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Abstract. Researchers who model fractional dependent variables often need to
consider whether their data were generated by a two-part process. Two-part mod-
els are ideal for modeling two-part processes because they allow us to model the
participation and magnitude decisions separately. While community-contributed
commands currently facilitate estimation of two-part models, no specialized com-
mand exists for fitting two-part models with process dependency. In this article,
I describe generalized two-part fractional regression, which allows for dependency
between models’ parts. I show how this model can be fit using the community-
contributed cmp command (Roodman, 2011, Stata Journal 11: 159-206). I use a
data example on the financial leverage of firms to illustrate how cmp can be used to
fit generalized two-part fractional regression. Furthermore, I show how to obtain
predicted values of the fractional dependent variable and marginal effects that are
useful for model interpretation. Finally, I show how to compute model fit statistics
and perform the RESET test, which are useful for model evaluation.

Keywords: st0558, generalized two-part fractional regression, process dependence,
fractional probit, cmp

1 Introduction

In many disciplines, researchers need to fit regression models where the dependent
variable is in the form of a fraction, percentage, or proportion. In finance, a commonly
examined fractional dependent variable (FDV) is the financial leverage ratio of firms,
that is, the amount of debt a firm issues relative to its amount of capital. Empirical
research suggests that the financial leverage decision of firms is best described as a
two-step process; first, the firm decides whether to issue debt, and then it decides how
much debt to issue (Ramalho and da Silva 2009). However, the process determining
which firms choose to issue debt is nonrandom because firms self-select into a leveraged
position. Thus, we need a model that not only can separate the effects on the debt
versus no debt from the effects on the amount-of-debt decision but also can account
for the nonrandom selection that leads to some firms issuing debt. The generalized
two-part fractional regression model (GTP-FRM) is such a model.

Before we dig into the GTP-FRM, I will give a short introduction on modeling FDVs.
Modeling an FDV requires a fractional regression model (FRM). If we use the quasi—
maximum likelihood estimator (QMLE) and the logit link, the model is known as the
fractional logit; it is known as the fractional probit if we use the probit (Papke and
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Wooldridge 1996). An FRM is preferable because it ensures predictions within the unit
interval and requires only correct specification of the conditional mean. Estimation of
FRMs with various link functions is straightforward in Stata with the glm command and
has become even more accessible with the Stata 14 addition of the fracreg command.

In many cases, an FDV may contain many values at one or both boundaries. The
values at, for example, the zero boundary may be governed by a different process than
the values between the boundaries. For instance, the covariates that affect a firm’s deci-
sion to issue debt are likely to be different from those affecting how much debt to issue
(Cook, Kieschnick, and McCullough 2008). For such purposes, Ramalho and da Silva
(2009) proposed a two-part fractional model (TP-FRM). The TP-FRM allows for spec-
ification of a binary model for the participation decision (y = 0 versus y > 0), for
example, debt versus no debt, and an FRM for the magnitude decision (the magni-
tude of y when y > 0), such as how much debt to issue. Using this model, we allow
the effects of a covariate on the participation decision to be different from the mag-
nitude decision. In Stata, TP-FRMs can be fit using the community-contributed frm
(Ramalho, Ramalho, and Murteira 2011) or tpm (Belotti et al. 2015) command.

In some cases, we may need even more flexibility than what is offered by the TP-FRM,
such as when the participation and magnitude decisions are dependent. Continuing the
example from above, there may be a selection bias in the types of firms that choose
to issue debt. This problem is analogous to the well-known sample selection prob-
lem. Recently, Schwiebert and Wagner (2015) proposed the GTP-FRM as a means to
model fractional two-part processes with dependence. The GTP-FRM formulation is ad-
vantageous because it nests the TP-FRM as a special case when the two processes are
independent.

Currently, the GTP-FRM does not have a dedicated Stata command. In this article, I
demonstrate how Stata users can fit GTP-FRMs by using the conditional mixed-process
framework implemented by the cmp (Roodman 2011) command. In section 2, I briefly
describe the GTP-FRM. In section 3, I give a short tutorial showing how to use cmp
to fit the GTP-FRM, and I demonstrate how to compute predictions, marginal effects,
information criteria, and RESET test statistics. In section 4, I provide a short conclusion.

2 Brief review of generalized two-part fractional regres-
sion

In many practical applications, FDVs naturally give rise to many zeros. For example,
some firms do not have any exports (0% of total sales attributed to foreign sales), some
individuals do not smoke (0% of their income spent on cigarettes), and some firms do not
issue any debt (0% leveraged capital). When encountering such FDVs, researchers must
decide how to qualitatively interpret the zeros (Ramalho, Ramalho, and Murteira 2011),
because the zeros may actually be best described by a different mechanism than the
positive values. Consider, for instance, the financial leverage decisions of firms. While
a financing life-cycle approach would argue that older firms are more likely to issue
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debt, pecking-order theory would suggest that older firms prefer a lower proportion of
debt because of a large amount of accumulated retained earnings (Ramalho and da Silva
2009). In such cases, a TP-FRM is ideal because it allows us to model the participation
and magnitude decisions separately.

If a two-part process constitutes the best description of our data, we need to consider
whether the two decisions are dependent. If unobserved factors affecting the decision
to issue debt are correlated with factors that influence the proportion of debt sought by
firms, the TP-FRM estimates will be biased (Wooldridge 2010). For instance, research
suggests that a moderate degree of CEO narcissism is associated with greater corporate
risk taking (Aabo and Eriksen 2018). If CEO narcissism is related to firm profitability
but is not accounted for, then the estimate of firm profitability on the proportion of debt
is likely to be biased. The GTP-FRM models the correlation between the two decisions,
thus attempting to both estimate and adjust for the dependency between the processes.
This makes the GTP-FRM ideal for FDVs best described by dependent two-part processes.

2.1 Model formulation

Following Schwiebert and Wagner (2015), we start by specifying the process determining
the participation decision, where we assume an FDV, y, with values in the unit interval:

s=1(z'By +u > 0) (1)

where s is an indicator variable that takes the value 1 if the value of the outcome, y, is
nonzero; z is a vector of covariates affecting the participation decision; 8, is a vector of
coefficients; and w is the error term. To model the participation decision in (1), we use
a probit model specification,

Pr(s =1|z) = ®(z'3,)

where ®(:) is the standard normal cumulative distribution function. We specify the
conditional mean of the magnitude decision as follows:

E(y|x,z,s=0)=0

®, (Xlﬂ2» Z/ﬁﬁ P)
(%' By)

x is a vector of covariates affecting the magnitude decision, B, is a coefficient vector
with respect to x, and ®5(-) denotes the bivariate standard normal distribution with p
representing the correlation between the participation and magnitude decisions. Equa-
tion (2) is the fractional probit specification, which is used to model nonzero values of
y. If the two processes in (2) are independent—that is, if p = 0—then the GTP-FRM
reduces to the simpler TP-FRM, where E(y|x,z,s = 1) = ®(x'3,). However, if p > 0,
then the TP-FRM is misspecified. The larger the dependence between the two processes,
the larger the bias we would expect by using a TP-FRM.

E(y|x,z,s=1) = (2)

Based on the above formulation, the GTP-FRM is clearly a more complicated model
than the TP-FRM. In contrast to the TP-FRM, the GTP-FRM lets both x and z affect the
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magnitude decision: While x has a direct effect, the effect of z is indirect through s
(Schwiebert and Wagner 2015). This extra complexity does not come for free. Indeed,
the GTP-FRM needs an exclusion restriction to be identified; that is, it needs a vari-
able affecting the participation decision without directly affecting the amount decision.
Though we may be able to fit a GTP-FRM without an exclusion restriction in practice,
we should not trust its estimates (Sartori 2003).

2.2 Marginal effects

As for the regular binary probit model, we should abstain from interpreting the model
coefficients directly. Instead, we should rely on marginal effects preferably accompanied
by graphical illustrations of predicted values of the FDV (Wulff 2015). As shown by
Schwiebert and Wagner (2015), the predicted values of the FRM given values of the
covariates are given by

E(ylx,z) = E(y|x,z,s = 1) Pr(s = 1]2) (3)
= ®5(x'B5,2'B1; p) (4)
As for other two-part models, it is possible to obtain other types of predictions based

on the GTP-FRM. For instance, we can compute the expected value of y conditional on
y > 0, that is, the term E(y|x,z,s = 1).

Based on (4), the marginal effect of xj, in the GTP-FRM is given by
OE(y|x,2) _ 0P (x'By,2'By; p)
Oxy, Oxy,

As I illustrate later, marginal effects and predicted values of the FDV can be obtained
using margins after fitting the model using cmp. We will especially need to use (3) to
obtain the predicted values of the FRM and the corresponding marginal effects.

2.3 Model fit measures

When comparing various fractional model specifications, we can rely on the Akaike infor-
mation criterion (AIC) and Bayesian information criterion (BIC). Comparing measures
based on pseudolikelihoods from different models can be tricky. Papke and Wooldridge
(1996) argue for defining R? in terms of the actual and predicted values. Like R?,
information criteria can also be defined in terms of the residual sum of squares (RSS).
Thus, I suggest using the following definitions of AIC and BIC when comparing FRMs,
TP-FRMs, and GTP-FRMs:

RSS 2K

AIC = log (T) + 7 (5)
K1

BIC = log (RTSS) + %(n) (6)

where n is the sample size and K is the total number of parameters from each part of
the GTP-FRM. Defining information criteria in this way has two major advantages when



J. N. Wulff 379

working with FDVs. First, they are comparable across any model for the conditional
mean and for any estimation method (Papke and Wooldridge 1996). For instance, we
can compare our GTP-FRM with its tobit equivalent—the exponential type II tobit
model for corner solution responses (Wulff and Villadsen 2018). Second, we do not
have to worry about unintentionally comparing information criteria across models with
different (pseudo)likelihood functions.

2.4 RESET test

For the GTP-FRM, we can use Ramsey’s (1969) RESET test as a simple functional form
diagnostic. Essentially, the test can be used to check for missing nonlinearities in the
GTP-FRM or any other index model (Pagan and Vella 1989). For each model part, we
obtain the index predictions. These are added in squared and cubic form to the relevant
model part, after which we can perform a joint hypothesis test of the coefficients of the
two extra terms (Ramalho and Ramalho 2012). For the fractional part, it is important
that we use the robust version of the test. However, because robust standard errors
are computed by default by fracreg probit, this is of no concern to the user when
following the implementation I suggest below.

3 Stata implementation

The FRM, TP-FRM, and GTP-FRM can be fit using QMLE. As noted in the introduc-
tion, the fractional probit is already implemented in the fracreg probit routine. This
implementation and the regular binary probit model are both available in the cmp frame-
work. Thus, we can use the power of cmp not only to fit GTP-FRMs but also to compute
marginal effects and predictions.

3.1 Data example

To illustrate the use of cmp, I rely on data from the study on financial leverage decisions
by Ramalho and da Silva (2009). The data are available for download in a .txt file-
format at http: //home.iscte-iul.pt / ~jjsro /data_code / ER-2015.txt and can be loaded
into Stata by using import delimited. The dataset contains information on several
firm characteristics. For this example, I will rely on leverage (long-term debt to
long-term capital assets), size (natural logarithm of sales), and tangibility (sum of
tangible assets and inventories divided by total assets). A complete description of the
data is available in Ramalho and da Silva (2009).

. summarize leverage size tangibility

Variable ‘ Obs Mean Std. Dev. Min Max
leverage 1,295 .1483878 .1988493 0 .9779415
size 1,295 15.81369 1.385884 11.73562 22.26972

tangibility 1,295 .3770338 .1967606 .0015893 .9774859


http://home.iscte-iul.pt/~jjsro/data_code/ER-2015.txt
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First, I generate a nonzero indicator variable indicating the firms that have issued
debt. To simplify the syntax, I assign the regressors to a global macro. I exclude the
size variable from the list because we are going to use it as an exclusion restriction
below. Valid exclusion restrictions are notoriously hard to come by, and this example is
not different. By using size as an exclusion restriction, we are assuming that firm size
is directly related to the participation decision but only related to the amount decision
through the participation decision. In other words, firm size does not directly affect the
proportion of debt sought by firms. While this assumption may be questionable, it will
do for the purpose of this illustration.

. generate s = leverage > 0 // nonzero indicator variable

. global regressors ndts tangibility profitability growth age liquidity
> manufacturing construction trade communication

3.2 Model estimation strategy

Some readers might have noticed how the GTP-FRM looks conceptually similar to the
Heckman (1976) sample-selection model. In fact, the GTP-FRM is also applicable to
fractional missing-data problems (Schwiebert and Wagner 2015). In the current setting,
however, we do not have a sample-selection issue. Instead, we have a fractional response
where the FDV is always observed yet is generated by two different dependent processes.

Conveniently, we can exploit the similarities to the sample selection model by using
the same approach to fit the GTP-FRM. We do this by estimating systems of equations
with errors that are jointly normally distributed. If our FDV had been binary, this
estimation could have been performed using the heckprobit command. Because cmp
allows for QMLE with a probit link, we can use cmp to estimate our parameters from the
participation and magnitude equations simultaneously while obtaining an estimate of
and accounting for p. In this way, cmp allows the participation and decision equations to
vary by observation and enables consistent and efficient estimation. Thus, the estimation
procedure becomes similar to that of the heckprobit command.

3.3 Syntax

The syntax for cmp is thoroughly described in Roodman (2011) and the cmp help file.
Thus, in line with the aim of this article, I focus on its application to GTP-FRMSs.

The cmp setup subcommand defines global macros that we use in the command line.
In the command line, I specify the two equations, using size as an exclusion restriction
in the participation equation. In indicators(), I specify the fractional probit using
cmp_frac and the regular probit using cmp_probit. Note that I multiply cmp_frac by
the nonzero indicator variable, s. I use quietly to suppress most model output.
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. cmp setup
$cmp_out
$cmp_missing
$cmp_cont
$cmp_left
$cmp_right
$cmp_probit
$cmp_oprobit
$cmp_mprobit
$cmp_int
$cmp_trunc
$cmp_roprobit
$cmp_~frac

= OO0 N O WN -

. cmp (leverage

Note: fractional probit models imply vce(robust).

o

0

(deprecated)

= $regressors) (s = size $regressors),
> indicators(s*$cmp_frac $cmp_probit) quietly

Fitting individual models as starting point for full model fit.

Fitting full model.

Mixed-process regression Number of obs = 1,295
Wald chi2(21) = 216.81
Log pseudolikelihood = -1190.6853 Prob > chi2 = 0.0000
Robust

Coef. Std. Err. z P>|z| [95% Conf. Interval]

leverage
ndts -.05636411 .0265636 -2.02 0.043 -.1057048 -.0015774
tangibility .6278901 .1894899 3.31 0.001 .2564967 .9992835
profitability -2.502263 .3480411 -7.19  0.000 -3.184411  -1.820115
growth .0038992 .0014633 2.66 0.008 .0010312 .0067671
age -.0007824 .0011114 -0.70 0.481 -.0029606 .0013959
liquidity -.6594569 .2718519 -2.43 0.015 -1.192277 -.126637
manufacturing -.1415292 .1083216 -1.31 0.191 -.3538357 .0707773
construction .0186647 .1369112 0.14 0.892 -.2496764 .2870058
trade -.329909 .2714891 -1.22  0.224 -.8620179 .2021999
communication .0456521 .14377 0.32 0.751 -.2361319 .327436
_cons -.6295222 .1755718 -3.59 0.000 -.9736366  -.2854078

s

size .2159975 .0327738 6.59 0.000 .1517621 .280233
ndts -.0470524 .0243417 -1.93 0.053 -.0947612 .0006564
tangibility 1.526855 .2211802 6.90 0.000 1.09335 1.96036
profitability -2.266795 .4896678 -4.63 0.000 -3.226526 -1.307064
growth .0051865 .0018226 2.85 0.004 .0016143 .0087587
age -.0009803 .0019149 -0.51 0.609 -.0047334 .0027728
liquidity -1.504778 .2610957 -5.76  0.000 -2.016517  -.9930402
manufacturing -.1583662 .1738511 -0.91 0.362 -.4991081 .1823756
construction -.2397432 .2089277 -1.15 0.251 -.649234 .1697475
trade -.7439219 .3545159 -2.10 0.036 -1.43876  -.0490834
communication -.2948638 2442249 -1.21  0.227 -.7735359 .1838083
_cons -3.285265 .5689352 -5.77 0.000 -4.400358 -2.170173
/atanhrho_12 .6036901 .2445748 2.47 0.014 .1243323 1.083048
rho_12 .5396701 .1733439 .1236956 . 7943266

. estimates store gt_frm

381
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The first part of the output relates to the amount decision (leverage), while the
second part of the output refers to the participation decision (s). The chosen estimation
strategy provides a direct estimate of arctanh p = (1/2)In{(1 + p)/(1 + p)}. Automat-
ically, a Wald test is performed rejecting the regular TP-FRM at o = 0.05. Thus, a
comparison with the TP-FRM is already incorporated in the procedure. Finally, we ob-
serve that the estimate of p is around 0.5. Thus, the Heckman-type estimation makes
it possible to estimate the magnitude of the dependency between the two processes.

For illustration, we can compare the GTP-FRM estimates with those of the TP-FRM
and regular FRM by using esttab (Jann 2005):

. quietly fracreg probit leverage size $regressors

. estimates store frm

. quietly probit leverage size $regressors

. estimates store tp_frm_participation

. quietly fracreg probit leverage $regressors if leverage > O
. estimates store tp_frm_magnitude

esttab frm tp_frm_participation tp_frm_magnitude, nostar
> mlabel(”FRM" "TP-FRM (1)" "TP-FRM (2)")

(€D) (2) (3
FRM  TP-FRM (1) TP-FRM (2)
leverage
size 0.0609 0.216
(3.34) (7.58)
ndts -0.0584 -0.0468 -0.0397
(-2.31) (-1.54) (-1.47)
tangibility 0.849 1.521 0.210
(5.95) (7.06) (1.49)
profitabil~y -2.470 -2.250 -1.818
(-7.14) (-4.55) (-5.41)
growth 0.00396 0.00517 0.00254
(3.22) (2.86) (1.76)
age -0.000904 -0.00100 -0.00144
(-0.77) (-0.53) (-1.36)
liquidity -0.975 -1.509 -0.236
(-4.77) (-5.90) (-1.15)
manufactur~g -0.151 -0.163 -0.0946
(-1.40) (-0.89) (-0.94)
construction -0.0386 -0.243 0.0985
(-0.28) (-1.12) 0.77)
trade -0.419 -0.749 -0.0937
(-1.55) (-2.04) (-0.36)
communicat~n -0.0237 -0.304 0.129
(-0.16) (-1.23) (0.97)
_cons -1.764 -3.273 -0.291
(-5.53) (-6.51) (-2.20)
N 1295 1295 661

t statistics in parentheses
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In the cmp output, we can observe a positive and significant association between
tangibility and the amount decision. However, the corresponding estimate from the
TP-FRM is substantially smaller and nonsignificant. In the FRM column, we can observe
the impact of ignoring the two-part process. In this model, the estimated coefficient
on tangibility is larger than the corresponding estimate in the second part of the
two-part models because it “mixes” the coefficients from the two processes.

3.4 Predictions and marginal effects

To substantially interpret the results from the GTP-FRM, we can compute the (average)
predicted proportions at selected values of tangibility using margins and plot them
using marginsplot. In expression(), we specify the conditional expectation as shown
in (3). Here, the first part is the predicted proportion of debt conditional on having
debt, and the second part is the predicted probability of issuing debt.

. quietly margins, at(tangibility = (0 (.05) 1))
> expression(predict(pr equation(leverage)
> condition(0 ., equation(s)))*predict(pr equation(s)))

. marginsplot, noci ytitle("Predicted leverage") scheme(sj)
note: label truncated to 80 characters

Variables that uniquely identify margins: tangibility
note: label truncated to 80 characters
note: label truncated to 80 characters
note: label truncated to 80 characters

Figure 1 shows the average predicted proportion of debt for various levels of firm prof-
itability. At a tangibility around 0, the GTP-FRM predicts a debt proportion around 0.08.
For firms with a higher ratio of tangible to total assets, the model predicts a dramati-
cally higher debt proportion. For instance, for firms with roughly equal parts of tangible
and intangible assets, the GTP-FRM predicts an average debt proportion of around 0.16.

For computation of the average marginal effect on the conditional mean of leverage,
we can invoke the dydx () option:

. margins, dydx(tangibility) expression(predict(pr equation(leverage)

> condition(0 ., equation(s)))*predict(pr equation(s)))

Average marginal effects Number of obs = 1,295

Model VCE : Robust

Expression : predict(pr equation(leverage) condition(O .,
equation(s)))*predict(pr equation(s))

dy/dx w.r.t. : tangibility

Delta-method
dy/dx  Std. Err. z P>|z| [95% Conf. Interval]

tangibility .1894122 .0332206 5.70 0.000 .124301 .2545234
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Predictive Margins

Predicted leverage
2
1

15

1

T T T T T T T T T T T

0 051 .15.2.25.3.35 4 45 5 .55 6 .65 .7 .75 .8 .85 .0 .95 1
Tangibility

Figure 1. Marginsplot with predicted proportions

We can observe that a one-unit increase in tangibility is associated with an av-

erage increase in the proportion of debt by about 0.19. This estimate is significant at
conventional alpha levels.

By slightly modifying the syntax above, we can quite easily obtain other types of

predictions if we wish. For instance, we can compute the average marginal effect on the
predicted probability of issuing debt by specifying only the predict (pr equation(s))

option:
. margins, dydx(tangibility) predict(pr equation(s))
Average marginal effects Number of obs = 1,295
Model VCE : Robust
Expression : Pr(s), predict(pr equation(s))

dy/dx w.r.t. : tangibility

Delta-method
dy/dx  Std. Err. z P>|z]| [95% Conf. Intervall]

tangibility .5376247 .0728696 7.38 0.000 .3948029 .6804464

A one-unit increase in tangibility is associated with a 0.54 average increase in the
probability of issuing debt.

Finally, we can compute the average marginal effect on the proportion of debt con-

ditional on the firm having issued debt:
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. margins, dydx(tangibility) predict(e equation(leverage)

> condition(0 ., equation(s)))

Average marginal effects Number of obs = 1,295
Model VCE : Robust

Expression : E(leverage), predict(e equation(leverage) condition(O .,

dy

equation(s)))
/dx w.r.t. : tangibility

Delta-method

dy/dx  Std. Err. z P>|z| [95% Conf. Intervall
tangibility .1197657  .1783612 0.67 0.502  -.2298159 .4693472
The estimated average marginal effect is much smaller than the one on the condi-

tional mean and is nonsignificant. This suggests that for firms that have issued debt,
tangibility matters little for how much debt they choose to issue.

3.5 Model fit

While t

he procedure illustrated above automatically yields a test comparing the GTP-

FRM with the TP-FRM, we may want to compare the GTP-FRM with other specifications.
Using (5) and (6), we can compare the GTP-FRM with any fractional specification we like.

For inst

ance, we can compare the GTP-FRM with the much simpler FRM specification:

. *Fit GTP-FRM and get predictions

quietly cmp (leverage = $regressors) (s = size $regressors),
indicators(s*$cmp_frac $cmp_probit) quietly vce(robust)

. quietly predict y_hat_first, pr equation(leverage) condition(0 ., equation(s))

. quietly predict y_hat_second, pr equation(s)

. quietly generate y_exp = y_hat_first*y_hat_second

. *Compute RSS and information criteria
. local K = e(rank)

. quietly generate RS = (leverage - y_exp) 2

. quietly summarize RS

. local RSS = r(mean)

. local n = r(N)

. scalar aic_cmp = log(*RSS"/°n") + 2%xK"/ n~

. scalar bic_cmp = log("RSS"/°n”) + "K"*log("n")/n~
. drop RS

. *Fit FRM and get predictions
. quietly fracreg probit leverage $regressors

G

predict pred
ption cm assumed)

. local K = e(rank)
. quietly generate RS = (leverage - pred)”2

. quietly summarize RS
. local RSS = r(mean)
. local n = r(N)



386

Generalized two-part fractional regression

. *Compute RSS and information criteria

. scalar aic_frm = log(*RSS"/"n") + 2%x°K"/"n~

. scalar bic_frm = log(*RSS"/ n") + “K'*log("n")/ n~

. *Display AIC and BIC

. display _newline "GTP-FRM AIC = " aic_cmp _newline "GTP-FRM BIC = " bic_cmp
> _newline _newline "FRM AIC = " aic_frm _newline "FRM BIC = " bic_frm

GTP-FRM AIC = -10.479378
GTP-FRM BIC = -10.383632

FRM AIC = -10.49064
FRM BIC = -10.446756

The AIC and BIC values indicate that the GTP-FRM is not improving its fit enough to

make up for its added complexity. Thus, it would seem that the FRM provides a better
tradeoff between parsimony and fit than the GTP-FRM. As explained above, we can use
this procedure to compare any model for the conditional mean as long as we can obtain
RSS on the fractional scale.

3.6 RESET test

For testing the conditional mean specification, we can implement the RESET test. This
can be done for each part separately by using the following procedure:

. *Get index predictions
. quietly predict y_hat_frac, index equation(leverage)

. quietly predict y_hat_bin, index equation(s)
. *Compute second- and third-order terms
. quietly generate y_hat_frac2 = y_hat_frac~2
. quietly generate y_hat_frac3 = y_hat_frac~3

. quietly generate y_hat_bin2 = y_hat_bin~2

. quietly generate y_hat_bin3 = y_hat_bin~3

. *RESET test fractional part

. quietly cmp (leverage = $regressors y_hat_frac2 y_hat_frac3)
> (s = size $regressors), indicators(s*$cmp_frac $cmp_probit) quietly
> vce(robust)

. display "RESET GTP-FRM frac part"
RESET GTP-FRM frac part

. test [leveragely_hat_frac2 [leveragely_hat_frac3

(1) [leveragely_hat_frac2 = 0

( 2) [leveragely_hat_frac3 = 0

chi2( 2) = 0.07
Prob > chi2 = 0.9675

. *RESET test binary part

. quietly cmp (leverage = $regressors) (s = size $regressors y_hat_bin2
> y_hat_bin3), indicators(s*$cmp_frac $cmp_probit) quietly vce(robust)
. display "RESET GTP-FRM bin part"
RESET GTP-FRM bin part

. test [s]ly_hat_bin2 [s]y_hat_bin3

( 1) [sly_hat_bin2 = 0

( 2) [sly_hat_bin3 = 0

chi2( 2) = 8.22
Prob > chi2 = 0.0164
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At an alpha of 1%, neither test rejects the Hy that the model specification is correct.
In contrast, the RESET test rejects the Hy that the first part of the TP-FRM with a probit
link is correctly specified:

. quietly
. quietly
. quietly
. quietly
. quietly
. quietly
. quietly
. quietly
. quietly
. display
RESET TP-
. test y_

(1 [
(2 1

. quietly
> if leve
. display
RESET TP-
. test y_

(1
(2 1

probit leverage size $regressors

predict y_hat_tpfrm_one

generate y_hat_tpfrm_one2 = y_hat_tpfrm_one”2

generate y_hat_tpfrm_one3 = y_hat_tpfrm_one”3

fracreg probit leverage $regressors if leverage > O

predict y_hat_tpfrm_two

generate y_hat_tpfrm_two2 = y_hat_tpfrm_two~2

generate y_hat_tpfrm_two3 = y_hat_tpfrm_two~3

probit leverage $regressors y_hat_tpfrm_one2 y_hat_tpfrm_one3

"RESET TP-FRM binary part"
FRM binary part

hat_tpfrm_one2 y_hat_tpfrm_one3
everagely_hat_tpfrm_one2 = 0

everage]y_hat_tpfrm_one3 = 0
chi2( 2) = 58.93
Prob > chi2 = 0.0000

fracreg probit leverage $regressors y_hat_tpfrm_two2 y_hat_tpfrm_two3
rage > 0

"RESET TP-FRM frac part"
FRM frac part

hat_tpfrm_two2 y_hat_tpfrm_two3

everage]y_hat_tpfrm_two2 = 0

everage]y_hat_tpfrm_two3 = 0
chi2( 2) = 1.27

Prob > chi2 = 0.5300

4 Conclusion

FDVs are often modeled by researchers across many disciplines. When such variables
are best described by a two-part process with dependence, researchers should apply
the GTP-FRM. Currently, no dedicated Stata command exists to fit the GTP-FRM. In
this article, I showed how GTP-FRMs can be fit with the community-contributed cmp
command. Using a data example on the financial leverage of firms, I demonstrated how
Stata users can fit GTP-FRMs and compute predictions, marginal effects, information
he RESET test statistic. Thus, the cmp command is useful for fitting
fractional responses generated by two dependent processes.

criteria, and t
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