
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their 
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/


The Stata Journal (2019)
19, Number 3, pp. 719–728 DOI: 10.1177/1536867X19874247

Speaking Stata: The last day of the month

Nicholas J. Cox
Department of Geography

Durham University
Durham, UK

n.j.cox@durham.ac.uk

Abstract. I discuss three related problems about getting the last day of the
month in a new variable. Commentary ranges from the specifics of date and other
functions to some generalities on developing code. Modular arithmetic belongs in
every Stata user’s coding toolbox.

Keywords: dm0100, dates, days, weeks, months, functions, modulus, remainders,
rotations

1 Introduction

Given a monthly date variable in Stata, people sometimes want the last day of each
month as a new daily date variable. This problem has been touched on in a previous
tip (Samuels and Cox 2012), but the title of that tip may not make its relevance to this
question sufficiently evident.

In this column, I will examine that problem and two related problems. I also attempt
to distill some coding morals that lie behind the problems and their solutions. I assume
you know enough about date variables to understand that monthly dates and daily
dates are held in different ways. If you do not, reading help datetime now might be a
good idea.

2 Have monthly dates; seek last daily date of each month

Scrutiny of help datetime functions does not reveal a dedicated function, so it seems
that you may have to write code yourself. Your heart may sink at this as you ponder:
some months have 31 days, some 30, and then there is February, which has 29 days in
a leap year and 28 otherwise. So, do we have to code not just for those different month
lengths, but also for whether a year is leap or not?

c© 2019 StataCorp LLC dm0100

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1536867X19874247&domain=pdf&date_stamp=2019-09-20


720 Speaking Stata: The last day of the month

Let us make a sandbox dataset to work on:

. set obs 10
number of observations (_N) was 0, now 10

. generate mdate = cond(_n <= 5, _n - 1, _n + 6)

. format mdate %tm

. list

mdate

1. 1960m1
2. 1960m2
3. 1960m3
4. 1960m4
5. 1960m5

6. 1961m1
7. 1961m2
8. 1961m3
9. 1961m4
10. 1961m5

Do you see what we did there? The sandbox has some months for 1960 (a leap year)
and some for 1961 (not a leap year), so we can test our solutions on different months
and the two cases for February. Just typing some data into the Data Editor may be
quicker than thinking up the small trickery here with n. I often do that myself as well.

The first trick is this. The last day of the present month is the day before the first
day of the next month. If someone mentioned that in conversation, you might wonder
if they were being facetious in saying something so obvious, but this identity is the key
to a one-line solution of the problem.

With our sandbox dataset, the next month is mdate + 1; pushing that through
dofm() gives the first day of that month, and finally we subtract 1.

. generate lastddate = dofm(mdate + 1) - 1

. format lastddate %td

. list

mdate lastddate

1. 1960m1 31jan1960
2. 1960m2 29feb1960
3. 1960m3 31mar1960
4. 1960m4 30apr1960
5. 1960m5 31may1960

6. 1961m1 31jan1961
7. 1961m2 28feb1961
8. 1961m3 31mar1961
9. 1961m4 30apr1961
10. 1961m5 31may1961



N. J. Cox 721

There is no completely free lunch here. We may still need to use the help for functions
to find the function dofm()—and to appreciate that it will help. Read that function
name as indicating the first day of the current month.

3 Have daily dates; seek last day of current month

A common extra twist is that we have some daily dates in a variable (perhaps meaningful
dates, perhaps arbitrary dates) and also wish to have the last day of the corresponding
month in a new variable. Given that problem, we just need to convert it to the previous
problem, and then we are done. Let us add the 15th of each month to the sandbox.
Now the inverse function mofd() yields a monthly date, and then we do the same trick:

. generate midddate = dofm(mdate) + 14

. generate lastddate2 = dofm(mofd(midddate) + 1) - 1

. format midddate lastddate2 %td

. list midddate lastddate*

midddate lastddate lastdda~2

1. 15jan1960 31jan1960 31jan1960
2. 15feb1960 29feb1960 29feb1960
3. 15mar1960 31mar1960 31mar1960
4. 15apr1960 30apr1960 30apr1960
5. 15may1960 31may1960 31may1960

6. 15jan1961 31jan1961 31jan1961
7. 15feb1961 28feb1961 28feb1961
8. 15mar1961 31mar1961 31mar1961
9. 15apr1961 30apr1961 30apr1961
10. 15may1961 31may1961 31may1961

4 But it must be a Friday (or some other day of the

week)

Once a problem is solved, it often looks trivial, so let us try something harder.

Suppose there is an extra constraint—that we want the last Friday in a month. This
will stand for all other such problems in which we insist on the last day identified in
each month being a particular day of the week. In many fields, specific things happen
on particular days of the week. You may know examples in your own field, whether it is
economics, epidemiology, ecclesiology, eschatology, or something quite different. Even
if you have never met this problem, keep reading for a little extra technique that will
help if you do encounter it in the future.



722 Speaking Stata: The last day of the month

If the code so far does yield a Friday as the last day in that month, then we are done
for that month. If it is a Thursday, we need 6 days before; Wednesday, 5 days before;
Tuesday, 4 days; Monday, 3 days; Sunday, 2 days; and Saturday, 1 day.

Writing out code for all seven cases would solve the problem. We might hope to find
a simpler solution if we can. Done slowly or quickly, we need a function to find the day
of the week. Scrutiny of help datetime functions finds dow(). You may know about
that function already. dow() yields 0 for Sundays, 1 for Mondays, and so on, until 6 for
Saturdays.

Across cultures, countries, and professions, there are many variations on which day
of the week is considered first, or equivalently which day is last. Given any partic-
ular rule, we can still use dow(); we may just need to rotate the results. Calendar-
related problems are splendidly variable and capricious. Two encyclopedic references
are Blackburn and Holford-Strevens (1999) and Reingold and Dershowitz (2018).

Let us do this slowly and then see if we can find a pattern we can exploit to simplify
the code. If the last day of the month is Friday, dow() will return 5 and that is good. If
the last day of the month is Saturday, dow() will return 6 and we need the day before,
so subtract 1. If it is Thursday, we need 6 days before; if it is Wednesday, we need 5
days before; and so on.

. generate lastfri = lastddate if dow(lastddate) == 5
(9 missing values generated)

. replace lastfri = lastddate - 1 if dow(lastddate) == 6
(1 real change made)

. replace lastfri = lastddate - 6 if dow(lastddate) == 4
(1 real change made)

. replace lastfri = lastddate - 5 if dow(lastddate) == 3
(1 real change made)

. replace lastfri = lastddate - 4 if dow(lastddate) == 2
(3 real changes made)

. replace lastfri = lastddate - 3 if dow(lastddate) == 1
(1 real change made)

. replace lastfri = lastddate - 2 if dow(lastddate) == 0
(2 real changes made)

Now if you stare at the code, you should see first that seven lines can be reduced to
three lines. If the last day is Friday, we are done; if it is a Saturday, we just subtract 1;
otherwise, we can subtract the day of the week as given by dow() plus 2.

. generate lastfri2 = lastddate if dow(lastddate) == 5
(9 missing values generated)

. replace lastfri2 = lastddate - 1 if dow(lastddate) == 6
(1 real change made)

. replace lastfri2 = lastddate - dow(lastddate) - 2 if lastfri2 == .
(8 real changes made)

It is good to be cautious about whether that reduction is correct, so we have tried
it both ways. Shortly, we will check to see that we get the same result.



N. J. Cox 723

We can reduce the code all the way down to one line. The subtracted correction can
be thought of as the combination of two rules into one using cond() (Kantor and Cox
2005): if the day of the week is 5 or 6, we subtract day of the week minus 5; otherwise,
we subtract the day of the week plus 2. Differently put, the branching comes from a
split: either the day of the week is greater than or equal to that desired, or it is less
than that desired.

. generate lastfri3 = lastddate - cond(dow(lastddate) >= 5, dow(lastddate) - 5,
> dow(lastddate) + 2)

Even cleaner—at least if you are comfortable with remainders—is a formulation
using mod() (Cox 2007):

. generate lastfri4 = lastddate - mod(dow(lastddate) - 5, 7)

We can also test that using the equivalent function in Mata:

. mata: dow = (6 \ 5 \ 4 \ 3 \ 2 \ 1 \ 0)

. mata: dow, mod(dow :- 5, 7)
1 2

1 6 1
2 5 0
3 4 6
4 3 5
5 2 4
6 1 3
7 0 2

If you are new to Mata, what you see is creation of a column vector with values
descending from 6 to 0, followed by use of mod() to create the term to be subtracted,
and further followed by their display side by side. The operator :- gives elementwise
subtraction. (There are shorter ways to yield the vector dow. Those so minded can
treat that as an exercise.)

That last solution leads to an easy guess about the same solution for any day of the
week to be the last reported date: just change 5 to the result from dow() for the chosen
day. You might like to test this for yourself.



724 Speaking Stata: The last day of the month

Let us check that our different solutions match.

. format lastfri* %td

. list lastddate lastfri*

lastddate lastfri lastfri2 lastfri3 lastfri4

1. 31jan1960 29jan1960 29jan1960 29jan1960 29jan1960
2. 29feb1960 26feb1960 26feb1960 26feb1960 26feb1960
3. 31mar1960 25mar1960 25mar1960 25mar1960 25mar1960
4. 30apr1960 29apr1960 29apr1960 29apr1960 29apr1960
5. 31may1960 27may1960 27may1960 27may1960 27may1960

6. 31jan1961 27jan1961 27jan1961 27jan1961 27jan1961
7. 28feb1961 24feb1961 24feb1961 24feb1961 24feb1961
8. 31mar1961 31mar1961 31mar1961 31mar1961 31mar1961
9. 30apr1961 28apr1961 28apr1961 28apr1961 28apr1961
10. 31may1961 26may1961 26may1961 26may1961 26may1961

In this case, it is easy enough to scan the data to see that all is well. Programmati-
cally, it is better to use [D] assert in a test that all variables are equal. See also Gould
(2003).

Other problems with weekly dates, including day of the week, were discussed in
previous tips (Cox 2010, 2012a,b).

5 Merits of modular arithmetic

In the movie Peggy Sue Got Married (1986), the 43-year-old Peggy Sue (played by
Kathleen Turner) wakes up to find herself back in her past, just before she left high
school. Faced with an algebra test, she tells her teacher: “I happen to know that in the
future I will not have the slightest use for algebra, and I speak from experience.” (You
can find a video clip at https://www.youtube.com/watch?v=-3eKzmozvrI.)

Usually, I dislike jokes against mathematics, but this one always makes me chuckle
when I remember it. The serious point for us: what is the algebra that we will find
use for in our work? It certainly includes modular arithmetic. Cox (2007) gave the
following as general references: Graham, Knuth, and Patashnik (1994); Knuth (1997);
and Biggs (2002). To those, I will add Stewart (1975), Conway and Guy (1996), and
Gardner (1997) at the light, entertaining, or introductory end, and Boute (1992), Leijen
(2001), and Dershowitz and Reingold (2012) if this is all standard stuff and you want
to go deeper or further.

In the tip on uses of the modulus function (really, remainder or residue function),
keywords were selections, sequences, and extractions. A keyword that deserves as much
if not more prominence is rotations. In the third problem, the day of the week is
returned as integers 0 to 6, and the last day of the month can be 0 to 6 days later than
the last one acceptable, so the correction is a rotation of integers 0 to 6. More generally,
whenever there is a rotation, it is likely that mod() could be part of the solution, and

https://www.youtube.com/watch?v=-3eKzmozvrI


N. J. Cox 725

this is the point to carry forward. That may seem intuitive, and if it does, that is
because it is familiar.

Another example of rotation involving dates is wanting to plot seasonal data that are
centered on Northern Hemisphere winters or Southern Hemisphere summers rather than
on months of the conventional calendar year running from January to December (Cox
2006, 2015). If the response of interest is snow in Switzerland or sunshine in Sydney,
the peak of interest will be around the turn of the calendar year, which would be better
in the middle of your graph, not split between two ends. Given, say, a variable month

that starts at 1 for January, we might want to start the time axis at, say, July. That is
a rotation such as given by the Stata code

1 + mod(month - 7,12)

Let us use Mata to think that through. Opening up with a mata command, we
follow with

: month = (1..12)

: month
1 2 3 4 5 6 7 8 9 10 11 12

1 1 2 3 4 5 6 7 8 9 10 11 12

: month :- 7
1 2 3 4 5 6 7 8 9 10 11 12

1 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5

: mod(month :- 7, 12)
1 2 3 4 5 6 7 8 9 10 11 12

1 6 7 8 9 10 11 0 1 2 3 4 5

: 1 :+ mod(month :- 7, 12)
1 2 3 4 5 6 7 8 9 10 11 12

1 7 8 9 10 11 12 1 2 3 4 5 6

As before, :+ and :- are elementwise operators for addition and subtraction.

The trick here, as in many other problems, is that the remainder 0 upward is literally
one step away from what you want. Adding 1 finally gets you a rotation from 1 to 12
to a new 1 to 12.

As in the previous section, there are solutions using other functions, such as cond(),
which is all fine. Knowing several ways to solve a problem always beats knowing none.



726 Speaking Stata: The last day of the month

6 Counsel for coders

We can find simple morals in this tale that extend to many more problems.

Use sandbox datasets to find solutions.

People wanting this kind of calculation with dates often have large datasets, perhaps
with many panels, irregularly spaced dates, and even yet other complications. Set your
real dataset aside and make up a simple dataset for which you can check solutions. I
started with one based on the observation number. With dates, it may be as or more
convenient to use very recent dates so that you know the correct answer or can glance at
an accessible calendar (say, on your phone or laptop) to check that the code is correct. If
I had chosen for an example some dates that are very recent as I write, which is in April
2019, that would become less convenient during the time that this column may remain
useful. The examples show that Mata too can be useful for play within sandboxes.

Know about functions and use the help to look for others. Be prepared to combine
functions, typically by feeding the results of one function to another.

Stata has many functions. I would be surprised at any user outside StataCorp who
had much need for more than a few of them. But it is worth occasionally scanning the
help to find out about functions in your territory that might be useful. Alternatively,
see Cox (2011) for a rapid survey of some personal favorites. Naturally, you might have
seen quickly which functions to use in these problems.

Knowing several functions often means that you will know more than one way to
solve a problem, which is always good news.

Experiment. Sometimes you may need to write out longer code before you can see
how it can be shortened.

Solutions to the third problem using mod() are clean and generalize further, exactly
as would be wished. That said, never be embarrassed by writing simple code that
is clear and easy to understand. That is a virtue too. Code is not just written for
Stata to execute. It is written to be read—to be debugged, extended, or borrowed as
necessary. The reader may be you at a later date, someone in your team, or someone
else benefiting from your work if the code is made public. You do not have to be selfless,
still less saintly, to be motivated to write clear code; the most natural beneficiary is you.

7 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 19-3

. net install dm0100 (to install program files, if available)

. net get dm0100 (to install ancillary files, if available)



N. J. Cox 727

8 References

Biggs, N. L. 2002. Discrete Mathematics. Oxford: Oxford University Press.

Blackburn, B., and L. Holford-Strevens. 1999. The Oxford Companion to the Year.
Oxford: Oxford University Press.

Boute, R. T. 1992. The Euclidean definition of the functions div and mod. ACM
Transactions on Programming Languages and Systems 14: 127–144.

Conway, J. H., and R. K. Guy. 1996. The Book of Numbers. New York: Copernicus.

Cox, N. J. 2006. Speaking Stata: Graphs for all seasons. Stata Journal 6: 397–419.

. 2007. Stata tip 43: Remainders, selections, sequences, extractions: Uses of the
modulus. Stata Journal 7: 143–145.

. 2010. Stata tip 68: Week assumptions. Stata Journal 10: 682–685.

. 2011. Speaking Stata: Fun and fluency with functions. Stata Journal 11:
460–471.

. 2012a. Stata tip 111: More on working with weeks. Stata Journal 12: 565–569.

. 2012b. Stata tip 111: More on working with weeks, erratum. Stata Journal 12:
765.

. 2015. Speaking Stata: Species of origin. Stata Journal 15: 574–587.

Dershowitz, N., and E. M. Reingold. 2012. Modulo intervals: A proposed notation.
ACM SIGACT News 43: 60–64.

Gardner, M. 1997. The Last Recreations: Hydras, Eggs, and Other Mathematical
Mystifications. New York: Springer.

Gould, W. 2003. Stata tip 3: How to be assertive. Stata Journal 3: 448.

Graham, R. L., D. E. Knuth, and O. Patashnik. 1994. Concrete Mathematics: A
Foundation for Computer Science. 2nd ed. Reading, MA: Addison–Wesley.

Kantor, D., and N. J. Cox. 2005. Depending on conditions: A tutorial on the cond()
function. Stata Journal 5: 413–420.

Knuth, D. E. 1997. The Art of Computer Programming, Volume 1: Fundamental
Algorithms. 3rd ed. Reading, MA: Addison–Wesley.

Leijen, D. 2001. Division and modulus for computer scientists. https://www.microsoft.
com/en-us/research/wp-content/uploads/2016/02/divmodnote-letter.pdf.

Reingold, N. M., and N. Dershowitz. 2018. Calendrical Calculations: The Ultimate
Edition. Cambridge: Cambridge University Press.

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/divmodnote-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/divmodnote-letter.pdf


728 Speaking Stata: The last day of the month

Samuels, S. J., and N. J. Cox. 2012. Stata tip 105: Daily dates with missing days. Stata
Journal 12: 159–161.

Stewart, I. 1975. Concepts of Modern Mathematics. Harmondsworth: Penguin.

About the author

Nicholas Cox is a statistically minded geographer at Durham University. He contributes talks,
postings, FAQs, and programs to the Stata user community. He has also coauthored 16 com-
mands in official Stata. He was an author of several inserts in the Stata Technical Bulletin and
is an editor of the Stata Journal. His “Speaking Stata” articles on graphics from 2004 to 2013
have been collected as Speaking Stata Graphics (2014, College Station, TX: Stata Press).


	Table of Contents
	Articles and Columns
	Modeling count data with marginalized zero-inflated distributionsto.44em.to.44em.T. H. Cummings and J. W. Hardin
	kg_nchs: A command for Korn–Graubard confidence intervals and National Center for Health Statistics' Data Presentation Standards for Proportionsto.44em.to.44em.B. W. Ward
	konfound: Command to quantify robustness of causal inferencesto.44em.to.44em.R. Xu, K. A. Frank, S. J. Maroulis, and J. M. Rosenberg
	Estimation of pre- and posttreatment average treatment effects with binary time-varying treatment using Statato.44em.G. Cerulli and M. Ventura
	Visualizing effect modification on contraststo.44em.N. H. Bruun
	Two-sample instrumental-variables regression with potentially weak instrumentsto.44em.to.44em.J. Choi and S. Shen
	Added-variable plots with confidence intervalsto.44em.J. L. Gallup
	cvauroc: Command to compute cross-validated area under the curve for ROC analysis after predictive modeling for binary outcomesto.44em.to.44em.M. A. Luque-Fernandez, D. Redondo-Sánchez, and C. Maringe
	The fayherriot command for estimating small-area indicatorsto.44em.to.44em.C. Halbmeier, A.-K. Kreutzmann, T. Schmid, and C. Schröder
	intcount: A command for fitting count-data models from interval datato.44em.to.44em.S. Pudney
	parallel: A command for parallel computingto.44em.G. G. Vega Yon and B. Quistorff
	Estimation of dynamic panel threshold model using Statato.44em.to.44em.M. H. Seo, S. Kim, and Y.-J. Kim
	gidm: A command for generalized inflated discrete modelsto.44em.to.44em.Y. Xia, Y. Zhou, and T. Cai
	Speaking Stata: The last day of the monthto.44em.N. J. Cox
	Review of Richard Valliant and Jill A. Dever's Survey Weights: A Step-by-Step Guide to Calculationto.44em.S. G. Heeringa
	Review of William Gould's The Mata Book: A Book for Serious Programmers and Those Who Want to Beto.44em.B. Jann

	Notes and Comments
	Stata tip 131: Custom legends for graphs that use translucencyto.44em.T. P. Morris
	Stata tip 132: Tiny tricks and tips on ticksto.44em.N. J. Cox and V. Wiggins

	Software Updates
	announce44.pdf
	Articles and Columns
	Notes and Comments




