because most available software requires the count to be observed exactly.
Therefore, there is a need for estimation procedures that can account for coarse interval
observation.1 Furthermore, many types of descriptive or policy analysis require exact
rather than interval counts, so some form of imputation or interpolation is required.

In this article, I describe a new command for interval estimation of a number of
count-data models, and I report results from an illustrative application. Section 2 sets
out the estimation approach and the range of available models. Section 3 details the

1. A Stata command, intreg, already exists for interval estimation of the regression model for a
continuous dependent variable such as income, so intcount serves to widen the range of models
for which interval estimation is possible. Note, however, that incount has more prediction and
interpolation options than intreg.
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syntax of intcount and the linked predict command that can be used for various types
of postestimation imputation. Section 4 presents an application to healthcare data from
the UK Understanding Society survey. Section 5 concludes.

2 Interval-observed count-data models

2.1 Basic setup

Let Yi ≥ 0 be the ith observation on a dependent variable that takes nonnegative integer
values. Yi may be bounded or unbounded. However, our observations are not on Yi itself
but rather an interval in which Yi lies. Consequently, we have two observed dependent
variables, [Li, Ui], with the property that

Li ≤ Yi ≤ Ui

The numerical values of the interval bounds [Li, Ui] vary across observations, but they
are assumed to be observed and strictly exogenous. The two bounds may be equal for
some observations where Yi is fully observed, and, for unbounded distributions like the
Poisson and negative binomial, the upper bound Ui may be infinite for some observa-
tions.

A set of explanatory covariates appears in a vector Xi, and we assume a known
parametric form for the discrete conditional probability function f(·) and corresponding
distribution function F (·), defined for any nonnegative integer y:

Pr(Yi = y|Xi) = f(y|Xi)

Pr(Yi ≤ y|Xi) = F (y|Xi)

The conditional probability of observing the event Li ≤ Yi ≤ Ui is

Pr(Li ≤ Yi ≤ Ui|Xi) = F (Ui|Xi)− F (Li − 1|Xi)

=

Ui∑

y=Li

f(y|Xi) (1)

where F (Li − 1|Xi) is understood to be zero for Li = 0.

2.2 Alternative base distributions

The model is completed by specifying a parameterized functional form for the distribu-
tion function F (·|Xi). The command offers nine possibilities formed from three alter-
native base models and three options for zero inflation. If we leave aside the possibility
of zero inflation, the available models for F (·|Xi) are as follows:

The Poisson model is

f(y|Xi) = e−λiλy
i /y! (2)
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where λi is the conditional mean function E (Yi|Xi) parameterized as eXiβ. The con-
ditional mean and variance of the count variable are both equal to λi.

The binomial model is

f(y|Xi) =

(
Mi

y

)
pyi (1− pi)

Mi−y (3)

where Mi is the known maximum possible value, which may vary exogenously across
observations, and pi is the binomial probability, parameterized as pi = (1 − e−Xiβ)−1.
The conditional mean function is E (Yi|Xi) = Mipi. This specification may be ap-
propriate when there is a natural upper limit to survey responses (for example, to the
question “on how many days last month did you use cannabis?”).

The negative binomial model is derivable as the Poisson-gamma mixture

y | ν ∼ Poisson (λiν) ν ∼ gamma

(
1

α
, α

)

where λi = eXiβ, α > 0. This gives a distribution for y with mean λi and variance
1 + αλi. Note that, in the terminology of Cameron and Trivedi (2013), this is the NB2

parameterization of the negative binomial regression model and is consistent with the
specification implemented in the Stata zinb command. The ML estimation procedure
treats lnα as an unrestricted constant parameter.

2.3 Zero inflation

In some count-data applications, standard forms like the binomial, Poisson, and negative
binomial are found to understate the frequency of zero counts. One way of dealing
with this is to use a double hurdle or mixture process, where some individuals have
a degenerate zero count with probability 1, while others have a count drawn from a
standard distribution such as the Poisson.

Let the conditional probability of a degenerate zero be given by the linear index
model

Pr(degenerate 0|Xi) = π(Xi1γ)

where Xi1 is a subvector of Xi. The distribution of Y among the nondegenerate
population is g(y|Xi2β), where Xi2 is another subvector of Xi. Then the mixture
distribution of Y is

f(y|Xi) =





π(Xi1γ) + {1− π(Xi1γ)}g(0|Xi2β) if y = 0

{1− π(Xi1γ)}g(y|Xi2β) if y > 0

The probability of the observed interval [Li, Ui] is again given by (1).
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The intcount command offers three options for zero inflation:

standard model: π(Xi1γ) = 0

logit: π(Xi1γ) = {1 + exp(−Xi1γ)}−1

probit: π(Xi1γ) = Φ(Xi1γ)

In practice, estimates of the logit and probit variants are usually almost identical
apart from scaling of the γ coefficients, which are larger by a factor of approximately
π/

√
3.

2.4 Estimation

Estimation is by maximum likelihood (ML), with probabilities of the form (1) used to
construct the log-likelihood function. By default, numerical optimization of the log
likelihood is carried out using Stata’s modified Newton–Raphson optimizer; other algo-
rithms can be substituted if you have difficulty in obtaining convergence (see StataCorp
[2017, 639–686] for details). Optimization is based on the lf0 evaluator, so log-likelihood
derivatives are approximated by finite differences.

Experience to date suggests that this works well in most cases. Difficulties are
most likely to be encountered with overspecified models involving zero inflation that
is not required by the data, in which case one or more parameters in the coefficient
vector γ will explode. Similar convergence difficulties may be found also in zero-inflated
specifications where zero inflation is required empirically for a group with certain values
for the variables Xi2 but not for other sample groups. These convergence problems are
usually easy to spot, and the required model respecification is obvious.

Occasionally (usually in the more heavily parameterized zero-inflated specifications),
the optimizer reaches a difficult region with almost flat likelihood or discontinuous ap-
proximate derivatives. Often, these problems can be resolved by passing down the
estimates from a simpler specification as starting values for the optimization—for ex-
ample, a model without zero inflation or with constant zero inflation or a Poisson model
as a simpler alternative to the negative binomial.

2.5 Prediction and imputation

The estimates provided by intcount may often be useful for imputation, and the
predict command available with intcount offers options. Particularly useful op-
tions are the interval-conditional mean predictor Y ∗

i = E(Yi|Li ≤ Yi ≤ Ui,Xi) and
the interval-conditional random draw, Y +

i , which is a realization of the distribution of
Yi|Li ≤ Yi ≤ Ui,Xi. Two common situations illustrate their use.

One is where we would like to use the unobserved variable Yi as a covariate in another
model—for example, a regression of some dependent variable Wi on Yi and Xi. But Yi

is unobserved, and we know only that it lies within an interval [Li, Ui]. Then intcount

can be used to fit a count-data model for Yi onXi and compute the interval-conditional
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mean predictor Y ∗
i . The use of Y ∗

i as a proxy for Yi introduces an imputation error
proportional to (Yi − Y ∗

i ) into the regression residual term, but it is straightforward to
show that E{(Yi − Y ∗

i )|Y ∗
i ,Xi} = 0, so the residual is orthogonal to the constructed

proxy for Yi, and the regression of Wi on Yi,Xi therefore gives unbiased coefficients
under standard classical assumptions (provided the count-data model for Yi|Xi is well
specified). This is a better solution to the imputation problem than the common practice
of using interval midpoints. However, it can be improved further by making random
draws Y +

i and using single or multiple imputation.2

Another common application is where exact values for Y are needed within some
complex policy simulation. Again, multiple random draws Y +

i can be used in place
of the unobserved Yi, and the policy calculations averaged across replications. The
healthcare cost analysis by Davillas and Pudney (2019) is an example of this.

3 The intcount command

3.1 Syntax

intcount depvar1 depvar2
[
indepvars

] [
if
] [

in
] [

weight
]

[
,
[
poisson | binomial(# | varname) | negbin

]

inflate(varlist | cons
[
, offset(varname) noconstant

]
) noconstant probit

offset(varname) exposure(varname) from(matname) difficult
]

3.2 Description

intcount is a community-contributed command that fits a range of count-data models
when some of or all the observations on the dependent variable are intervals containing
the count, rather than the count itself. The models are based on Poisson, binomial, or
negative binomial distributions, possibly with zero inflation. It thus covers some of the
same ground as existing Stata commands poisson, nbreg, binreg, zip, and zinbreg

but allows for interval-form data.

depvar1 and depvar2 are variables that specify the upper and lower limits Li and Ui

of the interval containing the unobserved true count Yi. The covariates Xi1 for the core
Poisson, binomial, or negative binomial model are specified in indepvars; an intercept
will automatically be included unless the noconstant option is used.

3.3 Output

intcount returns ML estimates of the parameters of a count-data model, allowing for
the possibility that some of or all the observations on the dependent variable have the
form of an interval containing the count, rather than the count itself.

2. See Manski and Tamer (2002) for a much fuller and more general discussion of inference from
interval data.
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3.4 Options

poisson, the default, specifies the Poisson base model defined by (2).

binomial(# | varname) specifies the binomial model (3). If the count limit Mi is con-
stant across observations, # gives that fixed positive number; otherwise, varname
specifies a variable containing Mi.

negbin specifies the negative binomial model.

At most, one of the options poisson, binomial(), or negbin may appear.

inflate(varlist | cons
[
, offset(varlist) noconstant

]
) specifies the variables Xi2

used as covariates in the zero-inflation model (if any). If inflate() is omitted,
zero inflation is not used, and a standard count-data specification is estimated. If it
appears as inflate( cons), the zero-inflation probability is estimated as a constant.
If covariates are specified in varlist, an intercept will also be included unless the
noconstant suboption is used.

noconstant suppresses the intercept term in the linear index Xi1β.

probit specifies that the zero-inflation model be of probit form. If omitted, the default
is logit. The probit option may be used only if inflate() also appears.

offset(varname) includes varname in the model with the coefficient constrained to 1.

exposure(varname) includes ln(varname) in the model with the coefficient fixed at 1.

Standard options for controlling the ML optimization procedure can be included, most
usefully:

from(matname) specifies the name of a single-row matrix containing user-supplied ini-
tial parameter values for the optimization. The column names should take the form
model:varname and model: cons for the coefficients and intercept in the linear in-
dex Xi1β and inflate:varname and inflate: cons for those in the index Xi2γ

of the zero-inflation mechanism. The column name for the ln(α) parameter of the
negative binomial model should be given as /lnalpha if running with Stata 15 or
later or lnalpha: cons for version 14 or earlier.3 The vector may contain irrele-
vant elements because the vector is passed onto the ML optimizer with the , skip

modifier.

difficult may occasionally help overcome convergence difficulties.

3. This is for consistency with nbreg and zinb—the column labeling of the ln(α) parameter in the
return vector e(b) from the nbreg and zinb changed between Stata 14 and 15. If a starting value
for ln(α) is supplied with the wrong labeling, it will be ignored by intcount.



S. Pudney 651

3.5 predict

predict
[
type

]
newvar

[
if
] [

in
] [

, n pr(# | varname # | varname)

ce(# | varname # | varname) mc(# | varname # | varname
[
, uniformvar

]
)

nooffset
]

Description

Following intcount, the predict command can be used to construct several measures
conditional on covariate values, including the expected count, the probability of the
count falling in a specified interval, and the expected value of the count, conditional on
it lying in a specified interval. One can also generate a random draw of the interval-
specific conditional count distribution. These predict options are particularly useful
for interpolation purposes. The specified type of prediction is returned in newvar as a
double precision variable.

Options

n, the default, gives a prediction of the count conditional only on the covariates.

pr(# | varname # | varname) is the predicted probability (conditional on covariate val-
ues) that the count lies in the interval defined by lower and upper limits that may
each be a fixed number or a variable.

ce(# | varname # | varname) is the expectation of the count conditional on the covari-
ates and the event that it lies in the interval defined by the two limits that may be
variable or constant.

mc(# | varname # | varname
[
, uniformvar

]
) generates a single random draw from

the distribution of y conditional on the event that it lies in the interval defined by
the two specified limits. If the uniformvar option is not used, intcount will generate
the required pseudo–random numbers itself without resetting the random-number
seed. Optionally, the simulation can be controlled completely by passing a variable
containing uniform pseudo–random numbers. The mc() option is useful for Monte
Carlo simulation or imputation applications where distributional characteristics be-
yond the conditional mean are required.

nooffset causes offset or exposure adjustments to be ignored. By default, any offset or
exposure adjustment used for estimation will also be incorporated in the predictions
of type pr(), ce(), or n.

4 An application to healthcare demand

We apply the intcount command to data from wave 7 of the Understanding Society
UK panel on the use of healthcare services. The questions distinguish three services:
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consultations with a general practitioner (GP), attendance at a hospital outpatient (OP)
clinic, and hospital inpatient (IP) stays.4 The first two dependent variables come from
the following survey questions:

“In the last 12 months, approximately how many times have you talked to,
or visited a GP or family doctor about your own health? Please do not
include any visits to a hospital.”

“And in the last 12 months, approximately how many times have you at-
tended a hospital or clinic as an out-patient or day patient?”

Responses to these questions are reported as one of five intervals: 0, [1–2], [3–5],
[6–10], 11 or more. Figure 1 shows the two empirical distributions.
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Figure 1. Distributions of the number of GP and OP consultations in the preceding 12
months (UK Household Longitudinal Study [UKHLS wave 7; n = 6822])

The third question is

“In the last 12 months, in all, how many days have you spent in a hospital
or clinic as an in-patient?” Answers are given as “exact” integers.

The distribution of responses, shown in the first panel of figure 2 (here plotted over
0–10 days), is typical of count data for rare events. There is a large mode at zero and a
highly skewed and dispersed distribution of positive values—the sample maximum is 182
days in this case. This distribution can pose challenging modeling and computational
problems. The second panel of figure 2 shows the distribution after we artificially group
the responses to conform with the reporting intervals used in the GP and OP questions.
Note that ex post grouping should not be assumed to coincide automatically with the
answer that would have been provided by the respondent given an interval response
scale—respondent behavior may be influenced by question design.

4. The data and a more comprehensive application are discussed in detail in Davillas and Pudney
(2019).
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Figure 2. Distribution of the number of days as a hospital inpatient in the preceding 12
months, as observed and after grouping (UKHLS wave 7; n = 6824)

4.1 Hospital IP days: The effect of grouping

First, consider the choice of distributional form, using the original exact data. The
intcount command can accommodate exact count data by setting the upper and lower
limit variables equal to the exact count. The resulting estimates reproduce exactly those
produced by poisson or zip for the Poisson model, binreg for the binomial model,5 and
nbreg or zinb for the negative binomial model. The covariates used in these models are
simple demographics: a cubic in age a (measured in decades from an origin of 50 years),
membership of any ethnic minority nonw, an indicator for the absence of any educational
qualification noed, and another for degree-level education degree. The following code
produced alternative gender-specific models, whose sample fit is summarized in table 1
using the Akaike information criterion (AIC) and Bayesian information criterion (BIC).

5. There appears to be no available Stata command for fitting the zero-inflated binomial model, and
intcount now fills that gap.
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. global Xvars "a a2 a3 nonw noed degree"

. // No zero inflation

. forvalues i=0/1 {
2. intcount IP IP $Xvars if male== `i´, poisson vce(robust)
3. estat ic
4. intcount IP IP $Xvars if male== `i´, binomial(365) vce(robust)
5. estat ic
6. intcount IP IP $Xvars if male== `i´, negbin vce(robust)
7. estat ic
8. }

. // With zero inflation

. forvalues i=0/1 {
2. intcount IP IP $Xvars if male== `i´, inflate($Xvars) poisson vce(robust)
3. estat ic
4. intcount IP IP $Xvars if male== `i´, inflate($Xvars) binomial(365)

> vce(robust)
5. estat ic
6. intcount IP IP $Xvars if male== `i´, inflate($Xvars) negbin vce(robust)
7. estat ic
8. }

It is clear from table 1 that the negative binomial model is far superior in terms of
sample fit to the Poisson and binomial models and also that zero inflation improves the
fit substantially.

Table 1. AIC and BIC for zero-inflated versions of Poisson, binomial, and negative
binomial count-data models, estimated separately by gender from exact data on days
spent in hospital

Distributional Women Men
form AIC BIC AIC BIC

Without zero inflation
Poisson 91295 91350 71859 71913
Binomial 93874 93929 73634 73687
Negative binomial 21536 21599 13586 13647

With zero inflation
Poisson 43165 43274 30237 30343
Binomial 45494 45604 31743 31850
Negative binomial 21456 21573 13443 13557
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We now investigate the effect of data grouping by refitting the model using the
artificially grouped form of the variable whose distribution is shown in figure 2. The
code is as follows:

. forvalues i=0/1 {
2. intcount IP IP $Xvars1 if male== `i´, inflate($Xvars1) negbin vce(robust)
3. estimates store exact`i´
4. intcount lo_IP hi_IP $Xvars1 if male== `i´, inflate($Xvars1) negbin

> vce(robust)
5. estimates store grouped`i´
6. }

. estout exact0 grouped0 exact1 grouped1, cells(b(star fmt(%7.3f))
> se(par)) starlevels(* .1 ** .05 *** .01) style(tex)

Table 2 compares the parameter estimates. There are substantial parameter differ-
ences, particularly for the age and education effects in the female sample.

Table 2. Estimates of zero-inflated negative binomial model fit from exact and artificially
grouped data

Parameter Women Men
(std. err.) Exact Grouped Exact Grouped

Base model parameters
age§ 0.042 0.102* 0.078 0.177**

(0.117) (0.061) (0.096) (0.076)
age2 0.057** 0.030** 0.024 0.006

(0.027) (0.015) (0.028) (0.020)
age3 −0.001 0.006 0.005 0.001

(0.014) (0.008) (0.011) (0.008)
Nonwhite 0.155 0.067 −0.350 −0.260

(0.192) (0.101) (0.232) (0.180)
No education 0.092 0.027 0.203 0.114

(0.173) (0.112) (0.209) (0.173)
Degree 0.018 −0.229** −0.753*** −0.660***

(0.204) (0.107) (0.223) (0.171)
Intercept −0.426** 0.769*** 0.713** 1.219***

(0.206) (0.186) (0.299) (0.273)

lnalpha 3.072*** 1.267*** 2.856*** 1.601***
(0.114) (0.276) (0.146) (0.355)

Continued on next page
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Parameter Women Men
(std. err.) Exact Grouped Exact Grouped

Zero-inflation parameters
age§ 0.899*** 0.258*** −0.320*** −0.216***

(0.169) (0.054) (0.094) (0.051)
age2 −0.539 −0.022** −0.094*** −0.041***

(0.627) (0.010) (0.031) (0.013)
age3 −0.263 −0.027*** −0.016 −0.003

(0.170) (0.007) (0.010) (0.006)
Nonwhite −0.056 −0.052 −0.120 −0.015

(0.276) (0.079) (0.166) (0.110)
No education −0.710* −0.202** −0.132 −0.106

(0.393) (0.086) (0.171) (0.107)
Degree 0.337 −0.011 0.034 0.051

(0.279) (0.081) (0.178) (0.114)
Intercept −0.341 1.494*** 0.695*** 1.735***

(0.377) (0.214) (0.248) (0.272)

notes: § Age measured in decades from an origin of 50.
Statistical significance: * = 10%, ** = 5%, *** = 1%

Figure 3 shows the implications of parameter differences for the estimated age
profiles, plotting the probability of hospitalization Pr(y > 0|age) against age in the
range 16–85, with other covariates set to modal zero values. The relevant code is as
follows:

. preserve

. replace age=.
(42,210 real changes made, 42,210 to missing)

. replace age=_n+15 if _n<=70
(70 real changes made)

. replace a=(age-50)/10
(42,210 real changes made, 42,140 to missing)

. replace a2=a^2
(42,209 real changes made, 42,140 to missing)

. replace a3=a*a2
(42,210 real changes made, 42,140 to missing)

. replace nonw=0
(30,402 real changes made)

. replace noed=0
(14,694 real changes made)

. replace degree=0
(18,067 real changes made)

. generate ll=0 if age<.
(42,147 missing values generated)

. generate uu=0 if age<.
(42,147 missing values generated)
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. forvalues i=0/1 {
2. foreach d in exact grouped {
3. estimates restore `d´`i´
4. predict p`d´`i´ if age<=85,pr(1 .)
5. }
6. }

(results exact0 are active now)
(results grouped0 are active now)
(results exact1 are active now)
(results grouped1 are active now)

. sort age

. twoway line pexact0 pgrouped0 age if age<=85 , lpattern(solid dash)
> graphregion(fcolor(white) ilcolor(white) icolor(white) lcolor(white))
> lcolor(black) name(p0, replace) xlabel(20(10)80) ylabel(0(0.05)0.2)
> xscale(titlegap(3)) yscale(titlegap(3)) xtitle("Woman´s age")
> legend(col(1) pos(5) ring(0) label(1 "exact")
> label(2 "grouped")) ytitle("Pr(hospitalization)")

. twoway line pexact0 pgrouped0 age if age<=85 , lpattern(solid dash)
> graphregion(fcolor(white) ilcolor(white) icolor(white) lcolor(white))
> lcolor(black) name(p1, replace) xlabel(20(10)80) ylabel(0(0.05)0.2)
> xscale(titlegap(3)) yscale(titlegap(3)) xtitle("Man´s age")
> legend(col(1) pos(5) ring(0)label(1 "exact")
> label(2 "grouped")) ytitle("Pr(hospitalization)")

. graph combine p0 p1

The estimated age profiles remain broadly similar after grouping, but they display
more variability for the estimates based on exact data, so coarsening the counts to
interval form has a smoothing effect in this example.
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Figure 3. Predicted age profile of zero-count probability by age for ethnic majority
woman and man with midlevel education

It is also striking in this application that grouping has a perverse effect on the
standard errors. It is clear theoretically that recoding count data to coarser interval
form must reduce statistical precision of the parameter estimator for a well-specified
count-data model (this is easily confirmed empirically using Monte Carlo simulation
by applying intcount to simulated counts in exact and grouped form). However, the
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anticipated loss of precision may not occur for computed standard errors when the
count-data model is misspecified. A poor model may do well in fitting the distribution
of responses within broad intervals but much worse in fitting the distribution of exact
counts within those intervals. Parameter estimates may be (asymptotically) biased
differently for grouped and exact data, and the computed confidence intervals (that
are not statistically valid for misspecified models) need not be wider for the interval
estimates. This is what we find in table 2, where the interval estimates have robust
standard errors that are almost always smaller (and in many cases much smaller).

4.2 Interpolated healthcare measures

The intcount command has been designed to be used for interpolation of the underlying
count from coarse interval data. We now turn attention to the GP and OP variables,
again taking the negative binomial as our basic model but considering both standard
and zero-inflated (probit) variants. As covariates, we use dummy variables to allow for
gender and ethnicity effects, a cubic in age, and a four-level categorization of educational
attainment. Table 3 gives results and also includes estimates of the logit variant for the
OP data. Comparison of the fourth and fifth columns of table 3 confirms that the choice
between probit and logit specifications makes virtually no difference to the estimates
except for scaling of the zero-inflation coefficients (which are larger in absolute value for
the logit model by approximately

√
π2/3 = 1.814).

Table 3. Estimates of negative binomial models for counts of GP and hospital OP

consultations, estimated from grouped data

GP consultations Hospital OP consultations
Parameter No zero Probit No zero Probit Logit
(std. err.) inflation inflation inflation inflation inflation

Base model parameters
age§ 0.094*** 0.068*** 0.168*** 0.065*** 0.064***

(0.009) (0.009) (0.014) (0.016) (0.016)
age2 0.001 0.001 0.006* 0.003 0.003

(0.002) (0.002) (0.003) (0.004) (0.004)
age3 0.001 0.002** 0.001 0.006*** 0.007***

(0.001) (0.001) (0.002) (0.002) (0.002)
Male −0.368*** −0.280*** −0.321*** −0.137*** −0.139***

(0.015) (0.016) (0.023) (0.027) (0.027)
Minority −0.139*** −0.130*** 0.046* 0.012 0.016

(0.017) (0.018) (0.027) (0.031) (0.031)
GCSE −0.148*** −0.147*** −0.052 −0.085** −0.084**

(0.021) (0.021) (0.033) (0.035) (0.035)
A-level −0.268*** −0.271*** −0.183*** −0.159*** −0.158***

(0.024) (0.025) (0.039) (0.042) (0.042)

Continued on next page
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GP consultations Hospital OP consultations
Parameter No zero Probit No zero Probit Logit
(std. err.) inflation inflation inflation inflation inflation

Degree −0.350*** −0.373*** −0.158*** −0.203*** −0.201***
(0.020) (0.021) (0.032) (0.035) (0.034)

Intercept 1.525*** 1.512*** 0.616*** 0.704*** 0.702***
(0.022) (0.022) (0.036) (0.040) (0.040)

ln(α) 0.153*** 0.085*** 1.146*** 0.973*** 0.973***
(0.012) (0.014) (0.013) (0.021) (0.021)

Zero-inflation parameters
age§ −0.621*** −0.731*** −1.424***

(0.108) (0.130) (0.261)
age2 −0.220** −0.350*** −0.694***

(0.086) (0.096) (0.182)
age3 −0.024 −0.051** −0.102***

(0.021) (0.021) (0.038)
Male 4.645 0.730*** 1.291***

(79.355) (0.080) (0.154)
Minority 0.163* −0.107 −0.161

(0.096) (0.067) (0.114)
GCSE −0.045 −0.218** −0.367**

(0.106) (0.091) (0.156)
A-level −0.131 −0.005 0.008

(0.128) (0.095) (0.161)
Degree −0.421*** −0.254*** −0.435***

(0.133) (0.091) (0.154)
Intercept −6.221 −1.397*** −2.470***

(79.355) (0.131) (0.256)

AIC 94783 94639 75310 75054 75055
BIC 94867 94799 75394 75214 75215

notes: § Age measured in decades from an origin of 50.
Statistical significance: * = 10%, ** = 5%, *** = 1%

We now compare two interpolation methods. If the observed interval is [Li, Ui], the
conditional expectation predictor of the unobserved true count is E(y|Xi, Li, Ui), and
this is specified by the ce() option of the predict command.6 The alternative is to
generate a random draw from the conditional distribution f(y|Xi, Li, Ui) using the mc()
option. The following code generates the interpolations and plots their distributions (for
the example of the OP count):

6. Note that we allow predict to generate the required random numbers; we could instead have passed
down a variable containing uniform pseudo–random numbers.
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. quietly intcount lo_OP hi_OP $Xvars, negbin inflate($Xvars) probit

. predict OP_ce if e(sample),ce(lo_OP hi_OP)

. predict OP_mc if e(sample),mc(lo_OP hi_OP)

. histogram OP_ce if OP_ce<=30,width(1)
> graphregion(fcolor(white) ilcolor(white) icolor(white) lcolor(white))
> name(OPce, replace) xlabel(0(5)30) ytitle("Density")
> xscale(titlegap(3) range(0 30)) yscale(titlegap(3))
> xtitle("Conditional mean count")
(bin=22, start=0, width=1)

. histogram OP_mc if OP_mc<=30,width(1)
> graphregion(fcolor(white) ilcolor(white) icolor(white) lcolor(white))
> name(OPmc, replace) xlabel(0(5)30) ytitle("Density")
> xscale(titlegap(3) range(0 30)) yscale(titlegap(3))
> xtitle("Conditional Monte Carlo count")
(bin=30, start=0, width=1)

. graph combine OPce OPmc

The distributions for the interpolated GP and OP counts are shown in figures 4 and 5;
the ce() interpolator gives a much lumpier distribution than the mc() interpolator
because it averages out random variation within intervals.
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Figure 4. Distributions of GP consultation count with conditional expectation and
Monte Carlo interpolation
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Figure 5. Distributions of OP consultation count with conditional expectation and
Monte Carlo interpolation

Use of the ce() interpolator understates variance, so if other distributional features
besides the conditional mean are of interest, the mc() interpolator is usually prefer-
able. The following code produces the means and standard deviations shown in table 4.
Within education or gender groups, the mean counts produced by ce() and mc() are
similar (they would be essentially identical if we average many mc() interpolations or if
there were a large sample within each education group). In contrast, cell-specific sample
dispersion clearly confirms the downward bias in variance for the ce() interpolator.

. matrix mGP=J(8,4,.)

. matrix mOP=mGP

. foreach y in GP OP {
2. forvalues m=0/1 {
3. forvalues e=0/3 {
4. quietly summarize `y´_ce if e(sample)&educ==`e´&male==`m´
5. local r=2*`e´+1
6. local c=2*`m´+1
7. matrix m`y´[`r´,`c´]=r(mean)
8. local ++r
9. matrix m`y´[`r´,`c´]=r(sd)
10. quietly summarize `y´_mc if e(sample)&educ==`e´&male==`m´
11. local r=2*`e´+1
12. local c=2*`m´+2
13. matrix m`y´[`r´,`c´]=r(mean)
14. local ++r
15. matrix m`y´[`r´,`c´]=r(sd)
16. }
17. }
18. }

. matrix m=mGP\mOP

. estout matrix(m, fmt(%5.2f)), style(tex)
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Table 4. Means and standard deviations of GP

and hospital OP consultations interpolated by
alternative methods

Education Women Men
level ce() mc() ce() mc()

GP consultations
None 4.28 4.31 3.36 3.34

[4.98] [5.53] [4.25] [4.39]
GCSE 3.38 3.41 2.41 2.42

[4.13] [4.51] [3.42] [3.59]
A-level 3.06 3.08 1.90 1.91

[3.64] [3.88] [2.77] [2.96]
Degree 2.80 2.82 1.99 2.01

[3.44] [3.65] [2.73] [2.88]

OP consultations
None 2.04 2.00 1.91 1.86

[3.79] [3.94] [3.67] [3.83]
GCSE 1.70 1.63 1.36 1.27

[3.31] [3.22] [2.91] [2.91]
A-level 1.54 1.49 1.03 0.94

[3.07] [3.08] [2.42] [2.34]
Degree 1.56 1.51 1.16 1.07

[2.99] [2.95] [2.55] [2.45]

notes: Group-specific standard deviations in square
brackets.

4.3 Determinants of future healthcare demand

The UKHLS is a perpetual panel, and, in addition to healthcare use in wave 7, we can also
observe a range of health measures and other characteristics at the wave 2 baseline. We
use this rather than wave 1 as the baseline because a range of objective measurements
was made by nurse interviewers at wave 2.

Our analysis dataset covers demographic covariates (age, gender); indicators of so-
cioeconomic status (homeownership, log equivalized household income, education); and
biometrics (waist–height ratio, grip strength, resting heart rate, lung function, HDL

“good” cholesterol, hypertension). We fit standard negative binomial models from the
interval data on GP and OP consultations. The following code produces three variants
of the model for each dependent variable, and the parameter estimates are shown in
table 5:
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. global Xdem "male a a2"

. global Xses "h_own ln_income noed degree"

. global Xbio "whr grip pulse htfvc hdl hyper"

. quietly regress lo_GP lo_OP $Xdem $Xses $Xbio

. capture drop insamp

. generate byte insamp=e(sample)

. quietly intcount lo_GP hi_GP $Xdem $Xses if insamp, negbin

. estimates store GP1

. quietly intcount lo_GP hi_GP $Xdem $Xbio if insamp, negbin

. estimates store GP2

. quietly intcount lo_GP hi_GP $Xdem $Xses $Xbio if insamp, negbin

. estimates store GP3

. quietly intcount lo_OP hi_OP $Xdem $Xses if insamp, negbin

. estimates store OP1

. quietly intcount lo_OP hi_OP $Xdem $Xbio if insamp, negbin

. estimates store OP2

. quietly intcount lo_OP hi_OP $Xdem $Xses $Xbio if insamp, negbin

. estimates store OP3

. estout GP1 GP2 GP3 OP1 OP2 OP3, cells(b(star fmt(%7.3f))
> se(par)) starlevels(* .1 ** .05 *** .01) style(tex)
> stats(aic bic, fmt(%7.0f))

There is little evidence of a predictive role for socioeconomic status variables when
the biometrics are included in the model, so we adopt variant (2), which uses only
demographic and biometric covariates. Among the biometrics, only waist–height ratio
and grip strength have a consistently significant impact, and the following code uses
the n predict option to quantify those impacts by computing the mean predicted effect
of adding 1 standard deviation to each in turn. The effects are substantial in terms
of the potential cost to the public healthcare system: a uniform 1 standard deviation
increase in waist–height ratio increases the consultation workload by 15% for GPs and
12% for hospital OP clinics. A similar increase in the grip strength measure is predicted
to produce an 11% reduction in GP workloads and a 10% reduction for OP clinics.
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. foreach c in GP OP {
2. foreach x in whr grip {
3. capture drop pred*
4. estimates restore `c´2
5. capture drop tmp
6. quietly generate double tmp=`x´
7. quietly predict pred0 if insamp,n
8. quietly summarize pred0, meanonly
9. scalar t0=r(mean)
10. quietly replace `x´=`x´+1
11. quietly predict pred1 if insamp,n
12. quietly summarize pred1, meanonly
13. scalar t1=r(mean)
14. display in gr "`c´: Impact of 1 sd increase in `x´: " %7.3f (t1-t0)
15. display in gr "Proportionate increase: " %5.1f 100*(t1-t0)/t0 "%"
15. quietly replace `x´=tmp
16. }
17. }

(results GP2 are active now)
GP: Impact of 1 sd increase in whr: 0.344 ( 15.4%)
(results GP2 are active now)
GP: Impact of 1 sd increase in grip: -0.246 (-11.0%)
(results OP2 are active now)
OP: Impact of 1 sd increase in whr: 0.156 ( 11.8%)
(results OP2 are active now)
OP: Impact of 1 sd increase in grip: -0.126 ( -9.5%)

Table 5. 5-year-ahead predictive models of healthcare use

GP consultations OP consultations
Coefficient (1) (2) (3) (1) (2) (3)

Male −0.287*** −0.170** −0.176** −0.278*** −0.197* −0.194
(0.044) (0.075) (0.075) (0.072) (0.119) (0.119)

Age§ 0.090*** 0.032* 0.035* 0.166*** 0.144*** 0.146***
(0.015) (0.018) (0.019) (0.025) (0.030) (0.032)

Age squared§ 0.022*** 0.026*** 0.022** 0.034** 0.036** 0.036**
(0.008) (0.008) (0.009) (0.014) (0.014) (0.015)

Homeowner −0.138** −0.095 −0.071 −0.023
(0.062) (0.062) (0.101) (0.103)

ln(income) −0.103** −0.051 0.083 0.117*
(0.041) (0.042) (0.068) (0.069)

No qualification 0.122 0.097 0.069 0.065
(0.080) (0.080) (0.134) (0.133)

Degree −0.015 0.006 −0.114 −0.113
(0.047) (0.047) (0.077) (0.077)

Waist–height ratio 0.143*** 0.132*** 0.111** 0.114**
(0.027) (0.027) (0.045) (0.045)

Grip strength −0.117*** −0.109*** −0.100* −0.111**
(0.036) (0.036) (0.055) (0.055)

Pulse rate −0.010 −0.012 0.028 0.028
(0.022) (0.022) (0.036) (0.037)

Lung function −0.039 −0.032 0.034 0.039
(0.037) (0.037) (0.060) (0.061)

Continued on next page
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GP consultations OP consultations
Coefficient (1) (2) (3) (1) (2) (3)

HDL cholesterol −0.060** −0.060** 0.016 0.010
(0.025) (0.025) (0.041) (0.041)

Hypertension 0.096* 0.096* −0.054 −0.057
(0.053) (0.053) (0.088) (0.088)

Intercept 1.714*** 0.745*** 1.205*** −0.241 0.241*** −0.560
(0.298) (0.042) (0.304) (0.491) (0.068) (0.503)

ln(α) −0.053 −0.084* −0.087** 1.073*** 1.068*** 1.065***
(0.043) (0.043) (0.043) (0.044) (0.044) (0.044)

AIC 8866 8811 8811 7279 7276 7280
BIC 8921 8878 8903 7334 7343 7371

notes: § Age measured in decades from an origin of 50.
Statistical significance: * = 10%, ** = 5%, *** = 1%

5 Conclusions

Survey count data often come in interval form rather than exact counts. It is common
for ad hoc methods to be used for modeling such data—for example, regression ap-
plied to midpoint interpolations, or ordered probit regression that does not exploit the
known interval limits or the count nature of the data. In this article, I presented a new
command, intcount, which allows the estimation of a range of count-data regression
models from interval data without making arbitrary approximations. The postestima-
tion predict command allows the use of the fitted model for many prediction purposes,
including interpolation of the unobserved underlying exact count.

I illustrated the use of intcount with applications to data from the UK Under-
standing Society panel on the health service use. These applications demonstrate that
interval observation need not be a barrier to econometric analysis.
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7 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 19-3

. net install st0571 (to install program files, if available)

. net get st0571 (to install ancillary files, if available)
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