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Abstract. In this article, we describe tvdiff, a community-contributed com-
mand that implements a generalization of the difference-in-differences estimator
to the case of binary time-varying treatment with pre- and postintervention peri-
ods. tvdiff is flexible and can accommodate many actual situations, enabling the
user to specify the number of pre- and postintervention periods and a graphical
representation of the estimated coefficients. In addition, tvdiff provides two dis-
tinct tests for the necessary condition of the identification of causal effects, namely,
two tests for the so-called parallel-trend assumption. tvdiff is intended to sim-
plify applied works on program evaluation and causal inference when longitudinal
data are available.
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1 Introduction

In this article, we present the community-contributed command tvdiff, which imple-
ments a generalization of the difference-in-differences (DID) estimator to the case of
(many) pre- and postintervention periods. tvdiff estimates average treatment effects
(ATEs) when the treatment variable is binary and varying over time, allowing the user to
estimate pre- and postintervention effects by selecting the number of pre- and postin-
tervention periods. The results are automatically plotted in an easy-to-read graph.
Furthermore, to assess the reliability of the main identification hypothesis, tvdiff al-
lows one to test the so-called parallel-trend or common-trend assumption implied by
the underlying econometric model. To accomplish this, tvdiff performs two tests: one
using time leads and one using an additional time-trend variable.
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This article is organized as follows. Section 2 introduces the econometrics underlying
the estimation model and shows a graph of the estimated coefficients. Section 3 explains
the rationale underlying parallel-trend tests and shows how to carry them out. Section 4
presents the syntax of tvdiff and a detailed explanation of the command’s options.
Section 5 shows the use of tvdiff by comparing ordinary least squares (OLS) with
fixed-effects estimation results on a simulated data-generating process (DGP), assuming
hidden selection bias. Section 6 provides an application to real data, measuring the
effect of public education expenditure on income equality at the country level. Section 7
concludes the article.

2 The model

We focus on the estimation of treatment effects in the presence of binary time-varying
treatment. Such a setting characterizes several economic and social policies and medical
trials delivered over time. For example, one could be interested in assessing whether a
certain treatment had an impact on a given target variable with some delay and whether
anticipatory effects took place. To formalize this setting, let us start by considering a
binary treatment indicator for individual i at time t:

Dit =

{
1 if unit i is treated at time t
0 otherwise

Let us also assume an outcome equation with contemporaneous treatment plus one lag
and one lead:

Yit = µit + β−1Dit−1 + β0Dit + β+1Dit+1 + γxit + uit (1)

In (1), the β+1 coefficient measures the impact of the treatment one period before its
occurrence, and β−1 measures the impact of treatment one period after it. xit is a
vector of covariates, γ is its conformable coefficient vector, and µit represents a fixed
effect. Autor (2003) provided a first application of the treatment model implied by (1).1

For now, let us assume that treatment can occur only once over the interval [t−1, t+1]
so that we can define the following sequences of possible treatments,

{wj} = {Dit−1, Dit, Dit+1} =





w1 = (0, 0, 0)
w2 = (1, 0, 0)
w3 = (0, 1, 0)
w4 = (0, 0, 1)

(2)

where the sequence w1 is the usual benchmark of no treatment. The generic sequence
is denoted as wj (with j = 1, . . . , J and J = 4) and the associated potential outcome

1. Actually, the notation may seem slightly deceptive because the coefficient of the lead measures
the impact of the treatment one period before its occurrence, while the coefficient of the lagged
treatment variable measures the impact of treatment one period after treatment. These counter-
intuitive effects stem from how the dataset is built when lags and leads are included. Indeed, when
a lag is introduced, the Y vector is shifted one period ahead so that the Yt−1 figure refers to time
t. Similarly for the lead, the Yt+1 figure is shifted backward in correspondence with time t.
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as Y (wj). The “ATE between the two potential outcomes Y (wj) and Y (wk)” can be
easily defined as

ATEjk = E
{
Yit

(
wj
)
− Yit

(
wk
)}

for j, k = 1, . . . , 4 and j 6= k.

Under conditional mean independence—that is, conditioning on both xit and the
fixed effect µit—we have

ATEjk = Ex,µ {ATEjk (xit, µit)} = Ex,µ

[
E
{
Yit(w

j ,xit, µit)− Yit(w
k,xit, µit)

}]

= Ex,µ

{
E
(
Yit|wj ,xit, µit

)
− E

(
Yit|wk,xit, µit

)}

In such a model—with treatment occurring only once out of three periods, plus one lag
and one lead of the treatment variable—we can define six possible ATEs that, for ease
of reference, we collect in a matrix,




w1 w2 w3 w4

w1 −
w2 ATE21 −
w3 ATE31 ATE32 −
w4 ATE41 ATE42 ATE43 −




where the generic ATEjk represents the ATE of the sequence j against the counterfactual
sequence k. Obviously, ATEjk = −ATEkj . Using (1) and the definition of wj with
j = 1, . . . , 4, we can show that

ATE21 = E(Yit|w2)− E(Yit|w1) = (µ+ β−1 + γx)− (µ+ γx) = β−1

ATE31 = E(Yit|w3)− E(Yit|w1) = β0

ATE41 = E(Yit|w4)− E(Yit|w1) = β+1

ATE32 = E(Yit|w3)− E(Yit|w2) = β0 − β−1

ATE42 = E(Yit|w4)− E(Yit|w2) = β+1 − β−1

ATE43 = E(Yit|w4)− E(Yit|w3) = β+1 − β0

In general, one obtains a number of ATEs equal to (J2−J)/2, where J is the number
of treatment sequences; in our example, we have (42 − 4)/2 = 6 ATEs. An important
advantage of a dynamic treatment model is the ability to graphically plot the evolution
of the treatment effects over time. To this end, let us define the predictions of Yit given
the sequence of treatments as

E(Yit|Dit−1, Dit, Dit+1, t) = µt + β−1Dit−1 + β0Dit + β+1Dit+1 + γxt (3)

Consistently with the econometric practice, to make (3) computable, we assume additive
separability; that is, µit = θi + δt, where θi and δt represent individual and time-
fixed effects, respectively. It follows that µit ≡ E(µit|Dit−1, Dit, Dit+1, t) = E(µit|t) =
E(θi + δt|t) = θ + δt.

To keep things simple, let us restrict our attention only to the case of two specific
treatment sequences,

wT = {. . . , Dit−2 = 0, Dit−1 = 0, Dit = 1, Dit+1 = 0, Dit+2 = 0, . . .}
wC = {. . . , Dit−2 = 0, Dit−1 = 0, Dit = 0, Dit+1 = 0, Dit+2 = 0, . . .}
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where wT indicates the sequence in which treatment occurs only at time t and wC

indicates the no-treatment case. By setting Ait = {Dit−1, Dit, Dit+1, t} and iterating
(3) one period back and one period forward, one obtains the prediction of Y at t− 1, t,
and t+ 1,

E(Yit−1|Ait−1) = µt−1 + β−1Dit−2 + β0Dit−1 + β+1Dit + γxt−1

E(Yit|Ait) = µt + β−1Dit−1 + β0Dit + β+1Dit+1 + γxt

E(Yit+1|Ait+1) = µt+1 + β−1Dit + β0Dit+1 + β+1Dit+2 + γxt+1

which can be used to calculate the expected outcome over t− 1, t, t+ 1 conditional on
wT and wC . Thus,

• for wT , we have

E(Yit−1|wT = . . . , 0, 0, 1, 0, 0, . . .) = µt−1 + β+1 + γxt−1

E(Yit|wT = . . . , 0, 0, 1, 0, 0, . . .) = µt + β0 + γxt

E(Yit+1|wT = . . . , 0, 0, 1, 0, 0, . . .) = µt+1 + β−1 + γxt+1

• for wC , we have

E(Yit−1|wC = . . . , 0, 0, 0, 0, 0, . . .) = µt−1 + γxt−1

E(Yit|wC = . . . , 0, 0, 0, 0, 0, . . .) = µt + γxt

E(Yit+1|wC = . . . , 0, 0, 0, 0, 0, . . .) = µt+1 + γxt+1
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We can now plot these predictions over time (figure 1) and depict these situations:
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Figure 1. Pre- (t−1) and post- (t+1) treatment effect of a policy delivered at t. Source:
Cerulli (2015, 202).

• If β+1 6= 0, treatment delivered at time t affects the outcome at time t−1. Current
treatment has an effect on past outcomes (anticipatory effect). Therefore, the
pretreatment period is affected by current treatment.

• If β0 6= 0, treatment delivered at time t affects the outcome at time t, generating
contemporaneous effects.

• If β−1 6= 0, treatment delivered at time t affects the outcome at time t + 1.
Current treatment has an effect on future outcomes (lagged effect). Therefore,
the posttreatment period is affected by current treatment.

3 Testing the parallel-trend assumption

The pattern of the leads is also important to check for causality in the spirit of Granger
(1969). Indeed, conditional on xit and the fixed effect, if Dit causes Yit, the leads
should not be jointly different from zero in an equation like (1). A test for checking
whether all the β+s’s are jointly equal to zero, s = 1, . . . , S, indirectly tests whether the
parallel-trend assumption holds. Formally, we can define such a test as

H0 : β+1 = β+2 = · · · = β+S = 0
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Note that rejecting H0 invalidates the causal interpretation of the estimates, while
not rejecting H0 implies only a necessary condition for the parallel-trend to hold because
the necessary and sufficient condition still remains untestable, being formulated on
counterfactual unobservable quantities.

Another approach to test the parallel-trend assumption (still a necessary condition)
requires dropping lags and leads from (1) and augmenting it with the time-trend variable
t and its interaction with Dit. If the coefficient of the interaction term is statistically
not significant, one can reasonably expect the parallel-trend assumption to hold (see
Angrist and Pischke [2009, 238–239]).

To provide ground for such a test, let us write down the following potential-outcome
model: 




Y0,it = µ0 + λ0t+ γxit + θi + δt + u0,it

Y1,it = µ1 + λ1t+ γxit + θi + δt + u1,it

Yit = Y0,it +Dit (Y1,it − Y0,it)

We allow again for an individual fixed effect (θi) and a time effect (δt), with the param-
eters λ1 and λ0 being the treated and untreated time trends, respectively. This way, by
plugging the first two equations into the third one, we obtain

Yit = µ0 + λ0t+ γxit +Dit(µ1 − µ0) +Ditt(λ1 − λ0) + θi + δt + ηit

with ηit = [u0,it +Dit (u1,it − u0,it)]. Equivalently, we can write the previous equation
as

Yit = µ0 + λ0t+ γxit +Ditµ+Dit × t× λ+ θi + δt + ηit

which can be consistently estimated by a fixed-effects regression where the significance
test for λ = (λ1 − λ0) provides a test for the parallel-trend assumption. Accepting
the null H0: λ = 0 implies accepting that the parallel-trend assumption is not violated
whenever one assumes no “anticipation effects”).

Finally, note that we can extend the previous test by also considering quadratic or
even cubic time trends.

4 The tvdiff command

4.1 Description

tvdiff estimates ATEs in setups like the one just discussed, namely, when treatment
is binary and varying over time. Using tvdiff, the user can estimate the pre- and
postintervention effects by selecting the pre- and postintervention periods and plot the
results in an easy-to-read graph. To assess the reliability of the causal interpretation
of the results achieved by the user’s specified model, tvdiff allows one to test for the
parallel-trend assumption using two tests, that is, the joint test on the leads and the
time-trend test. tvdiff is a generalization of the DID approach to the case of many
post- and preintervention times.
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4.2 Syntax

The syntax of the command is as follows:

tvdiff outcome treatment
[
varlist

] [
if
] [

in
] [

weight
]
, model(modeltype)

pre(#) post(#)
[
test tt graph save graph(graphname) vce(vcetype)

]

outcome is the target variable measuring the impact of treatment.

treatment is the binary treatment variable taking a value of 1 for treated units and a
value of 0 for untreated units.

varlist is the set of pretreatment (or observable confounding) variables.

aweights, fweights, and pweights are allowed; see [U] 11.1.6 weight.

4.3 Options

model(modeltype) specifies the estimation model, where modeltype must be fe (fixed
effects) or ols (OLS). model() is required.

pre(#) specifies the number (#) of pretreatment periods. pre() is required.

post(#) specifies the number (#) of posttreatment periods. post() is required.

test tt performs the parallel-trend test using the time-trend approach. The default is
to use the leads.

graph allows for a graph of the results. It uses the coefplot command implemented
by Jann (2014).

save graph(graphname) allows one to save the graph as graphname.

vce(vcetype) allows for robust and clustered regression standard errors in the model’s
estimates.

4.4 Remarks

tvdiff creates the following variables:

• D L1, . . . , D Lm are the lags of the treatment variable, with m equal to # in the
post(#) option.

• D F1, . . . , D Fp are the leads of the treatment variable, with p equal to # in the
pre(#) option.

Finally, note that i) the treatment has to be a 0/1 binary variable (1 = treated,
0 = untreated) and that ii) before running tvdiff, one has to install the community-
contributed command coefplot (Jann 2014).
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4.5 Stored results

tvdiff stores the following in e():

Scalars
e(N) total number of (used) observations
e(N1) number of (used) treated units
e(N0) number of (used) untreated units
e(ate) value of the (contemporaneous) ATE

5 An application using simulated data in the presence of
selection bias

This example shows how to correctly run tvdiff and shows how it solves the selection
bias that often arises in real causal inference applications.

For this purpose, we design a simulated DGP allowing for a nonzero correlation
between the “selection equation” or “treatment equation” (the D-equation) and the
“outcome equation” (the y-equation), due to the presence of unobservable selection as
captured by an individual specific effect acting as confounder.

Consider the same treatment setting of (1); that is, only one lead and one lag are
included. Exclude, without loss of generality, observable confounders x. Below, we
show that (1) can be derived from a generalized potential-outcome model made of three
treatments, that is, the treatment sequences set out in (2):

yit = yit(w
1) +Dit−1

{
yit
(
w2
)
− yit

(
w1
)}

+Dit

{
yit
(
w3
)
− yit

(
w1
)}

+Dit+1

{
yit
(
w4
)
− yit

(
w1
)}

(4)

Assume that the potential outcome takes on this form

yit(w
j) = βj + uj

it = βj + εjit + ci (5)

where uj
it = ci + εjit. ci represents the individual fixed effect, εjit represents a pure

random shock, and βj is a parameter to be estimated. By substituting (5) into (4), we
can see that

yit = (β1 + ci) +Dit−1(β2 − β1) +Dit(β3 − β1) +Dit+1(β4 − β1) + ηit (6)

where ηit = ε1it +Dit−1(ε
2
it − ε1it) +Dit(ε

3
it − ε1it) +Dit+1(ε

4
it − ε1it).

Equation (6) is equivalent to (1), apart from xit, under the specification β−1 =
β2 − β1, β0 = β3 − β1, β+1 = β4 − β1, µit = β1 + ci, and finally, uit = ηit.

By using the definitions of ATEjk, we can finally rewrite (6) as

yit = β1 + ci +Dit−1ATE21 +DitATE31 +Dit+1ATE41 + ηit
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We can now perform our simulation experiment showing that tvdiff with the option
model(fe), unlike the option model(ols), can solve a selection-on-unobservables prob-
lem. The DGP is such that the individual effect ci feeds into both the potential outcomes,
through the error term, and the selection equation for Dit:

ci ∼ normal(3, 1)

uj
it = c3i + εjit
j = 1, 2, 3, 4

εit ∼ normal(0, 1)

Dit = 1 (10× ci + εit > 0)

β1 = 10, β2 = 20, β3 = 30, β4 = 40

Observe that ci enters the potential outcomes’ random shocks, uj
it, nonlinearly. This

choice depends on the fact that Dit is modeled as binary and nonlinear within this DGP,
thus requiring a nonlinear form of the fixed effect in the potential-outcome equations to
produce substantial OLS bias. Below is the code for this DGP:

*** Stata code for the DGP ****************************************************
set obs 2000 // set the number of individuals
set seed 101 // set seed to obtain the same results
generate c=rnormal(3,1) // time-invariant individual specific heterogeneity
generate id=_n // generate individual specific ID
expand 100 // create 100 observations for each initial

// observation
by id, sort: generate time=_n // year of observation
generate D=(rnormal()+10*c>0) // selection equation
generate u1= rnormal()+1*c^3 // correlated error of the potential outcome 1
generate u2= rnormal()+1*c^3 // correlated error of the potential outcome 2
generate u3= rnormal()+1*c^3 // correlated error of the potential outcome 3
generate u4= rnormal()+1*c^3 // correlated error of the potential outcome 4
generate y1=10+u1 // potential outcome 1
generate y2=20+u2 // potential outcome 2
generate y3=30+u3 // potential outcome 3
generate y4=40+u4 // potential outcome 4
tsset id time // tsset the data
generate D_L1 = L1.D // generate one lag of D
generate D_F1=F1.D // generate one lead of D
// Generate the observable y using the POM
generate y=y1+D_L1*(y2-y1)+D*(y3-y1)+D_F1*(y4-y1)
*******************************************************************************
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We run tvdiff twice, once with the option model(ols) and once with model(fe):

. ******************************************************************************

. * tvdiff --> OLS estimates

. ******************************************************************************

. tvdiff y D, model(ols) pre(1) post(1) vce(robust)

(output omitted )

Robust
y Coef. Std. Err. t P>|t| [95% Conf. Interval]

_D_F1 64.83851 .5517372 117.52 0.000 63.75712 65.9199
D 56.39676 .6552312 86.07 0.000 55.11252 57.681

_D_L1 44.52236 .9123655 48.80 0.000 42.73415 46.31058
_cons -60.43861 1.253538 -48.21 0.000 -62.89551 -57.98171

(output omitted )

. ******************************************************************************

. * tvdiff --> fixed-effects estimates

. ******************************************************************************

. tvdiff y D, model(fe) pre(1) post(1) vce(robust)

(output omitted )

(Std. Err. adjusted for 2,000 clusters in id)

Robust
y Coef. Std. Err. t P>|t| [95% Conf. Interval]

_D_F1 29.5395 .4757364 62.09 0.000 28.60651 30.4725
D 21.09776 .5077086 41.55 0.000 20.10206 22.09345

_D_L1 9.222757 .1645905 56.03 0.000 8.89997 9.545544
_cons 45.45666 .1965579 231.26 0.000 45.07118 45.84214

(output omitted )

As expected, because of the correlation between the outcome equation and the se-
lection equation entailed by this DGP, OLS estimates are severely biased. The OLS

coefficient of the lead—expected to be equal to 30—is in fact equal to about 65, and
large biases also arise for the contemporaneous and the lagged coefficients (respectively,
about 56 instead of 20 and about 44 instead of 10). On the contrary, the fixed-effects es-
timator performs well, with all the coefficients close to the true coefficients, thus showing
that it effectively solves the selection bias underlying this DGP. Introducing exogenous
variables within the previous DGP does not change these results.

6 An application to the effect of public education expen-
diture on income equality

In this section, we provide an application of tvdiff to real data. We apply tvdiff

to measure the effect of public education effort on income equality at the country
level. To this end, we use the longitudinal data of Castellacci and Natera (2011) to
build cana.dta. This dataset is a rich and complete set of 41 indicators for 134 coun-
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tries observed over the 1980–2008 period for a total of 3,886 country-year observations.
Castellacci and Natera’s (2011) data are publicly available and allow for detailed cross-
country analyses of national systems, growth, and development.

Within these data, public education effort is measured as the (current and capital)
total public expenditure on education as a percentage of gross domestic product (GDP)
(variable es12educe), while income equality is measured as the complement of the Gini
index (variable sc8ginii). In this application, we consider as controls the following
covariates as found in Castellacci and Natera (2011):

• i3teler: Telecommunication Revenue. Revenue from the provision of
telecommunications services such as fixed-line, mobile, and data, % of GDP.

• i4elecc: Electric power consumption. Production of power plants and com-
bined heat and power plants less transmission, distribution, and transformation
losses and own use by heat and power plants.

• i6telecap: Mobile and fixed-line subscribers. Total telephone subscribers
(fixed line plus mobile) per 1000 inhabitants.

• ec16openi: Openness Indicator. (Import + Export)/GDP. PPP, 2000 USD.

• sc20trust: Most people can be trusted. Percentage of respondents who
“agree” with this statement.

• ec14credg: Domestic Credit by Banking Sector. Includes all credit to vari-
ous sectors on a gross basis, with the exception of credit to the central government,
which is net, as a share of GDP.

• pf20demoa: Index Democracy and Autocracy. Democracy: political partic-
ipation is full and competitive, executive recruitment is elective, constraints on
the chief executive are substantial. Autocracy: it restricts or suppresses political
participation. The index ranges from +10 (democratic) to −10 (autocratic).

The binary treatment Dit is defined as follows: consider the “within” median of
public expenditure in education over GDP, namely, the median by country of the share
of public expenditure in education over GDP for the 1980–2008 period. If in year t,
country i performs a public expenditure in education larger than its “within” median,
then Dit = 1 (the pair country-year is thus “treated”); otherwise, Dit = 0. In other
words, the treatment is defined as the tendency of a country to boost its expenditure in
education in a specific year compared with a baseline reference, measured as its median
performance over the overall time span. The outcome y is measured as the “total public
expenditure in education as a percentage of GDP”.
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We do this exercise by running the following code, where tvdiff is used with five
pretreatment periods and nine posttreatment periods:

********************************************************************************
use cana.dta, clear
********************************************************************************
destring _all, replace
********************************************************************************
* TREATMENT
********************************************************************************
global S "es12educe" // public expenditure in education
by Country, sort: egen med_$S=median($S)
capture drop demed$S
generate demed_$S=$S-med_$S
capture drop d$S
generate d$S=.
replace d$S=1 if demed_$S>0 & demed_$S!=.
replace d$S=0 if demed_$S<=0
summarize d$S // treatment dummy 0,1
global D d$S // democracy (treatment)
********************************************************************************
* OUTCOME
********************************************************************************
generate equality=100-sc8ginii
global y "equality" // equality
********************************************************************************
* COVARIATES
********************************************************************************
global x "i3teler i4elecc i6telecap ec16openi sc20trust ec14credg pf20demoa"
********************************************************************************
set scheme s1mono
encode Country, gen(Country_n)
tsset Country_n Year
tvdiff $y $D $x, model(fe) pre(5) post(9) vce(robust) ///

graph save_graph(mygraph)
********************************************************************************

For brevity’s sake, the regression outputs are omitted, ensuring that both parallel-
trend tests are passed, and we focus on the graph in figure 2. This figure shows that
from the time of treatment (that is, higher than the median education expenditure)
onward, the ATE, given by the level of equality in income distribution, increases steeply
and remains positive until the seventh year after treatment.
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Figure 2. Graph of the pre- and posttreatment pattern for the relation between country
investment in public education and income equality

The pattern is a sort of parabola, showing that the effect of one short increase in
education expenditure above the median has a transitory effect tending to fade away
around seven years after treatment. Considering that significance is relatively high after
3, 4, and 5 years from treatment time (t), this finding shows a quite sensible effect of
public investment in education on income equality. More specifically, we see that the
(average) equality index difference between treated and untreated reaches a value of
around 0.5% three and four years after treatment and then decreases in the subsequent
years.

Of course, other possible confounders may be present. However, the use of fixed-
effects estimation should mitigate unobservable selection, thus making these results also
sufficiently robust to selection on unobservables. This is one of the main strengths of
DID that tvdiff helps to apply.

7 Conclusion

In this article, we presented tvdiff, a community-contributed command for estimating
ATEs when the treatment is binary and varying over time. We introduced the econo-
metrics underlying the model fit by tvdiff and showed the possibility to graph the
estimated effects. Subsequently, we showed the logic of the two parallel trends tests and
how to carry them out with tvdiff. We finally presented the command’s syntax and
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provided two applications: one on simulated data and one on real data evaluating the
effect of public education expenditure on income equality.

Note that one must be cautious when using this command for causal inference be-
cause both tests allow for testing only the necessary condition for identification to hold.
Hence, if the parallel trend is supported by the tests, the user should validly motivate
why the sufficient condition is expected to hold under the specific context of analysis.

We hope readers will find tvdiff useful for practical program evaluation in appropri-
ate contexts. We envision further developments to extend this command to multivalued
and continuous treatment settings.
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9 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 19-3

. net install st0566 (to install program files, if available)

. net get st0566 (to install ancillary files, if available)
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