

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
<http://ageconsearch.umn.edu>
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

Generalized two-part fractional regression with cmp

Jesper N. Wulff
Aarhus University
Aarhus, Denmark
jwulff@econ.au.dk

Abstract. Researchers who model fractional dependent variables often need to consider whether their data were generated by a two-part process. Two-part models are ideal for modeling two-part processes because they allow us to model the participation and magnitude decisions separately. While community-contributed commands currently facilitate estimation of two-part models, no specialized command exists for fitting two-part models with process dependency. In this article, I describe generalized two-part fractional regression, which allows for dependency between models' parts. I show how this model can be fit using the community-contributed `cmp` command (Roodman, 2011, *Stata Journal* 11: 159–206). I use a data example on the financial leverage of firms to illustrate how `cmp` can be used to fit generalized two-part fractional regression. Furthermore, I show how to obtain predicted values of the fractional dependent variable and marginal effects that are useful for model interpretation. Finally, I show how to compute model fit statistics and perform the RESET test, which are useful for model evaluation.

Keywords: st0558, generalized two-part fractional regression, process dependence, fractional probit, cmp

1 Introduction

In many disciplines, researchers need to fit regression models where the dependent variable is in the form of a fraction, percentage, or proportion. In finance, a commonly examined fractional dependent variable (FDV) is the financial leverage ratio of firms, that is, the amount of debt a firm issues relative to its amount of capital. Empirical research suggests that the financial leverage decision of firms is best described as a two-step process; first, the firm decides whether to issue debt, and then it decides how much debt to issue (Ramalho and da Silva 2009). However, the process determining which firms choose to issue debt is nonrandom because firms self-select into a leveraged position. Thus, we need a model that not only can separate the effects on the debt versus no debt from the effects on the amount-of-debt decision but also can account for the nonrandom selection that leads to some firms issuing debt. The generalized two-part fractional regression model (GTP-FRM) is such a model.

Before we dig into the GTP-FRM, I will give a short introduction on modeling FDVs. Modeling an FDV requires a fractional regression model (FRM). If we use the quasi-maximum likelihood estimator (QMLE) and the logit link, the model is known as the fractional logit; it is known as the fractional probit if we use the probit (Papke and

Wooldridge 1996). An FRM is preferable because it ensures predictions within the unit interval and requires only correct specification of the conditional mean. Estimation of FRMs with various link functions is straightforward in Stata with the `glm` command and has become even more accessible with the Stata 14 addition of the `fracreg` command.

In many cases, an FDV may contain many values at one or both boundaries. The values at, for example, the zero boundary may be governed by a different process than the values between the boundaries. For instance, the covariates that affect a firm's decision to issue debt are likely to be different from those affecting how much debt to issue (Cook, Kieschnick, and McCullough 2008). For such purposes, Ramalho and da Silva (2009) proposed a two-part fractional model (TP-FRM). The TP-FRM allows for specification of a binary model for the participation decision ($y = 0$ versus $y > 0$), for example, debt versus no debt, and an FRM for the magnitude decision (the magnitude of y when $y > 0$), such as how much debt to issue. Using this model, we allow the effects of a covariate on the participation decision to be different from the magnitude decision. In Stata, TP-FRMs can be fit using the community-contributed `frm` (Ramalho, Ramalho, and Murteira 2011) or `tpm` (Belotti et al. 2015) command.

In some cases, we may need even more flexibility than what is offered by the TP-FRM, such as when the participation and magnitude decisions are dependent. Continuing the example from above, there may be a selection bias in the types of firms that choose to issue debt. This problem is analogous to the well-known sample selection problem. Recently, Schwiebert and Wagner (2015) proposed the GTP-FRM as a means to model fractional two-part processes with dependence. The GTP-FRM formulation is advantageous because it nests the TP-FRM as a special case when the two processes are independent.

Currently, the GTP-FRM does not have a dedicated Stata command. In this article, I demonstrate how Stata users can fit GTP-FRMs by using the conditional mixed-process framework implemented by the `cmp` (Roodman 2011) command. In section 2, I briefly describe the GTP-FRM. In section 3, I give a short tutorial showing how to use `cmp` to fit the GTP-FRM, and I demonstrate how to compute predictions, marginal effects, information criteria, and RESET test statistics. In section 4, I provide a short conclusion.

2 Brief review of generalized two-part fractional regression

In many practical applications, FDVs naturally give rise to many zeros. For example, some firms do not have any exports (0% of total sales attributed to foreign sales), some individuals do not smoke (0% of their income spent on cigarettes), and some firms do not issue any debt (0% leveraged capital). When encountering such FDVs, researchers must decide how to qualitatively interpret the zeros (Ramalho, Ramalho, and Murteira 2011), because the zeros may actually be best described by a different mechanism than the positive values. Consider, for instance, the financial leverage decisions of firms. While a financing life-cycle approach would argue that older firms are more likely to issue

debt, pecking-order theory would suggest that older firms prefer a lower proportion of debt because of a large amount of accumulated retained earnings (Ramalho and da Silva 2009). In such cases, a TP-FRM is ideal because it allows us to model the participation and magnitude decisions separately.

If a two-part process constitutes the best description of our data, we need to consider whether the two decisions are dependent. If unobserved factors affecting the decision to issue debt are correlated with factors that influence the proportion of debt sought by firms, the TP-FRM estimates will be biased (Wooldridge 2010). For instance, research suggests that a moderate degree of CEO narcissism is associated with greater corporate risk taking (Aabo and Eriksen 2018). If CEO narcissism is related to firm profitability but is not accounted for, then the estimate of firm profitability on the proportion of debt is likely to be biased. The GTP-FRM models the correlation between the two decisions, thus attempting to both estimate and adjust for the dependency between the processes. This makes the GTP-FRM ideal for FDVs best described by dependent two-part processes.

2.1 Model formulation

Following Schwiebert and Wagner (2015), we start by specifying the process determining the participation decision, where we assume an FDV, y , with values in the unit interval:

$$s = 1(\mathbf{z}'\boldsymbol{\beta}_1 + u > 0) \quad (1)$$

where s is an indicator variable that takes the value 1 if the value of the outcome, y , is nonzero; \mathbf{z} is a vector of covariates affecting the participation decision; $\boldsymbol{\beta}_1$ is a vector of coefficients; and u is the error term. To model the participation decision in (1), we use a probit model specification,

$$\Pr(s = 1|\mathbf{z}) = \Phi(\mathbf{z}'\boldsymbol{\beta}_1)$$

where $\Phi(\cdot)$ is the standard normal cumulative distribution function. We specify the conditional mean of the magnitude decision as follows:

$$\begin{aligned} E(y|\mathbf{x}, \mathbf{z}, s = 0) &= 0 \\ E(y|\mathbf{x}, \mathbf{z}, s = 1) &= \frac{\Phi_2(\mathbf{x}'\boldsymbol{\beta}_2, \mathbf{z}'\boldsymbol{\beta}_1; \rho)}{\Phi(\mathbf{x}'\boldsymbol{\beta}_2)} \end{aligned} \quad (2)$$

\mathbf{x} is a vector of covariates affecting the magnitude decision, $\boldsymbol{\beta}_2$ is a coefficient vector with respect to \mathbf{x} , and $\Phi_2(\cdot)$ denotes the bivariate standard normal distribution with ρ representing the correlation between the participation and magnitude decisions. Equation (2) is the fractional probit specification, which is used to model nonzero values of y . If the two processes in (2) are independent—that is, if $\rho = 0$ —then the GTP-FRM reduces to the simpler TP-FRM, where $E(y|\mathbf{x}, \mathbf{z}, s = 1) = \Phi(\mathbf{x}'\boldsymbol{\beta}_2)$. However, if $\rho > 0$, then the TP-FRM is misspecified. The larger the dependence between the two processes, the larger the bias we would expect by using a TP-FRM.

Based on the above formulation, the GTP-FRM is clearly a more complicated model than the TP-FRM. In contrast to the TP-FRM, the GTP-FRM lets both \mathbf{x} and \mathbf{z} affect the

magnitude decision: While \mathbf{x} has a direct effect, the effect of \mathbf{z} is indirect through s (Schwiebert and Wagner 2015). This extra complexity does not come for free. Indeed, the GTP-FRM needs an exclusion restriction to be identified; that is, it needs a variable affecting the participation decision without directly affecting the amount decision. Though we may be able to fit a GTP-FRM without an exclusion restriction in practice, we should not trust its estimates (Sartori 2003).

2.2 Marginal effects

As for the regular binary probit model, we should abstain from interpreting the model coefficients directly. Instead, we should rely on marginal effects preferably accompanied by graphical illustrations of predicted values of the FDV (Wulff 2015). As shown by Schwiebert and Wagner (2015), the predicted values of the FRM given values of the covariates are given by

$$E(y|\mathbf{x}, \mathbf{z}) = E(y|\mathbf{x}, \mathbf{z}, s = 1) \Pr(s = 1|\mathbf{z}) \quad (3)$$

$$= \Phi_2(\mathbf{x}'\boldsymbol{\beta}_2, \mathbf{z}'\boldsymbol{\beta}_1; \rho) \quad (4)$$

As for other two-part models, it is possible to obtain other types of predictions based on the GTP-FRM. For instance, we can compute the expected value of y conditional on $y > 0$, that is, the term $E(y|\mathbf{x}, \mathbf{z}, s = 1)$.

Based on (4), the marginal effect of x_k in the GTP-FRM is given by

$$\frac{\partial E(y|\mathbf{x}, \mathbf{z})}{\partial x_k} = \frac{\partial \Phi_2(\mathbf{x}'\boldsymbol{\beta}_2, \mathbf{z}'\boldsymbol{\beta}_1; \rho)}{\partial x_k}$$

As I illustrate later, marginal effects and predicted values of the FDV can be obtained using `margins` after fitting the model using `cmp`. We will especially need to use (3) to obtain the predicted values of the FRM and the corresponding marginal effects.

2.3 Model fit measures

When comparing various fractional model specifications, we can rely on the Akaike information criterion (AIC) and Bayesian information criterion (BIC). Comparing measures based on pseudolikelihoods from different models can be tricky. Papke and Wooldridge (1996) argue for defining R^2 in terms of the actual and predicted values. Like R^2 , information criteria can also be defined in terms of the residual sum of squares (RSS). Thus, I suggest using the following definitions of AIC and BIC when comparing FRMs, TP-FRMs, and GTP-FRMs:

$$\text{AIC} = \log\left(\frac{\text{RSS}}{n}\right) + \frac{2K}{n} \quad (5)$$

$$\text{BIC} = \log\left(\frac{\text{RSS}}{n}\right) + \frac{K \log(n)}{n} \quad (6)$$

where n is the sample size and K is the total number of parameters from each part of the GTP-FRM. Defining information criteria in this way has two major advantages when

working with FDVs. First, they are comparable across any model for the conditional mean and for any estimation method (Papke and Wooldridge 1996). For instance, we can compare our GTP-FRM with its tobit equivalent—the exponential type II tobit model for corner solution responses (Wulff and Villadsen 2018). Second, we do not have to worry about unintentionally comparing information criteria across models with different (pseudo)likelihood functions.

2.4 RESET test

For the GTP-FRM, we can use Ramsey's (1969) RESET test as a simple functional form diagnostic. Essentially, the test can be used to check for missing nonlinearities in the GTP-FRM or any other index model (Pagan and Vella 1989). For each model part, we obtain the index predictions. These are added in squared and cubic form to the relevant model part, after which we can perform a joint hypothesis test of the coefficients of the two extra terms (Ramalho and Ramalho 2012). For the fractional part, it is important that we use the robust version of the test. However, because robust standard errors are computed by default by `fracreg probit`, this is of no concern to the user when following the implementation I suggest below.

3 Stata implementation

The FRM, TP-FRM, and GTP-FRM can be fit using QMLE. As noted in the introduction, the fractional probit is already implemented in the `fracreg probit` routine. This implementation and the regular binary probit model are both available in the `cmp` framework. Thus, we can use the power of `cmp` not only to fit GTP-FRMs but also to compute marginal effects and predictions.

3.1 Data example

To illustrate the use of `cmp`, I rely on data from the study on financial leverage decisions by Ramalho and da Silva (2009). The data are available for download in a `.txt` file-format at http://home.iscte-iul.pt/~jjsro/data_code/ER-2015.txt and can be loaded into Stata by using `import delimited`. The dataset contains information on several firm characteristics. For this example, I will rely on `leverage` (long-term debt to long-term capital assets), `size` (natural logarithm of sales), and `tangibility` (sum of tangible assets and inventories divided by total assets). A complete description of the data is available in Ramalho and da Silva (2009).

. summarize leverage size tangibility					
Variable	Obs	Mean	Std. Dev.	Min	Max
leverage	1,295	.1483878	.1988493	0	.9779415
size	1,295	15.81369	1.385884	11.73562	22.26972
tangibility	1,295	.3770338	.1967606	.0015893	.9774859

First, I generate a nonzero indicator variable indicating the firms that have issued debt. To simplify the syntax, I assign the regressors to a global macro. I exclude the `size` variable from the list because we are going to use it as an exclusion restriction below. Valid exclusion restrictions are notoriously hard to come by, and this example is not different. By using `size` as an exclusion restriction, we are assuming that firm size is directly related to the participation decision but only related to the amount decision through the participation decision. In other words, firm size does not directly affect the proportion of debt sought by firms. While this assumption may be questionable, it will do for the purpose of this illustration.

```
. generate s = leverage > 0 // nonzero indicator variable
. global regressors ndts tangibility profitability growth age liquidity
> manufacturing construction trade communication
```

3.2 Model estimation strategy

Some readers might have noticed how the GTP-FRM looks conceptually similar to the Heckman (1976) sample-selection model. In fact, the GTP-FRM is also applicable to fractional missing-data problems (Schwiebert and Wagner 2015). In the current setting, however, we do not have a sample-selection issue. Instead, we have a fractional response where the FDV is always observed yet is generated by two different dependent processes.

Conveniently, we can exploit the similarities to the sample selection model by using the same approach to fit the GTP-FRM. We do this by estimating systems of equations with errors that are jointly normally distributed. If our FDV had been binary, this estimation could have been performed using the `heckprobit` command. Because `cmp` allows for QMLE with a probit link, we can use `cmp` to estimate our parameters from the participation and magnitude equations simultaneously while obtaining an estimate of and accounting for ρ . In this way, `cmp` allows the participation and decision equations to vary by observation and enables consistent and efficient estimation. Thus, the estimation procedure becomes similar to that of the `heckprobit` command.

3.3 Syntax

The syntax for `cmp` is thoroughly described in Roodman (2011) and the `cmp` help file. Thus, in line with the aim of this article, I focus on its application to GTP-FRMs.

The `cmp setup` subcommand defines global macros that we use in the command line. In the command line, I specify the two equations, using `size` as an exclusion restriction in the participation equation. In `indicators()`, I specify the fractional probit using `cmp_frac` and the regular probit using `cmp_probit`. Note that I multiply `cmp_frac` by the nonzero indicator variable, `s`. I use `quietly` to suppress most model output.

```

. cmp setup
$cmp_out      = 0
$cmp_missing   = .
$cmp_cont      = 1
$cmp_left      = 2
$cmp_right     = 3
$cmp_probit    = 4
$cmp_oprobit   = 5
$cmp_mprobit   = 6
$cmp_int       = 7
$cmp_trunc     = 8  (deprecated)
$cmp_roprobit  = 9
$cmp_frac      = 10

. cmp (leverage = $regressors) (s = size $regressors),
> indicators(s*$cmp_frac $cmp_probit) quietly

```

Note: fractional probit models imply vce(robust).

Fitting individual models as starting point for full model fit.

Fitting full model.

Mixed-process regression	Number of obs	=	1,295
	Wald chi2(21)	=	216.81
Log pseudolikelihood = -1190.6853	Prob > chi2	=	0.0000

	Robust					
	Coef.	Std. Err.	z	P> z	[95% Conf. Interval]	
leverage						
ndts	-.0536411	.0265636	-2.02	0.043	-.1057048	-.0015774
tangibility	.6278901	.1894899	3.31	0.001	.2564967	.9992835
profitability	-2.502263	.3480411	-7.19	0.000	-3.184411	-1.820115
growth	.0038992	.0014633	2.66	0.008	.0010312	.0067671
age	-.0007824	.0011114	-0.70	0.481	-.0029606	.0013959
liquidity	-.6594569	.2718519	-2.43	0.015	-1.192277	-.126637
manufacturing	-.1415292	.1083216	-1.31	0.191	-.3538357	.0707773
construction	.0186647	.1369112	0.14	0.892	-.2496764	.2870058
trade	-.329909	.2714891	-1.22	0.224	-.8620179	.2021999
communication	.0456521	.14377	0.32	0.751	-.2361319	.327436
_cons	-.6295222	.1755718	-3.59	0.000	-.9736366	-.2854078
s						
size	.2159975	.0327738	6.59	0.000	.1517621	.280233
ndts	-.0470524	.0243417	-1.93	0.053	-.0947612	.0006564
tangibility	1.526855	.2211802	6.90	0.000	1.09335	1.96036
profitability	-2.266795	.4896678	-4.63	0.000	-3.226526	-1.307064
growth	.0051865	.0018226	2.85	0.004	.0016143	.0087587
age	-.0009803	.0019149	-0.51	0.609	-.0047334	.0027728
liquidity	-1.504778	.2610957	-5.76	0.000	-2.016517	-.9930402
manufacturing	-.1583662	.1738511	-0.91	0.362	-.4991081	.1823756
construction	-.2397432	.2089277	-1.15	0.251	-.649234	.1697475
trade	-.7439219	.3545159	-2.10	0.036	-1.43876	-.0490834
communication	-.2948638	.2442249	-1.21	0.227	-.7735359	.1838083
_cons	-3.285265	.5689352	-5.77	0.000	-4.400358	-2.170173
/atanhrho_12	.6036901	.2445748	2.47	0.014	.1243323	1.083048
rho_12	.5396701	.1733439			.1236956	.7943266

```
. estimates store gt_frm
```

The first part of the output relates to the amount decision (**leverage**), while the second part of the output refers to the participation decision (**s**). The chosen estimation strategy provides a direct estimate of $\text{arctanh } \rho = (1/2) \ln\{(1 + \rho)/(1 + \rho)\}$. Automatically, a Wald test is performed rejecting the regular TP-FRM at $\alpha = 0.05$. Thus, a comparison with the TP-FRM is already incorporated in the procedure. Finally, we observe that the estimate of ρ is around 0.5. Thus, the Heckman-type estimation makes it possible to estimate the magnitude of the dependency between the two processes.

For illustration, we can compare the GTP-FRM estimates with those of the TP-FRM and regular FRM by using `esttab` (Jann 2005):

```
. quietly fracreg probit leverage size $regressors
. estimates store frm
. quietly probit leverage size $regressors
. estimates store tp_frm_participation
. quietly fracreg probit leverage $regressors if leverage > 0
. estimates store tp_frm_magnitude
. esttab frm tp_frm_participation tp_frm_magnitude, nostar
> mlabel("FRM" "TP-FRM (1)" "TP-FRM (2)")
```

	(1) FRM	(2) TP-FRM (1)	(3) TP-FRM (2)
leverage			
size	0.0609 (3.34)	0.216 (7.58)	
ndts	-0.0584 (-2.31)	-0.0468 (-1.54)	-0.0397 (-1.47)
tangibility	0.849 (5.95)	1.521 (7.06)	0.210 (1.49)
profitabil-y	-2.470 (-7.14)	-2.250 (-4.55)	-1.818 (-5.41)
growth	0.00396 (3.22)	0.00517 (2.86)	0.00254 (1.76)
age	-0.000904 (-0.77)	-0.00100 (-0.53)	-0.00144 (-1.36)
liquidity	-0.975 (-4.77)	-1.509 (-5.90)	-0.236 (-1.15)
manufactur-g	-0.151 (-1.40)	-0.163 (-0.89)	-0.0946 (-0.94)
construction	-0.0386 (-0.28)	-0.243 (-1.12)	0.0985 (0.77)
trade	-0.419 (-1.55)	-0.749 (-2.04)	-0.0937 (-0.36)
communicat-n	-0.0237 (-0.16)	-0.304 (-1.23)	0.129 (0.97)
_cons	-1.764 (-5.53)	-3.273 (-6.51)	-0.291 (-2.20)
N	1295	1295	661

t statistics in parentheses

In the `cmp` output, we can observe a positive and significant association between `tangibility` and the amount decision. However, the corresponding estimate from the TP-FRM is substantially smaller and nonsignificant. In the FRM column, we can observe the impact of ignoring the two-part process. In this model, the estimated coefficient on `tangibility` is larger than the corresponding estimate in the second part of the two-part models because it “mixes” the coefficients from the two processes.

3.4 Predictions and marginal effects

To substantially interpret the results from the GTP-FRM, we can compute the (average) predicted proportions at selected values of `tangibility` using `margins` and plot them using `marginsplot`. In `expression()`, we specify the conditional expectation as shown in (3). Here, the first part is the predicted proportion of debt conditional on having debt, and the second part is the predicted probability of issuing debt.

```
. quietly margins, at(tangibility = (0 (.05) 1))
> expression(predict(pr equation(leverage)
> condition(0 .., equation(s)))*predict(pr equation(s)))
. marginsplot, nocl ytitle("Predicted leverage") scheme(sj)
note: label truncated to 80 characters
      Variables that uniquely identify margins: tangibility
note: label truncated to 80 characters
note: label truncated to 80 characters
note: label truncated to 80 characters
```

Figure 1 shows the average predicted proportion of debt for various levels of firm profitability. At a tangibility around 0, the GTP-FRM predicts a debt proportion around 0.08. For firms with a higher ratio of tangible to total assets, the model predicts a dramatically higher debt proportion. For instance, for firms with roughly equal parts of tangible and intangible assets, the GTP-FRM predicts an average debt proportion of around 0.16.

For computation of the average marginal effect on the conditional mean of `leverage`, we can invoke the `dydx()` option:

```
. margins, dydx(tangibility) expression(predict(pr equation(leverage)
> condition(0 .., equation(s)))*predict(pr equation(s)))
Average marginal effects
Number of obs      =      1,295
Model VCE      : Robust
Expression     : predict(pr equation(leverage) condition(0 ..,
                           equation(s)))*predict(pr equation(s))
dy/dx w.r.t.  : tangibility
```

	Delta-method				
	dy/dx	Std. Err.	z	P> z	[95% Conf. Interval]
tangibility	.1894122	.0332206	5.70	0.000	.124301 .2545234

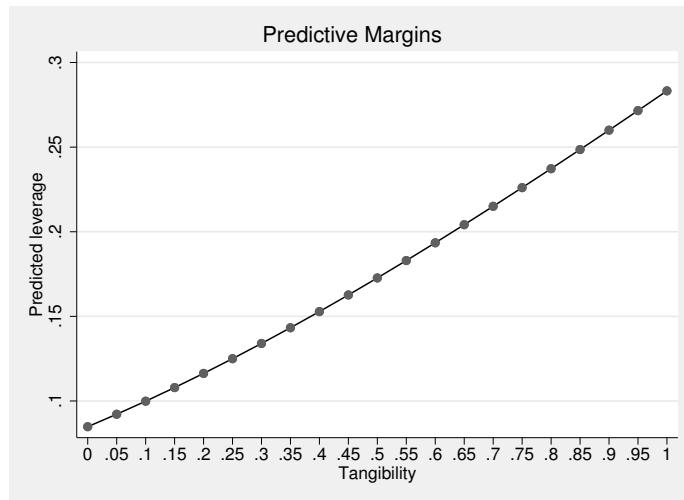


Figure 1. Marginsplot with predicted proportions

We can observe that a one-unit increase in `tangibility` is associated with an average increase in the proportion of debt by about 0.19. This estimate is significant at conventional alpha levels.

By slightly modifying the syntax above, we can quite easily obtain other types of predictions if we wish. For instance, we can compute the average marginal effect on the predicted probability of issuing debt by specifying only the `predict(pr equation(s))` option:

```
. margins, dydx(tangibility) predict(pr equation(s))
Average marginal effects                               Number of obs      =      1,295
Model VCE   : Robust
Expression  : Pr(s), predict(pr equation(s))
dy/dx w.r.t. : tangibility
```

	Delta-method				
	dy/dx	Std. Err.	z	P> z	[95% Conf. Interval]
tangibility	.5376247	.0728696	7.38	0.000	.3948029 .6804464

A one-unit increase in `tangibility` is associated with a 0.54 average increase in the probability of issuing debt.

Finally, we can compute the average marginal effect on the proportion of debt conditional on the firm having issued debt:

```
. margins, dydx(tangibility) predict(e equation(leverage)
> condition(0 ., equation(s)))
Average marginal effects                               Number of obs     =     1,295
Model VCE      : Robust
Expression     : E(leverage), predict(e equation(leverage) condition(0 .,
                                          equation(s)))
dy/dx w.r.t. : tangibility
```

	Delta-method				
	dy/dx	Std. Err.	z	P> z	[95% Conf. Interval]
tangibility	.1197657	.1783612	0.67	0.502	-.2298159 .4693472

The estimated average marginal effect is much smaller than the one on the conditional mean and is nonsignificant. This suggests that for firms that have issued debt, tangibility matters little for how much debt they choose to issue.

3.5 Model fit

While the procedure illustrated above automatically yields a test comparing the GTP-FRM with the TP-FRM, we may want to compare the GTP-FRM with other specifications. Using (5) and (6), we can compare the GTP-FRM with any fractional specification we like. For instance, we can compare the GTP-FRM with the much simpler FRM specification:

```

. *Fit GTP-FRM and get predictions
. quietly cmp (leverage = $regressors) (s = size $regressors),
> indicators(s*$cmp_frac $cmp_probit) quietly vce(robust)
. quietly predict y_hat_first, pr equation(leverage) condition(0 ., equation(s))
. quietly predict y_hat_second, pr equation(s)
. quietly generate y_exp = y_hat_first*y_hat_second
. *Compute RSS and information criteria
. local K = e(rank)
. quietly generate RS = (leverage - y_exp)^2
. quietly summarize RS
. local RSS = r(mean)
. local n = r(N)
. scalar aic_cmp = log(`RSS`/`n`) + 2*K'/`n'
. scalar bic_cmp = log(`RSS`/`n`) + `K'*log(`n`)/`n'
. drop RS
. *Fit FRM and get predictions
. quietly fracreg probit leverage $regressors
. predict pred
(option cm assumed)
. local K = e(rank)
. quietly generate RS = (leverage - pred)^2
. quietly summarize RS
. local RSS = r(mean)
. local n = r(N)

```

```

. *Compute RSS and information criteria
. scalar aic_frm = log(`RSS'/`n') + 2*K/`n'
. scalar bic_frm = log(`RSS'/`n') + `K'*log(`n')/`n'
. *Display AIC and BIC
. display _newline "GTP-FRM AIC = " aic_cmp _newline "GTP-FRM BIC = " bic_cmp
> _newline _newline "FRM AIC = " aic_frm _newline "FRM BIC = " bic_frm
GTP-FRM AIC = -10.479378
GTP-FRM BIC = -10.383632
FRM AIC = -10.49064
FRM BIC = -10.446756

```

The AIC and BIC values indicate that the GTP-FRM is not improving its fit enough to make up for its added complexity. Thus, it would seem that the FRM provides a better tradeoff between parsimony and fit than the GTP-FRM. As explained above, we can use this procedure to compare any model for the conditional mean as long as we can obtain RSS on the fractional scale.

3.6 RESET test

For testing the conditional mean specification, we can implement the RESET test. This can be done for each part separately by using the following procedure:

```

. *Get index predictions
. quietly predict y_hat_frac, index equation(leverage)
. quietly predict y_hat_bin, index equation(s)
. *Compute second- and third-order terms
. quietly generate y_hat_frac2 = y_hat_frac^2
. quietly generate y_hat_frac3 = y_hat_frac^3
. quietly generate y_hat_bin2 = y_hat_bin^2
. quietly generate y_hat_bin3 = y_hat_bin^3
. *RESET test fractional part
. quietly cmp (leverage = $regressors y_hat_frac2 y_hat_frac3)
> (s = size $regressors), indicators(s*$cmp_frac $cmp_probit) quietly
> vce(robust)
. display "RESET GTP-FRM frac part"
RESET GTP-FRM frac part
. test [leverage]y_hat_frac2 [leverage]y_hat_frac3
( 1) [leverage]y_hat_frac2 = 0
( 2) [leverage]y_hat_frac3 = 0
      chi2( 2) =      0.07
      Prob > chi2 =    0.9675
. *RESET test binary part
. quietly cmp (leverage = $regressors) (s = size $regressors y_hat_bin2
> y_hat_bin3), indicators(s*$cmp_frac $cmp_probit) quietly vce(robust)
. display "RESET GTP-FRM bin part"
RESET GTP-FRM bin part
. test [s]y_hat_bin2 [s]y_hat_bin3
( 1) [s]y_hat_bin2 = 0
( 2) [s]y_hat_bin3 = 0
      chi2( 2) =      8.22
      Prob > chi2 =    0.0164

```

At an alpha of 1%, neither test rejects the H_0 that the model specification is correct. In contrast, the RESET test rejects the H_0 that the first part of the TP-FRM with a probit link is correctly specified:

```

. quietly probit leverage size $regressors
. quietly predict y_hat_tpfrm_one
. quietly generate y_hat_tpfrm_one2 = y_hat_tpfrm_one^2
. quietly generate y_hat_tpfrm_one3 = y_hat_tpfrm_one^3
. quietly fracreg probit leverage $regressors if leverage > 0
. quietly predict y_hat_tpfrm_two
. quietly generate y_hat_tpfrm_two2 = y_hat_tpfrm_two^2
. quietly generate y_hat_tpfrm_two3 = y_hat_tpfrm_two^3
. quietly probit leverage $regressors y_hat_tpfrm_one2 y_hat_tpfrm_one3
. display "RESET TP-FRM binary part"
RESET TP-FRM binary part
. test y_hat_tpfrm_one2 y_hat_tpfrm_one3
( 1) [leverage]y_hat_tpfrm_one2 = 0
( 2) [leverage]y_hat_tpfrm_one3 = 0
      chi2( 2) =      58.93
      Prob > chi2 =      0.0000
. quietly fracreg probit leverage $regressors y_hat_tpfrm_two2 y_hat_tpfrm_two3
> if leverage > 0
. display "RESET TP-FRM frac part"
RESET TP-FRM frac part
. test y_hat_tpfrm_two2 y_hat_tpfrm_two3
( 1) [leverage]y_hat_tpfrm_two2 = 0
( 2) [leverage]y_hat_tpfrm_two3 = 0
      chi2( 2) =      1.27
      Prob > chi2 =      0.5300

```

4 Conclusion

FDVs are often modeled by researchers across many disciplines. When such variables are best described by a two-part process with dependence, researchers should apply the GTP-FRM. Currently, no dedicated Stata command exists to fit the GTP-FRM. In this article, I showed how GTP-FRMs can be fit with the community-contributed `cmp` command. Using a data example on the financial leverage of firms, I demonstrated how Stata users can fit GTP-FRMs and compute predictions, marginal effects, information criteria, and the RESET test statistic. Thus, the `cmp` command is useful for fitting fractional responses generated by two dependent processes.

5 References

Aabo, T., and N. B. Eriksen. 2018. Corporate risk and the humpback of CEO narcissism. *Review of Behavioral Finance* 10: 252–273.

Belotti, F., P. Deb, W. G. Manning, and E. C. Norton. 2015. twopm: Two-part models. *Stata Journal* 15: 3–20.

Cook, D. O., R. Kieschnick, and B. D. McCullough. 2008. Regression analysis of proportions in finance with self selection. *Journal of Empirical Finance* 15: 860–867.

Heckman, J. J. 1976. The common structure of statistical models of truncation, sample selection and limited dependent variables and a simple estimator for such models. *Annals of Economic and Social Measurement* 5: 475–492.

Jann, B. 2005. Making regression tables from stored estimates. *Stata Journal* 5: 288–308.

Pagan, A., and F. Vella. 1989. Diagnostic tests for models based on individual data: A survey. *Journal of Applied Econometrics* 4: S29–S59.

Papke, L. E., and J. M. Wooldridge. 1996. Econometric methods for fractional response variables with an application to 401(K) plan participation rates. *Journal of Applied Econometrics* 11: 619–632.

Ramalho, E. A., and J. J. S. Ramalho. 2012. Alternative versions of the RESET test for binary response index models: A comparative study. *Oxford Bulletin of Economics and Statistics* 74: 107–130.

Ramalho, E. A., J. J. S. Ramalho, and J. M. R. Murteira. 2011. Alternative estimating and testing empirical strategies for fractional regression models. *Journal of Economic Surveys* 25: 19–68.

Ramalho, J. J. S., and J. V. da Silva. 2009. A two-part fractional regression model for the financial leverage decisions of micro, small, medium and large firms. *Quantitative Finance* 9: 621–636.

Ramsey, J. B. 1969. Tests for specification errors in classical linear least-squares regression analysis. *Journal of the Royal Statistical Society, Series B* 31: 350–371.

Roodman, D. 2011. Fitting fully observed recursive mixed-process models with cmp. *Stata Journal* 11: 159–206.

Sartori, A. E. 2003. An estimator for some binary-outcome selection models without exclusion restrictions. *Political Analysis* 11: 111–138.

Schwiebert, J., and J. Wagner. 2015. A generalized two-part model for fractional response variables with excess zeros. Beiträge zur Jahrestagung des Vereins für Socialpolitik 2015: Ökonomische Entwicklung B04–V2. <https://www.econstor.eu/handle/10419/113059>.

Wooldridge, J. M. 2010. *Econometric Analysis of Cross Section and Panel Data*. 2nd ed. Cambridge, MA: MIT Press.

Wulff, J. N. 2015. Interpreting results from the multinomial logit model: Demonstrated by foreign market entry. *Organizational Research Methods* 18: 300–325.

Wulff, J. N., and A. R. Villadsen. 2018. The use of tobit regression for modelling proportions and percentages in international business research. Aarhus University Business Statistics, Working Paper.

About the author

Jesper N. Wulff is an assistant professor in the Department of Economics and Business Economics at Aarhus University. His teaching and research interests include applied statistics and various topics within management science.