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Abstract. In this article, we present new commands for modeling count data using
marginalized zero-inflated distributions. While we mainly focus on presenting new
commands for estimating count data, we also present examples that illustrate some
of these new commands.
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1 Introduction

Often, count responses have zero-inflation—a higher prevalence of zeros than is ac-
counted for by the underlying distribution of the regression model to be fit. This
discordance can occur for outcome variables in many fields of study, such as medical,
public health, and manufacturing. In these cases, estimation based on the distributional
assumptions of Poisson, generalized Poisson, and negative binomial models can result in
incorrect parameter estimates and biased standard errors. Zero-inflated count data are
encountered in the number of defects in manufacturing (Lambert 1992), patient falls in
hospitals (Ullah, Finch, and Day 2010), and the number of cubes in the test of tower
building for motor development (Cheung 2002), just to name a few. Hardin and Hilbe
(2018) describe the two origins of zero outcomes: outcomes for individuals who do
not enter into the counting process and outcomes for individuals who enter into the
counting process and have a zero outcome. Mullahy (1986) proposed the zero-inflated
Poisson (ZIP) model, using a model familiar to researchers (Poisson), to deal with out-
comes with an excess of zeros. However, for modeling count data with zero outcomes
where overdispersion or underdispersion exists, one should consider other models, such
as zero-inflated generalized Poisson (ZIGP) and zero-inflated negative binomial (ZINB)
(Famoye and Singh 2006; Greene 1994).

Sometimes analysts want to estimate the marginal mean and be able to interpret
estimated coefficients as the population-average parameters. Some authors have pro-
posed different approaches to marginal models, such as Lee et al. (2011), who pro-
posed likelihood-based marginalized models for zero-inflated clustered count data us-
ing hurdle models. Kassahun et al. (2014) presented ways to model hierarchical count
data that had issues such as overdispersion, correlation, and an excess of zeros by
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marginalized hurdle and marginalized ZIP (MZIP) normal-gamma models. Others, like
Heagerty and Zeger (2000), used a marginalized multilevel model that regressed the
marginal mean instead of the conditional mean on the covariates. Long et al. (2014)
recently proposed an MZIP regression model that directly models the population mean
count, therefore providing the ability to interpret population-wide parameters. Preisser
et al. (2016) also proposed a marginalized zero-inflated negative binomial (MZINB) re-
gression model and applied it on dental caries in a school-based fluoride mouth rinse
program.

We introduce the new commands mzip, for the marginalized zero-inflated Poisson
(MZIP) regression model presented in Long et al. (2014), and mzinb, for the MZINB

regression model presented in Preisser et al. (2016). We also extend that method to
include a marginalized zero-inflated generalized Poisson (MZIGP) regression model and
its accompanying command.

In this article, we illustrate modeling count data using MZIP, MZIGP, and MZINB

regression models. In section 2, we review the three marginalized zero-inflated regression
models. In section 3, we present syntax for the new commands. In section 3, we present
a synthetic data example and a real world data example. Finally, we summarize in
section 5.

2 Marginalized zero-inflated distributions

2.1 Marginalized ZIP distribution

The widely known ZIP regression model with a count outcome variable, Yi (i = 1, . . . , n),
has the probability pi that the binary process results in a zero outcome, where 0 ≤
pi < 1, and the counting process probability of a zero outcome is from the Poisson
distribution. Thus, we have a probability mass function (p.m.f.)

P (Yi = yi) =





pi + (1− pi) exp(−µi) yi = 0

(1− pi)
exp(−µi)µi

yi

yi!
yi > 0

where µi = exp(xiβ) and pi = g−1(ziγ) and where g−1(·) is the inverse link function
of the linear predictor ziγ; our software allows specification of inverse link functions for
logit, probit, loglog, and complementary loglog.

For a random sample of observations y1, y2, . . . , yn, the MZIP regression log-likelihood
function is given by

L =
∑

i∈Z

[
ln {pi + (1− pi) exp(−µi)}

]
+
∑

i/∈Z

{
ln(1− pi)− µi + yi ln(µi)− Γ(yi + 1)

}

where the mean (µi) is rescaled from the ZIP regression model to µi = exp{xiβ− ln(1−
pi)} and Z is the set of zero outcomes.
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2.2 MZIGP distribution

The ZIGP regression model with a count outcome variable, Yi, where i = 1, . . . , n, has
the p.m.f.

P (Yi = yi) =





pi + (1− pi) exp(−µi) yi = 0

(1− pi)
µi(µi + δyi)

yi−1 exp(−µi − δyi)

yi!
yi > 0

where µi = exp(xiβ), pi = g−1(ziγ), and δ is the dispersion parameter having 0 ≤ δ < 1.
By applying the same concept from the MZIP regression model in section 2.1 to the ZIGP

regression model, we introduce the MZIGP regression model. For a random sample of
observations y1, y2, . . . , yn, the MZIGP regression log-likelihood function is

L =
∑

i∈Z

[
ln {pi + (1− pi) exp(−µi)}

]

+
∑

i/∈Z

{
ln(1− pi) + ln(µi) + (yi − 1) ln(µi + δyi)− µi − δyi − ln Γ(yi + 1)

}

where the mean (µi) is rescaled from the ZIGP regression model to µi = exp{xiβ− ln(1−
pi)}, δ is the dispersion parameter having 0 ≤ δ < 1, and Z is the set of zero outcomes.

2.3 MZINB distribution

The ZINB regression model with a count outcome variable Yi, where i = 1, . . . , n, has
the p.m.f.

P (Yi = yi) =





pi + (1− pi)

(
1

1 + δµi

)(1/δ)

yi = 0

(1− pi)
Γ(1/δ + yi)

Γ(yi + 1)Γ(1/δ)

(
1

1 + δµi

)(1/δ)(
1− 1

1 + δµi

)yi

yi > 0

where µi = exp(xiβ), pi = g−1(ziγ), and δ is the dispersion parameter. Lastly, we
apply the same concept from the MZIP regression model in section 2.1 to the ZINB

regression model, and we introduce the MZINB regression model. For a random sample
of observations y1, y2, . . . , yn, the MZINB regression log-likelihood function is

L =
∑

i∈Z

ln

{
pi + (1− pi)

(
1

1 + δµi

)(1/δ)
}

+
∑

i/∈Z

[
ln(1− pi) + ln Γ{(1/δ) + yi} − ln Γ(yi + 1)− ln Γ

(
1

δ

)

+ (1/δ) ln

(
1

1 + δµi

)
+ yi ln

(
1− 1

1 + δµi

)]

where the mean (µi) is rescaled from the ZINB regression model to µi = exp{xiβ− ln(1−
pi)}, δ is the dispersion parameter, and Z is the set of zero outcomes.
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3 Syntax

The accompanying software includes the command files and supporting files for predic-
tion and help. In the following syntax diagrams, unspecified options include the usual
collection of maximization and display options available for all estimation commands.
All marginalized zero-inflated commands include the ilink(linkname) option to specify
the link function for the inflation model. Allowable arguments to the ilink() option
include logit, probit, loglog, or cloglog.

Equivalent in syntax to the zip command, the basic syntax for specifying an MZIP

model for count data is

mzip depvar
[
indepvars

] [
if
] [

in
] [

weight
]
,

inflate(varlist
[
, offset(varname)

]
| cons)

[
options

]

The syntax for specifying an MZIGP distribution for count data is

mzigp depvar
[
indepvars

] [
if
] [

in
] [

weight
]
,

inflate(varlist
[
, offset(varname)

]
| cons)

[
options

]

The syntax for specifying an MZINB distribution for count data is

mzinb depvar
[
indepvars

] [
if
] [

in
] [

weight
]
,

inflate(varlist
[
, offset(varname)

]
| cons)

[
options

]

4 Examples

4.1 Example synthetic marginalized zero-inflated data

Here we illustrate how to generate synthetic marginalized zero-inflated data. We synthe-
sized trt from a Bernoulli(0.5) and x1 from a normal(0, 1). The true parameter values
are {γ0 = 0.80, β0 = log(1.75), γ1 = −0.25, β1 = log(1.25), γ2 = −0.50, β2 = log(1.45)}
(see parameter definitions and references in section 2.1). To highlight the differences be-
tween using nonzero-inflated and nonmarginalized zero-inflated models compared with
marginalized zero-inflated models, we will fit our data with three separate models—
Poisson, ZIP, and MZIP. We will also highlight the use of the average predicted value
described in Albert, Wang, and Nelson (2014) to estimate the total effect of the trt

variable in the ZIP model.
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. set seed 23982

. set obs 10000
number of observations (_N) was 0, now 10,000

. // Linear predictor for the outcome

. generate trt = rbinomial(1, .5)

. generate x1 = rnormal()

. generate z1 = runiform()

. generate xb = log(1.75) + log(1.25)*trt + log(1.45)*x1

. // Linear predictor for the zero-inflation

. generate zg = 0.80 - 0.25*trt - 0.50*z1

. // Define the mean of the count distribution and generate y

. generate mu = exp(xb + ln(1+exp(zg)))

. generate y = rpoisson(mu)

. // Mix in zero-outcomes from the inflation to y

. generate p0 = exp(zg)/(1+exp(zg)) // Inflation is in terms of P(Y=0)

. generate u = runiform()

. replace y = 0 if p0 > u
(5,934 real changes made)

Having created an outcome with our specified associations, we can fit some models
(below) to see how closely the sample data match the specifications. The first model
using our marginalized zero-inflated synthesized data with a Poisson distribution shows
that using the robust variance estimator does a good job adjusting for the overdispersion
due to the excess zeros (compared with the marginalized ZIP results at the end of this
section).

. poisson y trt x1, nolog irr robust

Poisson regression Number of obs = 10,000
Wald chi2(2) = 598.07
Prob > chi2 = 0.0000

Log pseudolikelihood = -27929.481 Pseudo R2 = 0.0488

Robust
y IRR Std. Err. z P>|z| [95% Conf. Interval]

trt 1.27774 .0387465 8.08 0.000 1.204011 1.355984
x1 1.423367 .0220454 22.79 0.000 1.380808 1.467238

_cons 1.718827 .0388726 23.95 0.000 1.644302 1.796729

Note: _cons estimates baseline incidence rate.

However, when we fit our ZIP model to our sample data, we see a worse match to our
synthetic-data specifications. The estimated coefficients for both of the nonzero-inflated
components are not close to the values from our synthesized data. However, we can use
a program to calculate the difference and ratio versions of the average predicted value.
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. capture program drop GetAPV

. program define GetAPV
1. syntax varlist(min=1 max=1)
2. quietly { // There is no error checking in this program
3. local trt `varlist´
4. tempvar bu mu0 mu1
5. generate `bu´ = `trt´
6. replace `trt´=0
7. predict double `mu0´
8. replace `trt´=1
9. predict double `mu1´
10. replace `trt´ = `bu´
11. tempname bb
12. bootstrap, reps(200) : mean `mu1´ `mu0´
13. mat `bb´ = r(table)
14. noisily display as txt _n "APV for `trt´"
15. noisily display as txt "APV(difference) = "

> as result %9.0g (`bb´[1,1] - `bb´[1,2])
16. noisily display as txt "APV(ratio) = "

> as result %9.0g (`bb´[1,1] / `bb´[1,2])
17. }
18. end

The ratio version of the average predicted value depicted above illustrates the total
estimated effect of the trt variable. This same effect is what is estimated by the Poisson
and MZIP models. That is, when the value of trt is changed, it affects the rate and
probability of zero-outcomes.

. zip y trt x1, inflate(trt z1) irr nolog

Zero-inflated Poisson regression Number of obs = 10,000
Nonzero obs = 3,895
Zero obs = 6,105

Inflation model = logit LR chi2(2) = 2548.01
Log likelihood = -15115.84 Prob > chi2 = 0.0000

y IRR Std. Err. z P>|z| [95% Conf. Interval]

y
trt 1.08098 .0154567 5.45 0.000 1.051106 1.111703
x1 1.444892 .0106511 49.93 0.000 1.424167 1.465919

_cons 4.727234 .0528784 138.87 0.000 4.624722 4.832018

inflate
trt -.2906165 .041755 -6.96 0.000 -.3724548 -.2087781
z1 -.5053849 .0725662 -6.96 0.000 -.6476122 -.3631577

_cons .8245697 .0476765 17.30 0.000 .7311255 .9180138

Note: Estimates are transformed only in the first equation.
Note: _cons estimates baseline incidence rate.

. GetAPV trt

APV for trt
APV(difference) = .5228705
APV(ratio) = 1.287507
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Finally, we fit the data with the MZIP regression model with requested exponentiated
coefficients. As expected, because the data are generated according to this model, they
are well estimated.

. mzip y trt x1, inflate(trt x1) eform nolog

Marginalized Zero-inflated Poisson regression Number of obs = 10000
Nonzero obs = 3895

Inflation link : logit Zero obs = 6105
LR chi2(2) = 681.62

Log likelihood = -15140.09 Prob > chi2 = 0.0000

y exp(b) Std. Err. z P>|z| [95% Conf. Interval]

y
trt 1.290013 .0369601 8.89 0.000 1.219569 1.364526
x1 1.43612 .0203707 25.52 0.000 1.396744 1.476606

_cons 1.706826 .0373099 24.46 0.000 1.635244 1.781541

inflate
trt -.2920746 .0416405 -7.01 0.000 -.3736884 -.2104607
x1 .0104196 .0210467 0.50 0.621 -.0308311 .0516703

_cons .5702831 .0301419 18.92 0.000 .511206 .6293601

Note: Estimates are transformed only in the first equation.

4.2 Example real-world study

We use the popular German health reform data for the year 1984 as example data.
The goal of our example is to understand the number of visits made to a physician
during 1984. Our predictor of interest is whether the patient is highly educated based
on achieving a graduate degree (edlevel4), for example, MA/MS, MBA, PhD, or a
professional degree. Confounding predictors are age (age) ranging from 25–64 and
income in German marks (hhninc) divided by 10. Almost half the time (42%), the
patients did not visit the doctor (excess zero counts). Therefore, a zero-inflated model
would be appropriate to model this data. We model the data using our MZIGP and
MZINB regression models, which we explained earlier.
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. use rwm1984, clear
(German health data for 1984; Hardin & Hilbe, GLM and Extensions, 4th ed)

. generate hh = hhninc/10

. mzigp docvis edlevel4 age hh, inflate(edlevel4 age hh) nolog

Marginalized Zero-inflated Gen Poisson regression Number of obs = 3874
Nonzero obs = 2263

Inflation link : logit Zero obs = 1611
LR chi2(3) = 155.79

Log likelihood = -8295.035 Prob > chi2 = 0.0000

docvis Coef. Std. Err. z P>|z| [95% Conf. Interval]

docvis
edlevel4 -.2510622 .1146271 -2.19 0.029 -.4757272 -.0263972

age .0219337 .0019299 11.37 0.000 .0181512 .0257162
hh -.5784546 .1655214 -3.49 0.000 -.9028707 -.2540385

_cons .3343386 .1081728 3.09 0.002 .1223237 .5463534

inflate
edlevel4 .7483066 .3594542 2.08 0.037 .0437892 1.452824

age -.0237062 .007483 -3.17 0.002 -.0383727 -.0090397
hh -.6331557 .7837937 -0.81 0.419 -2.169363 .9030518

_cons -.1265331 .4166084 -0.30 0.761 -.9430705 .6900044

/atanhdelta .7732168 .0170575 45.33 0.000 .7397848 .8066488

delta .6487961 .0098774 .6290151 .6677374

. estat ic

Akaike´s information criterion and Bayesian information criterion

Model N ll(null) ll(model) df AIC BIC

. 3,874 -8372.932 -8295.035 9 16608.07 16664.43

Note: BIC uses N = number of observations. See [R] BIC note.

From the output, variables edlevel4 and age appear to affect zero counts, with
younger graduate patients less likely to see a physician at all during the year. Patients
not at the graduate level made about 22% [exp(−0.251)] fewer visits than graduate
school patients. All three variables (edlevel4, age, hh) affect the nonzero counts sig-
nificantly at α = 0.05. Also note that the dispersion parameter δ = 0.6488 is statistically
significant, showing the overdispersion in the data.



T. H. Cummings and J. W. Hardin 507

. mzinb docvis edlevel4 age hh, inflate(edlevel4 age hh) nolog

Marginalized Zero-inflated neg bin regression Number of obs = 3874
Nonzero obs = 2263

Inflation link : logit Zero obs = 1611
LR chi2(3) = 161.29

Log likelihood = -8330.529 Prob > chi2 = 0.0000

docvis Coef. Std. Err. z P>|z| [95% Conf. Interval]

docvis
edlevel4 -.2981929 .1278499 -2.33 0.020 -.5487741 -.0476117

age .0258583 .0022949 11.27 0.000 .0213604 .0303562
hh -.7939298 .1620665 -4.90 0.000 -1.111574 -.4762853

_cons .2101778 .1185294 1.77 0.076 -.0221355 .4424911

inflate
edlevel4 1.136279 .3597673 3.16 0.002 .431148 1.84141

age -.0554078 .0128414 -4.31 0.000 -.0805764 -.0302392
hh .1139156 .9168216 0.12 0.901 -1.683022 1.910853

_cons .1137756 .4906687 0.23 0.817 -.8479174 1.075469

/lnalpha .6231516 .0651368 9.57 0.000 .4954857 .7508174

alpha 1.864796 .1214669 1.641295 2.118731

. estat ic

Akaike´s information criterion and Bayesian information criterion

Model N ll(null) ll(model) df AIC BIC

. 3,874 -8411.173 -8330.529 9 16679.06 16735.42

Note: BIC uses N = number of observations. See [R] BIC note.

Similarly, from the output, variables edlevel4 and age appear to affect zero counts,
with younger graduate patients less likely to see a physician at all during the year.
Patients not at the graduate level made about 26% [exp(−0.298)] fewer visits than
graduate school patients. All three variables (edlevel4, age, hh) affect the nonzero
counts significantly at α = 0.05. Also note that the dispersion parameter δ = 1.865 is
statistically significant, showing the overdispersion in the data. The Akaike information
criterion and Bayesian information criterion statistics are slightly lower in the MZIGP

regression model, indicating a much better fit than the MZINB regression model.

5 Summary

In this article, we introduced supporting programs for modeling count data using
marginalized zero-inflated distributions. We illustrated the use of the new command
mzip using synthesized data, and we illustrated the new commands mzigp and mzinb

using real-world German health data from 1984.
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6 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 19-3

. net install st0563 (to install program files, if available)

. net get st0563 (to install ancillary files, if available)
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