
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

The Stata Journal (2019)
19, Number 2, pp. 335–374 DOI: 10.1177/1536867X19854016

xtspj: A command for split-panel jackknife

estimation

Yutao Sun
Northeast Normal University

School of Economics
Changchun, China

and Erasmus University Rotterdam
Rotterdam, The Netherlands

sunyt100@nenu.edu.cn

Geert Dhaene
KU Leuven

Department of Economics
Leuven, Belgium

geert.dhaene@kuleuven.be

Abstract. In this article, we present a new command, xtspj, that corrects for
incidental parameter bias in panel-data models with fixed effects. The correc-
tion removes the first-order bias term of the maximum likelihood estimate using
the split-panel jackknife method. Two variants are implemented: the jackknifed
maximum-likelihood estimate and the jackknifed log-likelihood function (with cor-
responding maximizer). The model may be nonlinear or dynamic, and the covari-
ates may be predetermined instead of strictly exogenous. xtspj implements the
split-panel jackknife for fixed-effects versions of linear, probit, logit, Poisson, ex-
ponential, gamma, Weibull, and negbin2 regressions. It also accommodates other
models if the user specifies the log-likelihood function (and, possibly but not nec-
essarily, the score function and the Hessian). xtspj is fast and memory efficient,
and it allows large datasets. The data may be unbalanced. xtspj can also be used
to compute uncorrected maximum-likelihood estimates of fixed-effects models for
which no other xt (see [XT] xt) command exists.

Keywords: st0557, xtspj, split-panel jackknife, incidental parameter problem, max-
imum likelihood

1 Introduction

Panel-data analysis is an important tool in economic studies. In many panel-data appli-
cations, each cross-sectional unit or “individual” is allowed to have a latent unit-specific
characteristic, or individual effect, that may be correlated with the covariates and hence
must be controlled for. A standard tool to control for unobserved individual effects in
panel data is the fixed-effects model, in which a separate parameter, or fixed effect, is
included for each of the N individuals in the dataset. Recent empirical studies using
fixed-effects models are, for example, Egger and Staub (2016), Griffin and Maturana
(2016), and Milner et al. (2016). However, it is well known that the presence of fixed
effects may introduce bias into the maximum likelihood (ML) estimator of the common
parameters (the parameters assumed to be shared by all individuals, such as regression
coefficients) when the number of time periods, T , is small. Specifically, the large-N ,
fixed-T probability limit of the ML estimator may be inconsistent. This is known as
the incidental parameter problem (IPP) of Neyman and Scott (1948). Lancaster (2000)
provides a survey on the IPP. Some models that are subject to the IPP are the probit

c© 2019 StataCorp LLC st0557

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1536867X19854016&domain=pdf&date_stamp=2019-06-24

336 xtspj: Split-panel jackknife

model (for example, Fernández-Val [2009]), the logit model (for example, Katz [2001]),
and the tobit model (for example, Greene [2004]). But even in the linear model with
fixed effects, there is an IPP for the slope coefficients unless the regressors are strictly
exogenous (Chudik, Pesaran, and Yang 2018).

To describe the IPP, let us consider an outcome variable Yit, where i = 1, . . . , N and
t = 1, . . . , T . Suppose Yit, given Xit, has a density function f(Yit|Xit;θ, αi), where θ is
the common parameter vector, αi is the scalar fixed-effects parameter associated with
the ith individual, and Xit is a vector of observed covariates. The ML estimator α̂i of αi

is to be obtained only from T observations. Therefore, when T is fixed, α̂i remains ran-
dom even as N → ∞. This randomness enters the log likelihood and, in many models,
causes the ML estimator θ̂ of θ to converge to an incorrect probability limit θT 6= θ0,
where θ0 is the true value of θ. For a fixed T , no consistent alternative estimator of
θ0 can generally be found because θ0 may not be point identified; see, for example,
Honoré and Tamer (2006) and Chamberlain (2010). When both N,T → ∞, the ran-

domness in α̂i vanishes and θ̂ converges to θ0 in general. However, when N/T converges

to a positive constant as N,T → ∞, the asymptotic distribution of
√
NT (θ̂ − θ0) is

often not centered at zero, invalidating inference and confidence intervals based on stan-
dard ML theory; see, for example, Hahn and Kuersteiner (2002) and Hahn and Newey
(2004).

Researchers have been attempting to find solutions to the IPP. For instance, Cox
and Reid (1987), Woutersen (2001), and Lancaster (2002) show that a parameter trans-
formation that orthogonalizes θ and the αi may help to resolve the IPP or at least
mitigate it. Andersen (1970) and Chamberlain (1980) show that in certain models,
the maximizer of a conditional likelihood function, given sufficient statistics for the
αi, is a large-N , fixed-T consistent estimator; the logit model is a well-known exam-
ple. However, these methods are not general, because there is no guarantee that, in a
given model, an orthogonalizing parameter transformation exists nor that a conditional
likelihood exists.

In search for methods that apply more generally, researchers have been trying to
correct for the bias of θ̂ caused by the fixed effects. These methods are approximate
in nature. The idea is to remove the first-order term of a large-T approximation of
the bias of θ̂. Hahn and Newey (2004) and Hahn and Kuersteiner (2011) develop for-

mulas of the first-order bias of θ̂. This formula, evaluated at ML estimates of θ and
the αi, is subtracted from θ̂ to give a first-order bias-corrected estimate, that is, an
estimate with first-order bias equal to zero. Fernández-Val and Weidner (2016) pro-
vide the first-order bias formula for the case where both individual effects and time
effects are present. Alternatively, the log-likelihood function or, equivalently, the score
function may be treated as the object that has to be bias corrected. For instance,
Arellano and Bonhomme (2009) and Arellano and Hahn (2016) discuss first-order mod-
ified log-likelihood functions as an alternative to the usual log-likelihood function. Maxi-
mization of a modified log-likelihood function gives a first-order bias-corrected estimate.
Li, Lindsay, and Waterman (2003) consider first-order modified score functions. Solving
a modified score equation leads to a first-order bias-corrected estimate.

Y. Sun and G. Dhaene 337

Approximate bias corrections can also be carried out without explicit bias formu-
las, for example, by using the jackknife. The jackknife is due to Quenouille (1949,
1956). In the context of the IPP, Hahn and Newey (2004) introduce the delete-one
panel jackknife for first-order bias correction in static panel models. For dynamic mod-
els, Dhaene and Jochmans (2015) propose the split-panel jackknife (SPJ). The panel is
split into two half-panels along the time dimension, and ML is applied to each half-panel
separately, giving θ̂1 and θ̂2, say. The SPJ estimate, then, is defined as 2θ̂− (θ̂1+ θ̂2)/2
and is a first-order bias-corrected estimate of θ. The same procedure can also be applied
to the (concentrated) log likelihood to give a jackknifed log likelihood, whose maximizer
is a first-order bias-corrected estimate of θ.

In this article, we implement the SPJ in Stata. Our new command, xtspj, takes
as input a log likelihood written in terms of one or more linear indices (equations in
the Stata language), either user-specified or preprogrammed. xtspj currently comes
with preprogrammed fixed-effects log likelihoods of the (Gaussian) linear, probit, logit,
Poisson, exponential, gamma, Weibull, and negbin2 regression models. The covariates
are allowed to contain lagged values of the dependent variable. Hence, autoregressive
versions of these models can be fit without user input. As main output, xtspj produces
the SPJ estimates (in one of the two possible variants) or, if desired, the uncorrected ML

estimates. The maximization routine used by xtspj exploits the sparsity of the Hessian
of the log likelihood, so it is fast and memory efficient.

xtspj allows the panel dataset to be unbalanced. As discussed in Dhaene and
Jochmans (2015), the jackknifed log-likelihood variant of the SPJ naturally allows for
unbalanced data, so xtspj implements this variant as described there. It is less straight-
forward to define the jackknifed estimator variant for unbalanced data. xtspj defines
and implements this variant via an estimator that is close to the ML estimator: the
weighted average of the ML estimates associated with the balanced panel components
that jointly form the full (unbalanced) panel, with weights taken in proportion to the bal-
anced panel component sample sizes. Each of the balanced panel estimates can be jack-
knifed separately, and the resulting estimates can be averaged using the same weights.
We conduct a simulation study of this variant of the SPJ when the data are unbalanced,
showing that it works well. It should be mentioned that Chudik, Pesaran, and Yang
(2018) introduce another variant of the SPJ for unbalanced data. They split the full
(unbalanced) panel into two unbalanced half-panels such that the observations for each
cross-sectional unit i are equally split over the two half-panels, and then form the SPJ

estimate in the same way as in the balanced case.

xtspj is a complementary tool to the commands probitfe and logitfe recently
developed by Cruz-Gonzalez, Fernández-Val, and Weidner (2017). These commands
implement analytical and jackknife bias corrections—including the SPJ—for common
parameter and average marginal effect estimates in probit and logit models with indi-
vidual effects, time effects, or both. In comparison, xtspj implements the SPJ for the
common parameters in models with individual effects only (if desired, time effects can
be included as common parameters). On the other hand, xtspj is set up for a more
general class of models, including user-written models. xtspj is also faster and can
handle very large datasets.

338 xtspj: Split-panel jackknife

This article is organized as follows. Section 2 introduces the use of xtspj together
with the preprogrammed models and presents the syntax, output, and examples. Sec-
tion 3 discusses the extension of the SPJ to deal with unbalanced data. Section 4 presents
simulation results for unbalanced data. Section 5 provides details on how to use xtspj
with a user-written model; the probit model serves as an example. Section 6 discusses
details of the algorithms underlying xtspj. Section 7 concludes. Three appendixes
contain technical details and the source code for the evaluation of the preprogrammed
log likelihoods. The full source code of the preprogrammed log likelihoods, the code for
the simulations, and additional simulation results are available in an online supplement
available at https://www.researchgate.net/publication/328837218.

2 The command: Basics

This section presents the basic syntax and use of xtspj. For xtspj with user-written
models, see section 5. Importantly, xtspj also computes the uncorrected ML estimate,
so it may as well be used for fast and memory-efficient computation of ML estimates of
fixed-effects models for which a suitable xt (see [XT] xt) command does not exist.

First, recall the definition of the SPJ for balanced data (see section 3 for unbal-
anced data). Consider a panel dataset of observations Yit with i = 1, . . . , N in-
dexing the individuals and t = 1, . . . , T indexing time, and suppose T is even (see

Dhaene and Jochmans [2015] for the case with T odd). Let θ̂ be the ML estimate of θ

computed from the full panel, and let θ̂1 and θ̂2 be the ML estimates computed from,
respectively, the first half-panel, where t = 1, . . . , T/2, and the second half-panel, where
t = T/2 + 1, . . . , T . The SPJ estimator is defined as

θ̃ = 2θ̂ − 1

2

(
θ̂1 + θ̂2

)

The SPJ log likelihood is defined similarly. Let l̂(θ) be the concentrated log-likelihood

function computed from the full panel (by concentrating out the αi), and let l̂1(θ) and

l̂2(θ) be the concentrated log-likelihood functions computed from, respectively, the first
and the second half-panels. Then, the SPJ log likelihood is

l̇ (θ) = 2l̂(θ)− 1

2

{
l̂1 (θ) + l̂2 (θ)

}

and the corresponding jackknife estimator is

θ̇ = argmax
θ
l̇ (θ)

Both θ̃ and θ̇ are first-order bias-corrected estimators. For a comparison of the two
variants, Dhaene and Jochmans (2015) provide extensive discussion and simulations.

https://www.researchgate.net/publication/328837218

Y. Sun and G. Dhaene 339

2.1 Syntax

xtspj depvar
[
indepvars

] [
if
] [

in
]
, model(string) method(string)

[
level(#)

ltol(#) ptol(#) maxiter(#) diagnosis verbose alpha(newvar)
]

2.2 Description

xtspj implements the first-order SPJ (also termed the half-panel jackknife) for possibly
nonlinear models with fixed effects. xtspj accepts balanced and unbalanced datasets,
with one restriction: for every cross-sectional unit i, there must be no gaps in the time
series. Hence, missing data are allowed only at the beginning and end of the observa-
tion period. depvar is the regressand in the model, and indepvars is an optional list
of regressors that may contain lagged values of depvar. The data must be xtset (see
[XT] xtset) with both panelvar and timevar. xtspj accepts fvvarlist (see [U] 11.4.3 Fac-
tor variables) (for example, i.x) and tsvarlist (see [U] 11.4.4 Time-series varlists)
(for example, L.x) in indepvars but not in depvar. Prior to estimation, the indepvars

are checked for multicollinearity. When indepvars contains lagged values of depvar up to
p lags, the model becomes autoregressive of order p and is fit conditionally on the first
p observations. The current version of xtspj maximizes the objective function using
the Newton–Raphson algorithm.

2.3 Options

model(string) specifies the type of regression model to be fit: probit (probit), logit
(logit), linear (linear), negative binomial (negbin), Poisson (poisson), exponen-
tial (exponential), gamma (gamma), Weibull (weibull), or some other user-written
model. For user-written models, see section 5. The linear model can also be fit by
specifying model(regress); see section 2.5. model() is required.

method(string) takes none, like, or parm for, respectively, no correction (θ̂), the SPJ

based on the jackknifed log likelihood (θ̇), and the SPJ based on the jackknifed

estimator (θ̃). method() is required.

level(#) sets the confidence level. The default is level(95).

ltol(#) sets the tolerance level for changes in the objective function value. When
the difference between the objective function values in the current and the previous
iteration, divided by the absolute value of the current objective function value, is
nonnegative and less than ltol(#), the algorithm stops and reports that conver-
gence has been achieved. The default is ltol(1e-4).

ptol(#) sets the tolerance level for changes in the parameter values. The algo-
rithm stops and reports convergence when the change in the parameter is less than
ptol(#). The change is computed as the absolute difference between θ in the cur-
rent and the previous iteration. When θ is a vector, the maximum element of the
vector of absolute differences is taken. The default is ptol(1e-4).

340 xtspj: Split-panel jackknife

maxiter(#) sets the maximum number of iterations the algorithm is allowed to use.
The default is maxiter(100).

diagnosis specifies that a simple diagnostic algorithm be invoked when the Newton–
Raphson algorithm gives an updated parameter vector that does not improve the
objective function value. This diagnostic algorithm is slow and disabled by default.
Our recommendation is to activate diagnosis (together with verbose) in case of
nonconvergence problems.

verbose specifies whether the iteration log of the maximization (that is, the objective
function values) and extra notes (for example, about omitted individuals) should be
displayed on the screen. When method(parm) is requested, the iteration log can be
lengthy. It is disabled by default.

alpha(newvar) specifies the name of the variable to be created, if needed, to store
the estimates α̂i of the fixed effects αi (the same value α̂i for all T observations
corresponding to i). When method(none) is requested, α̂i is the ML estimate of αi.
When method(like) or method(parm) is requested, α̂i is the ML estimate of αi with

θ held fixed in the likelihood function at θ̇ or θ̃, respectively.

2.4 Stored results

xtspj stores the following in e():

Scalars
e(N) number of observations
e(converged) contains 1 if the maximization converged
e(empty) contains 1 if there are no covariates in the model
e(ll) log-likelihood value (only for method(none) or method(like)

when model(regress) is not specified)

Macros
e(cmd) xtspj
e(cmdline) command as typed
e(title) title of table of results
e(vce) oim or vcetype specified in vce() (for model(regress) only)
e(vcetype) title used to label Std. Err. (for model(regress) only)
e(properties) b V
e(model) value of model()
e(method) value of method()
e(depvar) the regressands or the list of regressands (when a user-

written model with several eq was specified)

Matrices
e(b) coefficient vector
e(V) covariance matrix

Functions
e(sample) marks estimation sample

2.5 Remarks

The covariance matrix of the estimated θ is computed as follows. When no correction
is requested (method(none)), the usual oim covariance matrix based on the Hessian of

Y. Sun and G. Dhaene 341

the concentrated log likelihood is computed—see [R] vce option. When method(like)

or method(parm) is requested, the covariance matrix is obtained from the same Hessian

but now evaluated at the corresponding estimate, θ̇ or θ̃. This requires maximizing the
uncorrected log likelihood with respect to the fixed-effects parameters while θ is kept
fixed at θ̇ or θ̃. For this maximization, the options ltol(), ptol(), and maxiter() are
also effective.

When diagnosis is turned on, a diagnostic algorithm is invoked every time the cur-
rent objective function value in the Newton–Raphson algorithm is less than that in the
previous iteration (see also Baldick [2006, 403]). Given the gradient vector and Hessian
matrix obtained from the previous iteration, the algorithm successively reduces the step
size, used to update the parameter vector, from 1 to 0.5, 0.5^2, . . . , possibly down to a
minimum value of 0.5^10. The objective function is evaluated at the parameter vector
updated with the reduced step size. When the objective function value improves on
that from the previous iteration, the diagnostic algorithm stops, and maximization con-
tinues from the currently updated parameter vector. Otherwise, the step size is further
reduced unless the minimum step size is already reached, in which case the diagnostic
algorithm reports that no improvement could be achieved by reducing the step size,
the algorithm stops, and maximization continues from the parameter vector obtained
before the diagnostic algorithm was called.

With regard to ereturn, e(ll) is a stored result only when method(none) or
method(like) is requested.

The standard behavior of xtspj is to compute the estimates using the Newton–
Raphson algorithm to maximize the associated objective functions. This also applies to
model(linear). However, for the linear model, the ML and the two jackknife estimates
are also available in closed form. For theML and jackknifed ML estimates, this is straight-
forward: ML is just ordinary least squares, and the jackknifed ML estimate is just a linear
combination of ordinary least-squares estimates. For the jackknife estimate based on
the jackknifed log likelihood, θ̇, the closed-form expression (accommodating unbalanced
data) is derived in appendix A. As an alternative to model(linear), model(regress)
computes the estimates in the linear model directly from the closed-form expressions
and therefore is much faster.

For the probit and logit models, a check is performed for each individual i in each
of the half-panels to ensure that Yit varies across t. This is to drop individuals for
whom the regressand is perfectly predicted by setting αi equal to −∞ or +∞. These
individuals are not informative about θ in the corresponding half-panel and are excluded
from the estimation altogether. A similar check is performed in, for example, probit
(see [R] probit). Similarly, for the Poisson and negative binomial regression models,
individuals for which the regressand is zero for all t are uninformative and are therefore
dropped. For the exponential, gamma, and Weibull regression models, individuals for
which the regressand is nonpositive are dropped, similarly to streg (see [ST] streg).

342 xtspj: Split-panel jackknife

2.6 Example

To illustrate xtspj, we use a synthetic dataset on whether workers complain to managers
at fast-food restaurants. The data setup is as follows:

. webuse chicken

. generate worker=.

(output omitted)

. by restaurant: replace worker=_n

(output omitted)

. xtset restaurant worker

(output omitted)

. label define sex 0 "female" 1 "male"

. label values gender sex

Uncorrected fixed-effects probit ML

. xtspj complain age i.gender, model(probit) method(none)

xtspj - probit - ML Number of obs = 1,858

complain Coef. Std. Err. z P>|z| [95% Conf. Interval]

age -.0506949 .0154649 -3.28 0.001 -.0810055 -.0203844

gender
female 0 (empty)

male .394683 .0726083 5.44 0.000 .2523734 .5369927

The model is specified with fvvarlist (see [U] 11.4.3 Factor variables) in the list of
regressors, the output table is standard, and i0.gender, with value female, is omitted
because of multicollinearity. The omitted variable is listed in the output table but is as-
signed a zero coefficient. Number of obs reports the effective number of cross-sectional
and time-series observations used in the estimation, after excluding uninformative indi-
viduals (restaurants, in this example). When the option verbose is specified, the list
of excluded individuals and the list of omitted regressors are reported. The title of the
table, xtspj - probit - ML, lists the name of the command, the name of the model,
and the estimation method.

Y. Sun and G. Dhaene 343

Jackknifed log likelihood

. xtspj complain age i.gender, model(probit) method(like)

xtspj - probit - Jackknifed log-likelihood Number of obs = 524

complain Coef. Std. Err. z P>|z| [95% Conf. Interval]

age -.0448833 .0272204 -1.65 0.099 -.0982343 .0084677

gender
female 0 (empty)

male .5723342 .1271278 4.50 0.000 .3231684 .8215

Number of obs is much smaller here because any individual i is kept only if it is infor-
mative in each of the subpanels used to form the jackknife estimate. Hence, individuals
that are informative in the full panel but not in one or more subpanels are excluded.
Likewise, the multicollinearity check is performed at the level of each subpanel and,
hence, it may occur that additional regressors have to be omitted (relative to ML) be-
cause they do not pass the multicollinearity check in each subpanel. Clearly, when the
number of observations or the list of regressors is different between the ML and the
jackknife estimates, it becomes harder to compare the estimates.

Jackknifed ML

. xtspj complain age i.gender, model(probit) method(parm)

xtspj - probit - Jackknifed ML Number of obs = 524

complain Coef. Std. Err. z P>|z| [95% Conf. Interval]

age -.0483349 .0272095 -1.78 0.076 -.1016645 .0049947

gender
female 0 (empty)

male .5138605 .1266843 4.06 0.000 .2655638 .7621572

Number of obs and the set of omitted regressors are the same as for method(like).
This is because method(like) and method(parm) use the same multicollinearity and
informativeness checks. The estimates, however, are different.

3 Unbalanced panels and the SPJ

3.1 Unbalanced panels and the ML estimator

For simplicity of the analysis of unbalanced data, it is assumed that missingness is at
random and that every individual i contributes only consecutive data (that is, there are
no gaps). Then, an unbalanced panel can always be viewed as the union of J balanced
panels, indexed by j = 1, . . . , J . The jth balanced panel has Nj individuals, each with

344 xtspj: Split-panel jackknife

Tj consecutive periods of data. Consider now an asymptotic setup where Nj , Tj → ∞
and Nj/Tj → κj with 0 < κj <∞ for all j, and let J be fixed. First, the ML estimator
obtained from the unbalanced panel is briefly studied, and a closely related estimator
is suggested that can easily be jackknifed.

For the (i, t)th observation of the jth balanced panel, denote the outcome vari-
able as Y j

it and the regressors as Xj
it. The conditional density of Y j

it, given Xj
it, is

f(Y j
it|Xj

it;θ, α
j
i), where α

j
i is the fixed-effects parameter. Let

θ̂
j
= argmax

θ
l̂j (θ) , l̂j (θ) =

1

NjTj

Nj∑

i=1

Tj∑

t=1

log f
{
Y j
it|Xj

it;θ, α̂
j
i (θ)

}

α̂j
i (θ) = argmax

αj
i

1

Tj

Tj∑

t=1

log f
(
Y j
it; |Xj

itθ, α
j
i

)

The jth log likelihood, l̂j(θ), is normalized by the number of observations in the jth

balanced panel, so l̂j(θ) = Op(1). The log likelihood corresponding to the full (that is,
unbalanced) panel, normalized by the number of observations, is

l̂ (θ) =
1

∑J
j=1NjTj

J∑

j=1

Nj∑

i=1

Tj∑

t=1

log f
{
Y j
it|Xj

it;θ, α̂
j
i (θ)

}

=
∑

j

wj l̂
j (θ)

where wj = NjTj/
∑

j NjTj is the weight of the jth balanced panel. Hence, the ML

estimator is
θ̂ = argmax

θ

∑

j

wj l̂
j (θ)

Consider the weighted average of the θ̂
j
,

θ̂w =
∑

j

wj θ̂
j

and call it the weighted-average ML estimator. The ML and weighted-average ML esti-
mators are closely related, as the expressions show. It may be conjectured that they are
asymptotically equivalent under weak conditions. We will not study the precise condi-
tions here, because they are not the focus of this article. We will, however, conduct a
small-scale simulation study in section 4, showing that θ̂ and θ̂w are close to each other.
Our proposal is to jackknife θ̂ by jackknifing θ̂w, as discussed below in section 3.2.

As an example, the remainder of this subsection examines the many-normal-means
IPP of Neyman and Scott (1948) under data unbalancedness. The observations Yit follow
the normal distribution N (αi, θ0), with common variance θ0 and different means αi;
there are no covariates. When the panel is balanced, the (normalized) log-likelihood
function is

Y. Sun and G. Dhaene 345

1

NT

∑

i,t

log f (Yit; θ, αi) = −1

2
log (2π)− 1

2
log θ − 1

NT

∑

i,t

(Yit − αi)
2

2θ

Plugging in Y i =
∑

t Yit/T = α̂i(θ) for αi gives the concentrated log likelihood,

l̂ (θ) = −1

2
log (2π)− 1

2
log θ − 1

NT

∑

i,t

(
Yit − Y i

)2

2θ

and, on maximizing,

θ̂ =
1

NT

∑

i,t

(
Yit − Y i

)2

It follows easily that, as N → ∞ with T fixed,

θ̂ →p θ0 −
θ0
T

that is, θ̂ is inconsistent and biased toward zero. All of this has been well known since
Neyman and Scott (1948).

Now consider the unbalanced case. For the jth balanced panel, the concentrated log
likelihood and its maximizer are

l̂j (θ) = −1

2
log (2π)− 1

2
log θ − 1

NjTj

Nj∑

i=1

Tj∑

t=1

(
Y j
it − Y

j

i

)2

2θ

θ̂j =
1

NjTj

Nj∑

i=1

Tj∑

t=1

(
Y j
it − Y

j

i

)2

where Y
j

i =
∑Tj

t=1 Y
j
it/Tj = α̂j

i (θ) is the ML estimator of αj
i . The concentrated log

likelihood for the full panel is

l̂ (θ) =
∑

j

wj l̂
j (θ)

= −1

2
log (2π)− 1

2
log θ −

∑

j

wj
1

NjTj

Nj∑

i=1

Tj∑

t=1

(
Y j
it − Y

j

i

)2

2θ

with maximizer

θ̂ =
∑

j

wj
1

NjTj

Nj∑

i=1

Tj∑

t=1

(
Y j
it − α̂j

i

)2

=
∑

j

wj θ̂
j

= θ̂w

346 xtspj: Split-panel jackknife

Thus, the ML estimator, θ̂, and the weighted-average ML estimator, θ̂w, are identical.
Furthermore, when Nj → ∞ and Tj is fixed for all j,

θ̂ →p θ0 −
∑

j

wj
θ0
Tj

When Tj → ∞ for all j,
∑

j

wj
θ0
Tj

=
∑

j

wjO
(
T−1
j

)

Even when J is allowed to grow with the sample size, θ̂ will typically be consistent
because ∑

j

wjO
(
T−1
j

)
=
∑

j

NjTj∑
j NjTj

O
(
T−1
j

)
=

∑
j Nj∑

j NjTj
O (1)

where
∑

j Nj/
∑

j NjTj → 0 under weak conditions on the sequences (Nj , Tj), j =

1, . . . , J , as J grows. For the asymptotic distribution of
√∑

j NjTj(θ̂ − θ0) to be

centered at 0, it can easily be shown that
∑

j Nj√∑
j NjTj

= o (1) (1)

is necessary and sufficient. When the panel is balanced, that is, J = 1, N1 = N , and
T1 = T , (1) is equivalent to N/T = o(1), which is well known as necessary and sufficient

for
√
NT (θ̂ − θ0) to be centered at 0; see, for example, Hahn and Newey (2004).

3.2 Unbalanced panels and the SPJ

Our proposal is to jackknife θ̂ by jackknifing the closely related estimator θ̂w. Given
that θ̂w is a weighted average of ML estimates defined by balanced panels, θ̂w can be

jackknifed by parts, that is, by jackknifing each θ̂
j
in the usual way and then forming

a weighted average of the jackknifed θ̂
j
using weights wj .

Consider panel j. To allow Tj to be even or odd, we need to introduce a little more
notation. When Tj is even, the jackknife splits panel j into two subpanels with Tj/2
time periods each. Let

Sj
1 = {1, . . . , Tj/2} Sj

2 = {Tj/2 + 1, . . . , Tj}

The SPJ computes, for S = Sj
1, S

j
2,

θ̂
j

S = argmax
θ
l̂jS(θ) l̂jS(θ) =

1

Nj |S|

Nj∑

i=1

∑

t∈S

log f
{
Y j
it|Xj

it;θ, α̂
j
iS (θ)

}

α̂j
iS (θ) = argmax

αj
i

1

|S|
∑

t∈S

log f
(
Y j
it|Xj

it;θ, α
j
i

)

Y. Sun and G. Dhaene 347

where |S| = Tj/2 denotes the number of elements in S. Letting θ̂
j

k = θ̂
j

Sj

k
and l̂jk = l̂j

Sj

k

for k = 1, 2, the jackknifed versions of θ̂
j
and l̂j (θ) are, as before,

θ̃
j
= 2θ̂

j − 1

2

(
θ̂
j

1 + θ̂
j

2

)

l̇j (θ) = 2l̂j (θ)− 1

2

{
l̂j1 (θ) + l̂j2 (θ)

}

When Tj is odd, the situation is slightly different because there are two ways of splitting
panel j into almost equal subpanels. Let

Sj
11 = {1, . . . , ⌈Tj/2⌉} Sj

12 = {⌈Tj/2⌉+ 1, . . . , Tj}
Sj
21 = {1, . . . , ⌊Tj/2⌋} Sj

22 = {⌊Tj/2⌋+ 1, . . . , Tj}

where ⌈Tj/2⌉ is the least integer τ satisfying τ ≥ Tj/2 and ⌊Tj/2⌋ is the greatest integer
τ satisfying τ ≤ Tj/2. (Note that Sj

11 = Sj
21 and Sj

12 = Sj
22 when Tj is even.) The

jackknifed versions of θ̂
j
and l̂j(θ) are then defined as

θ̃
j
= 2θ̂

j − 1

2

(
θ
j

1 + θ
j

2

)
θ
j

k =
|Sj

k1|
Tj

θ̂
j

Sj

k1

+
|Sj

k2|
Tj

θ̂
j

Sj

k2

k = 1, 2

l̇j (θ) = 2l̂j (θ)− 1

2

{
l
j

1 (θ) + l
j

2 (θ)
}

l
j

k (θ) =
|Sj

k1|
Tj

l̂j
Sj

k1

(θ) +
|Sj

k2|
Tj

l̂j
Sj

k2

(θ) k = 1, 2

see Dhaene and Jochmans (2015). Given θ̃
j
and l̇j(θ) for each panel j, the SPJ versions

of θ̂w and l̂(θ) are

θ̃ =
∑

j

wj θ̃
j

l̇ (θ) =
∑

j

wj l̇
j (θ)

The estimator θ̃ is new, while θ̇ = argmaxθ l̇(θ) was proposed in Dhaene and Jochmans

(2015). The two estimators, θ̃ and θ̇, remove the leading bias term of θ̂w and θ̂,
respectively. They are consistent, have the same large-N , large-T asymptotic variance
as θ̂w and θ̂, and their limit distributions are correctly centered. That is, under our
asymptotic setup, with M =

∑
j NjTj denoting the total number of observations, the

limit distributions of
√
M(θ̃ − θ0) and

√
M(θ̇ − θ0) are normal and centered at zero,

while those of
√
M(θ̂w −θ0) and

√
M(θ̂−θ0) are normal but not generally centered at

zero.

As mentioned in the introduction, Chudik, Pesaran, and Yang (2018) propose an
alternative splitting scheme for unbalanced panels. We give a brief comparison here.
For simplicity, suppose Tj is even for all j = 1, . . . , J . The SPJ estimate of Chudik,
Pesaran, and Yang (2018) is

θ̃CPY = 2θ̂ − 1

2

(
θ̂1 + θ̂2

)

348 xtspj: Split-panel jackknife

where θ̂ is the usual ML estimate computed from the full panel and θ̂k (k = 1, 2) is the
ML estimate computed from the kth unbalanced half-panel, with observations

{(i, t) |i = 1, . . . , Nj ; t = 1, . . . , Tj/2; j = 1, . . . , J} , for k = 1

{(i, t) |i = 1, . . . , Nj ; t = Tj/2 + 1, . . . , Tj ; j = 1, . . . , J} , for k = 2

The estimator θ̃ replaces θ̂ with θ̂w =
∑

j wj θ̂
j
and θ̂k with

∑
j wj θ̂

j

k (k = 1, 2). The
latter is a weighted average, over j, of the ML estimate computed from the kth half of
the jth balanced panel, with observations

{(i, t) |i = 1, . . . , Nj ; t = 1, . . . , Tj/2} , for k = 1

{(i, t) |i = 1, . . . , Nj ; t = Tj/2 + 1, . . . , Tj} , for k = 2

An advantage of θ̃CPY is that it does not rely on the conjectured asymptotic equivalence
of θ̂w and θ̂, while θ̃ does. On the other hand, Chudik, Pesaran, and Yang (2018)

showed the bias-reduction property of θ̃CPY in the unbalanced case only for dynamic
linear models, whereas θ̃ and θ̇ are generally bias reducing in nonlinear models as well
(relative to θ̂w and θ̂, respectively).

3.3 Practical considerations

For some panels j, Tj may be too small for θ̃
j
or l̇j(θ) to be defined. In that case, the

individuals in those panels have to be excluded from the estimation. xtspj checks only
if Tj ≥ 2. This is a necessary condition for splitting the panel. All individuals with
fewer than two periods of data are automatically excluded. When Tj = 2, the half-panel
will contain only one time period, which in most models is insufficient to estimate θ.
For example, the linear fixed-effects model requires at least two time periods in each
subpanel, so the theoretical minimum for Tj is 4. Because this is a model-specific issue,
the user must determine if Tj is large enough, and, if it is not, the user must exclude
the corresponding individuals from the estimation, similarly to the ::Check() function
discussed below in section 5.3. Furthermore, one may also choose to set the minimum
for Tj above the theoretical minimum for at least two reasons. First, the panels with
small Tj typically contribute more higher-order bias to the SPJ than those with greater
Tj . Therefore, excluding panels with small Tj often reduces the bias but at the expense
of increased variance. Second, for panels with very small Tj , the half-panel concentrated
log likelihoods may be nearly flat, potentially causing numerical problems for computing
the jackknife estimates.

xtspj does not allow gaps in the data. In particular, for every individual, missing
data are allowed only at the beginning of the observation period, at the end, or both
at the beginning and the end. In certain situations, this is a realistic assumption, but
it is often unrealistic. However, this assumption is without loss of generality when
the observations are assumed to be independent across time (conditional on covariates)
because then we may simply reassign the observations to different time periods. For
dynamic models, the situation is more complicated, and the assumption of consecutive

Y. Sun and G. Dhaene 349

data was primarily made to accommodate dynamic models without difficulty in the
analysis. When the model is dynamic and there are gaps in the data, a simple solution
(though with loss of efficiency) is to redefine an “individual” as a patch of consecutive
observations. For example, an individual i with two patches of consecutive observations,
separated by a gap, is replaced by two new individuals, one for each patch. Then, the
analysis proceeds as in the case with consecutive data. The efficiency loss of this solution
is twofold: more fixed effects have to be estimated, and more initial observations are lost
because of conditioning on them. Avoiding the efficiency loss appears difficult in general,
although in linear time-series models it may be possible to extend Wincek and Reinsel
(1986) to the SPJ.

4 Simulations for unbalanced panels

This section presents a simulation study of the effect of moderate data unbalancedness
on the performance of the SPJ. The results are based on 5,000 Monte Carlo replications.
We set N = 500 throughout. The code used for the simulations is available in the online
supplement.

We first present simulation results suggesting that, for unbalanced data, θ̂ and θ̂w are
asymptotically equivalent (note that they are identical for balanced data). We simulated
data from the probit model, Yit = 1(Xitθ0 + αi + εit ≥ 0), where εit ∼ N (0, 1), with
θ0 = 0.5 and (Xit, αi) as specified below. We first generated balanced panels with
T = 8, . . . , 18 and then introduced unbalancedness by letting a fraction r > 0 of the
individuals have T − 4 observations instead of T . For example, when T = 8 and
r = 0.25, the unbalanced panel consists of J = 2 balanced panels, one with N1 = 125
and T1 = 4, and the other with N2 = 375 and T2 = 8. We generated unbalanced panels
with r = 0.25, 0.5, 0.75 (for balanced panels, r = 0). The covariate was generated as
Xit ∼ N (αi, 1), with αi = 0 (design 1) or αi ∼ N (0, 1/2) (design 2). Design 1 is
the case where, in fact, pooled estimation (that is, without fixed effects) is consistent,
while design 2 calls for fixed-effects estimation because the αi are correlated with the
regressor. Figures 1 and 2 present the bias and root mean squared error (RMSE) of θ̂

and θ̂w in the unbalanced designs.1 The first point to note is that there is an IPP even
when there are no fixed effects (design 1). That is, fitting a fixed-effects model already
induces an IPP even when the true data-generating process has no individual effects.
In both designs, θ̂ and θ̂w are close to each other and so are their biases and RMSEs.
The differences are most pronounced when T ≤ 10 and r = 0.5, and in those cases, θ̂w
tends to perform slightly better than θ̂ in terms of RMSE. As T increases, the difference
disappears as expected.

1. Throughout, the Monte Carlo results are conditional on the existence of all estimates. That is, the
results are based on the replications for which all subpanel estimates needed for the ML, weighted
ML, and jackknife estimates effectively exist. As soon as one subpanel estimate does not exist—
because there are no informative individuals—the replication is discarded. The fraction of discarded
replications was almost always 0 or close to 0 (less than 2%). In a few cases—those with T = 8, 9
and r = 0.25, where the jackknife uses subpanels of size T = 2 and N = 125—around 15% of the
replications had to be discarded.

350 xtspj: Split-panel jackknife

.0
2

.0
4

.0
6

.0
8

B
ia

s

8 10 12 14 16 18

r=0.25

.0
2

.0
4

.0
6

.0
8

.1

8 10 12 14 16 18

r=0.5

.0
4

.0
6

.0
8

.1
.1

2

8 10 12 14 16 18

r=0.75

.0
4

.0
6

.0
8

R
M

S
E

8 10 12 14 16 18

.0
4

.0
6

.0
8

.1

8 10 12 14 16 18

.0
5

.1
.1

5

8 10 12 14 16 18

ML weighted ML

Figure 1. ML and weighted-average ML: probit model, design 1. Model: Yit = 1(Xitθ0+
αi + εit ≥ 0), εit ∼ N (0, 1). Data generated with θ0 = 0.5, Xit ∼ N (αi, 1), αi = 0

(design 1), N = 500, T on x axis, and rN individuals with T − 4 instead of T . ML = θ̂,

weighted ML = θ̂w.

.0
4

.0
6

.0
8

.1
B

ia
s

8 10 12 14 16 18

r=0.25

.0
4

.0
6

.0
8

.1
.1

2

8 10 12 14 16 18

r=0.5

.0
5

.1
.1

5

8 10 12 14 16 18

r=0.75

.0
4

.0
6

.0
8

.1
R

M
S

E

8 10 12 14 16 18

.0
4

.0
6

.0
8

.1
.1

2

8 10 12 14 16 18

.0
5

.1
.1

5

8 10 12 14 16 18

ML weighted ML

Figure 2. ML and weighted-average ML: probit model, design 2. Model: Yit = 1(Xitθ0+
αi + εit ≥ 0), εit ∼ N (0, 1). Data generated with θ0 = 0.5, Xit ∼ N (αi, 1), αi ∼
N (0, 1/2) (design 2), N = 500, T on x axis, and rN individuals with T − 4 instead of

T . ML = θ̂, weighted ML = θ̂w.

Y. Sun and G. Dhaene 351

Next, we study the effect of data unbalancedness on the ML estimate, θ̂, and on the
SPJ estimates, θ̃ and θ̇. We consider three models: the static probit, the static logit, and
the stationary Gaussian first-order autoregressive [AR(1)] model. We set T = 4, . . . , 18
in the balanced panels, which serve as a benchmark of comparison with unbalanced
panels. For T ≥ 8, we generated unbalanced panels as above, with r = 0.25, 0.5, 0.75.

Figures 3–6 present the results for θ0 = 0.5, 1. The bias of the ML estimator is
uniformly upward both in design 1 and design 2. Both variants of the jackknife yield
significant improvements over ML in terms of bias and RMSE. The variant based on the
jackknifed log likelihood tends to perform best. The bias of θ̃ is uniformly downward
in the designs studied, and the bias of θ̇ is uniformly upward. Although this seems to
suggest a general pattern, the pattern found here is specific to the chosen design. The
effect of data unbalancedness shows a clear picture. For any T , as r increases from 0 to
0.75, an increasing fraction of the panel has only T − 4 observations, and the incidental
parameter bias of all three estimators increases, as expected. Note further that T with
r = 0 is equivalent to T +4 with r = 1, so one can see the gradual effect of successively
adding 4 time periods of data for a rotating group of 125 individuals from a balanced
panel with T = 4 up to one with T = 18. In line with the theory, the bias changes
smoothly for all three estimators in most design points and shows that the jackknife is
also bias reducing for unbalanced data.

0
.1

.2
B

ia
s

4 6 8 10 12 14 16 18

ML

0
.0

0
2

.0
0
4

.0
0
6

.0
0
8

4 6 8 10 12 14 16 18

SPJ(logl)
−

.1
5

−
.1

−
.0

5
0

4 6 8 10 12 14 16 18

SPJ(MLE)

.0
5

.1
.1

5
.2

R
M

S
E

4 6 8 10 12 14 16 18

.0
2

.0
4

.0
6

.0
8

4 6 8 10 12 14 16 18

0
.0

5
.1

.1
5

4 6 8 10 12 14 16 18

r=0 r=0.25 r=0.5 r=0.75

Figure 3. ML and SPJ: probit model, θ0 = 0.5, design 1. Model: Yit = 1(Xitθ0+αi+εit ≥
0), εit ∼ N (0, 1). Data generated with θ0 = 0.5, Xit ∼ N (αi, 1), αi = 0 (design 1),

N = 500, T on x axis, and rN individuals with T−4 instead of T . ML = θ̂, SPJ(logl) = θ̇,

SPJ(MLE) = θ̃. Maximum likelihood estimation = MLE.

352 xtspj: Split-panel jackknife

.0
5

.1
.1

5
.2

B
ia

s

4 6 8 10 12 14 16 18

ML

0
.0

1
.0

2
.0

3

4 6 8 10 12 14 16 18

SPJ(logl)

−
.1

5
−

.1
−

.0
5

0

4 6 8 10 12 14 16 18

SPJ(MLE)

.0
5

.1
.1

5
.2

R
M

S
E

4 6 8 10 12 14 16 18

.0
2

.0
4

.0
6

.0
8

.1

4 6 8 10 12 14 16 18

0
.1

.2

4 6 8 10 12 14 16 18

r=0 r=0.25 r=0.5 r=0.75

Figure 4. ML and SPJ: probit model, θ0 = 0.5, design 2. Model: Yit = 1(Xitθ0+αi+εit ≥
0), εit ∼ N (0, 1). Data generated with θ0 = 0.5, Xit ∼ N (αi, 1), αi ∼ N (0, 1/2)

(design 2), N = 500, T on x axis, and rN individuals with T − 4 instead of T . ML = θ̂,

SPJ(logl) = θ̇, SPJ(MLE) = θ̃.

.1
.2

.3
.4

.5
B

ia
s

4 6 8 10 12 14 16 18

ML

0
.0

2
.0

4
.0

6
.0

8

4 6 8 10 12 14 16 18

SPJ(logl)

−
.1

5
−

.1
−

.0
5

0

4 6 8 10 12 14 16 18

SPJ(MLE)

.1
.2

.3
.4

.5
R

M
S

E

4 6 8 10 12 14 16 18

0
.0

5
.1

.1
5

4 6 8 10 12 14 16 18

.0
5

.1
.1

5
.2

.2
5

4 6 8 10 12 14 16 18

r=0 r=0.25 r=0.5 r=0.75

Figure 5. ML and SPJ: probit model, θ0 = 1, design 1. Model: Yit = 1(Xitθ0+αi+εit ≥
0), εit ∼ N (0, 1). Data generated with θ0 = 1, Xit ∼ N (αi, 1), αi = 0 (design 1),

N = 500, T on x axis, and rN individuals with T−4 instead of T . ML = θ̂, SPJ(logl) = θ̇,

SPJ(MLE) = θ̃.

Y. Sun and G. Dhaene 353

.1
.2

.3
.4

.5
B

ia
s

4 6 8 10 12 14 16 18

ML

0
.0

5
.1

.1
5

4 6 8 10 12 14 16 18

SPJ(logl)

−
.2

−
.1

5
−

.1
−

.0
5

0

4 6 8 10 12 14 16 18

SPJ(MLE)

.1
.2

.3
.4

.5
R

M
S

E

4 6 8 10 12 14 16 18

.0
5

.1
.1

5
.2

.2
5

4 6 8 10 12 14 16 18

0
.2

.4

4 6 8 10 12 14 16 18

r=0 r=0.25 r=0.5 r=0.75

Figure 6. ML and SPJ: probit model, θ0 = 1, design 2. Model: Yit = 1(Xitθ0+αi+εit ≥
0), εit ∼ N (0, 1). Data generated with θ0 = 1, Xit ∼ N (αi, 1), αi ∼ N (0, 1/2)

(design 2), N = 500, T on x axis, and rN individuals with T − 4 instead of T . ML = θ̂,

SPJ(logl) = θ̇, SPJ(MLE) = θ̃.

For the static logit model, the data were generated as in the probit model above,
except that here εit is standard logistically distributed and, in accordance with the
scale of εit, the covariate was generated as Xit ∼ N (αi, π

2/3), with αi = 0 (design 1)
or αi ∼ N (0, π2/6) (design 2). The results for the logit model are available in the

online supplement. They are similar to those for the probit model: θ̂ is upward biased;
θ̃ and θ̇ are far less biased and have smaller RMSE; the bias of all three estimators
changes smoothly with the degree of data unbalancedness; the jackknife is bias reducing
for unbalanced data; and, again, the jackknife based on the jackknifed log likelihood
performs best.

Figures 7–8 report the results for the stationary Gaussian AR(1) model, with data
generated as

Yi0 ∼ N
(

αi

1− θ0
,

1

1− θ20

)
; Yit = θ0Yit−1 + αi + εit, t = 1, . . . T

where εit ∼ N (0, 1), αi ∼ N (0, 1/2) (design 2), and θ0 = 0.5,−0.5. The simulation
results are qualitatively similar to those in the logit and probit models. Here, however,
the jackknifed estimator, θ̃, performs better than θ̇ in terms of bias and RMSE. This
is in line with the simulation results in Dhaene and Jochmans (2015). Furthermore,
the bias is not symmetric in θ0 around 0, in line with the analysis of Nickell (1981).
The corresponding results for the case αi = 0 (design 1) are available in the online
supplement. Apart from Monte Carlo error, these results are identical to those for
design 2, confirming that all three estimators are invariant with respect to the αi.

354 xtspj: Split-panel jackknife

−
.4

−
.3

−
.2

−
.1

B
ia

s

4 6 8 10 12 14 16 18

ML

−
.3

−
.2

−
.1

0

4 6 8 10 12 14 16 18

SPJ(logl)

−
.0

8
−

.0
6

−
.0

4
−

.0
2

0

4 6 8 10 12 14 16 18

SPJ(MLE)

.1
.2

.3
.4

R
M

S
E

4 6 8 10 12 14 16 18

0
.1

.2
.3

4 6 8 10 12 14 16 18

.0
2

.0
4

.0
6

.0
8

4 6 8 10 12 14 16 18

r=0 r=0.25 r=0.5 r=0.75

Figure 7. ML and SPJ: Gaussian AR(1) model, θ0 = 0.5, design 2. Model: Yit = θ0Yit−1+
αi + εit, εit ∼ N (0, 1). Data generated with θ0 = 0.5, stationary Yi0, αi ∼ N (0, 1/2)

(design 2), N = 500, T on x axis, and rN individuals with T − 4 instead of T . ML = θ̂,

SPJ(logl) = θ̇, SPJ(MLE) = θ̃.

−
.1

5
−

.1
−

.0
5

0
B

ia
s

4 6 8 10 12 14 16 18

ML

−
.0

3
−

.0
2

−
.0

1
0

4 6 8 10 12 14 16 18

SPJ(logl)

−
.0

1
0

.0
1

.0
2

.0
3

4 6 8 10 12 14 16 18

SPJ(MLE)

0
.0

5
.1

.1
5

R
M

S
E

4 6 8 10 12 14 16 18

.0
1

.0
2

.0
3

.0
4

4 6 8 10 12 14 16 18

.0
1

.0
2

.0
3

.0
4

4 6 8 10 12 14 16 18

r=0 r=0.25 r=0.5 r=0.75

Figure 8. ML and SPJ: Gaussian AR(1) model, θ0 = −0.5, design 2. Model: Yit =
θ0Yit−1 + αi + εit, εit ∼ N (0, 1). Data generated with θ0 = −0.5, stationary Yi0,
αi ∼ N (0, 1/2) (design 2), N = 500, T on x axis, and rN individuals with T −4 instead

of T . ML = θ̂, SPJ(logl) = θ̇, SPJ(MLE) = θ̃.

Y. Sun and G. Dhaene 355

To conclude, the simulation results confirm that θ̂ can be jackknifed by jackknifing
θ̂w. The biases of θ̂, θ̃, and θ̇ are roughly equal to the corresponding weighted aver-
ages, using weights wj , of the biases associated with estimates computed from balanced

panels. For example, when T1 = 6 and T2 = 10, the bias of θ̇ is roughly the weighted
average of the bias when T = 6 and the bias when T = 10. The bottom line is that, at
least for moderately unbalanced panels, data unbalancedness poses no problem for the
SPJ.

5 User-written models

xtspj can also be used with a user-written model, provided that the density function
is of the form

f(Yit|Xit;θ, αi) = f(Yit|µ1,it, . . . , µM,it) (2)

with

µ1,it = X ′
1,itθ1 + αi

µm,it = X ′
m,itθm for m = 2, . . . ,M

for an arbitrary number M ≥ 1 of linear indices µm,it (equations in the Stata language)
depending on covariates Xm,it. The regressand, Yit, can be a vector, at most of dimen-
sionM . The first linear index, µ1,it, contains an additive fixed effect. Nevertheless, this
design is general in that when the fixed effects enter nonadditively, one simply needs
to keep the first linear index free of covariates. One can also set Xm,it = 1 for one or
several m > 1; then the corresponding µm,it = θm are simply parameters, entering the
model as specified by f .

5.1 Syntax

xtspj eq
[
eq ...

] [
if
] [

in
]
, model(string) method(string)

[
level(#)

ltol(#) ptol(#) maxiter(#) diagnosis verbose alpha(newvar)
]

5.2 Description

The rules for xtspj with a user-written model are the same as in section 2 with two
exceptions. First, each eq (equation) specifies a linear index, µm,it. The specification
of an eq is similar to ml model (see [R] ml), that is,

(
[
eqname:

] [
depvar

]
=
[
indepvars

][
, noconstant

]
)

where eqname is an optional equation name, depvar and indepvars are specified as
usual, and noconstant is optional and specifies that the corresponding equation has no
constant term. Here the equal sign (=) is compulsory, even if the equation is completely
empty in other parts of the specification; that is, eq must be, in the simplest form, (=).

356 xtspj: Split-panel jackknife

In the first eq, which is always without constant term because of the presence of fixed
effects, noconstant is implicitly assumed without specifying it. When a factor variable
appears among the indepvars in more than one eq, it must appear with a different name
in each eq. Hence, one has to generate a duplicate of the variable underlying the factor
variable for each additional eq where the factor variable appears. Second, model(string)
contains the name of the user-written model, which has to be programmed according to
the rules given below in section 5.3. The ereturn stored results are also as in section 2
except that e(depvar) now is the list of regressands.

5.3 User-written log-likelihood evaluation

The function f in (2) has to be specified as a Mata class containing two member func-
tions, ::Evaluate() and ::Check() (see [M-2] class). As examples, the Mata classes
for the preprogrammed models are given in appendix B, and the do-files are available
in the online supplement. The template for the Mata class is as follows.

Template code block

1 mata

2 class xtspj<YourModel> extends xtspjModel {

3 public: void Evaluate(), Check()

4 }

5 void function xtspj<YourModel>::Evaluate(real matrix Y, real matrix XB,

6 real colvector LogLikelihood, real matrix Gradient,

7 pointer(real colvector) matrix Hessian) {

8 // compute log likelihood, gradient, Hessian

9 }

10 void function xtspj<YourModel>::Check(real matrix Data,

11 real scalar Keep) {

12 // check data

13 }

14 end

The user needs to supply the relevant Mata code in the lines 8 and 12 as dis-
cussed below and change “<YourModel>” (lines 2, 5, 10) to a desired name, for ex-
ample, “MyModel”. When xtspj is executed, this name must be specified in the op-
tion model(string), for example, model(MyModel), so that xtspj calls the community-
contributed specification of f .

void function ::Evaluate()

The function ::Evaluate() needs to be supplied (see [M-2] declarations). It computes
the model’s log likelihood, gradient, and Hessian for a given set of observations (i, t),
t ∈ S. The function is called repeatedly and separately for each i and various sets
S. In balanced panels with even T , for example, S is {1, . . . , T} or {1, . . . , T/2} or
{T/2 + 1, . . . , T}. The arguments of ::Evaluate() are as follows:

Y. Sun and G. Dhaene 357

real matrix Y, the matrix of regressands. The kth column of Y corresponds to the
kth regressand, defined by an eq, and each row corresponds to an observation (i, t),
t ∈ S.

real matrix XB, the matrix of linear indices. The mth column of XB corresponds to
the mth linear index, defined by an eq, and each row corresponds to an observation
(i, t), t ∈ S.

real colvector LogLikelihood, the column vector of log-likelihood values. Each row
contains the log-likelihood value corresponding to an observation (i, t), t ∈ S, eval-
uated at the corresponding row of XB and Y. Thus, LogLikelihood has elements

log f(Yit|µ1,it, . . . , µM,it), t ∈ S

real matrix Gradient, the matrix of scores. The mth column of Gradient corre-
sponds to the log-likelihood derivative with respect to the mth linear index, evalu-
ated at XB and Y. Thus, the mth column of Gradient has elements

∂ log f(Yit|µ1,it, . . . , µM,it)

∂µm,it
, t ∈ S

pointer(real colvector) matrix Hessian, the pointer matrix pointing to the Hes-
sian (see [M-2] pointers). It must be symmetric (see [M-5] makesymmetric()).
The (m,n)th element of Hessian is a pointer to the column vector of second-order
log-likelihood derivatives with respect to the mth and nth linear indices, evaluated
at XB and Y. Thus, the (m,n)th element of Hessian points to the elements

∂2 log f(Yit|µ1,it, . . . , µM,it)

∂µm,it∂µn,it
, t ∈ S

The arguments real matrix Gradient and pointer(real colvector) matrix

Hessian are optional. If they are not changed inside ::Evaluate(), xtspj uses a nu-
merical differentiation algorithm to compute the derivatives. See section 6.1 for details.

The following Mata code gives ::Evaluate() for the probit model:

Code block 1

1 void function xtspjprobit::Evaluate(real matrix Y,

2 real matrix XB, real colvector LogLikelihood,

3 real matrix Gradient, pointer(real colvector) matrix Hessian) {

4 q=(Y:*2:-1)

5 LogLikelihood=lnnormal(q:*XB)

6 Gradient=q:*(normalden(q:*XB):/normal(q:*XB))

7 Hessian=&(-Gradient:*(XB+Gradient))

8 }

358 xtspj: Split-panel jackknife

Compare code block 1 with the corresponding portion of the template code block:
“probit” replaces “<YourModel>”, and LogLikelihood, Gradient, and Hessian are
computed in lines 5 to 7. Lines 6 and 7 can be omitted; then Gradient and Hessian

are computed by numerical differentiation.

Mata function arguments are passed by reference (see [M-2] declarations, remark
8), so the changes made inside the function-to-function arguments remain also after
the function execution has terminated. Hence, the values computed and stored in
LogLikelihood, Gradient, and Hessian are preserved after the function call and are
passed to xtspj.

When a model contains more than one equation (M > 1), the variables Gradient
and Hessian may be preallocated to reduce the computation time. This can be done
by inserting the code

1 Gradient=J(rows(Data),cols(Data),.)

2 Hessian=J(cols(Data),cols(Data),NULL)

between lines 3 and 4 of code block 1 (see [M-5] J(), [M-5] rows(), and remark 8 of
[M-2] pointers for NULL).

Hessian is computed as a matrix of pointers. In line 7 of code block 1, the operator
&() creates a pointer to the value of the expression in parentheses, that is, a pointer
to the value of -Gradient:*(XB+Gradient). There is a subtle difference between a
pointer to a variable and a pointer to the value of an expression (see [M-2] pointers,
remarks 2 and 3). When pointing to a variable, this may cause mistakes when that
variable is reused. For example, the code

1 H=...

2 Hessian[1,1]=&H

3 H=...

4 Hessian[1,2]=&H

will not produce the intended result, because line 3 alters H and thus also Hessian[1,1].
It is on the safe side to use different variable names instead, as in

1 H11=...

2 Hessian[1,1]=&H11

3 H12=...

4 Hessian[1,2]=&H12

void function ::Check()

Prior to estimation, xtspj checks that for each individual, there are at least two time
periods of data so that, when the panel is split, each subpanel has at least one time
period per individual. Individuals that do not meet this condition are excluded from
the estimation. The function ::Check() serves as an additional, model-specific data
check and, if necessary, serves to additionally exclude individuals that are uninformative

Y. Sun and G. Dhaene 359

about θ in some subpanel or subpanels. For example, in the linear model, at least two
time periods are required in each subpanel. Another example is that, in binary choice
models, Yit must vary across t in each subpanel. If such data checks are not needed,
one may simply replace line 12 of the template code block with “Keep=1”.

The function ::Check() is called prior to estimation and checks a given set of
observations (i, t), t ∈ S. Similar to ::Evaluate(), ::Check() is called separately for
each i and various sets S that correspond to the subpanels. Only if i passes the data
check imposed by ::Check() for all relevant sets S (which results in “Keep=1” for all
S) is i included in the dataset to be used for estimation. The arguments of ::Check()
are as follows:

real matrix Data, the data to be checked. The columns of Data correspond to the
regressands of the model, followed by the regressors, in the same order as specified
by the equations. The rows correspond to the observations (i, t), t ∈ S.

real scalar Keep, the main output. Keep is set to 1 if Data passes the check and set
to 0 otherwise.

The following Mata code gives ::Check() for the probit model:

1 void function xtspjprobit::Check(real matrix Data, real scalar Keep) {

2 if (sum(Data[.,1])==0 || sum(Data[.,1])==rows(Data)) {

3 Keep=0

4 } else {

5 Keep=1

6 }

7 }

Here line 2 tests if Y, the first column of Data, varies. When the elements of Y are all
0 or all 1, the expression

sum(Data[.,1])==0 || sum(Data[.,1])==rows(Data)

is evaluated as true and Keep is set to 0 (see [M-5] sum() and [M-2] op logical).
Otherwise, Y varies and Keep is set to 1.

5.4 Example

Here we compute the jackknifed ML estimate with the user-written model PROBIT, spec-
ified in the Mata part, for the same setup as in section 2.6. Note that the model name,
PROBIT, is capitalized so that it does not conflict with the preprogrammed model named
probit. The output table is identical to the corresponding output table in section 2.6
except for the model name, PROBIT.

360 xtspj: Split-panel jackknife

. // data setup omitted; see section 2.6

. mata
mata (type end to exit)

: class xtspjPROBIT extends xtspjModel {
> public: void Evaluate(), Check()
> }

: void function xtspjPROBIT::Evaluate(real matrix Y, real matrix XB,
> real colvector LogLikelihood, real matrix Gradient,
> pointer(real colvector) matrix Hessian) {
> q=(Y:*2:-1)
> LogLikelihood=lnnormal(q:*XB)
> Gradient=q:*(normalden(q:*XB):/normal(q:*XB))
> Hessian=&(-Gradient:*(XB+Gradient))
> }

: void function xtspjPROBIT::Check(real matrix Data, real scalar Keep) {
> if (sum(Data[.,1])==0 || sum(Data[.,1])==rows(Data)
> || rows(Data)<=1) {Keep=0;}
> else {Keep=1;}
> }

: end

. xtspj (complain = age i.gender), model(PROBIT) method(parm)

xtspj - PROBIT - Jackknifed ML Number of obs = 524

complain Coef. Std. Err. z P>|z| [95% Conf. Interval]

age -.0483349 .0272095 -1.78 0.076 -.1016645 .0049947

gender
female 0 (empty)

male .5138605 .1266843 4.06 0.000 .2655638 .7621572

6 Algorithms

6.1 Details on numerical differentiation

Numerical differentiation is a well-established technique for the approximation of the
derivatives of a function when analytical differentiation is difficult or infeasible. The sub-
ject is treated extensively in, for example, Burden, Faires, and Burden (2016), Griewank
and Walther (2008), and Press et al. (2007, chap. 5.7). In Mata, [M-5] deriv() com-
putes numerical derivatives. However, xtspj does not use [M-5] deriv(), because it is
not optimized for the present setup. To see why, we briefly review the algorithm imple-
mented by [M-5] deriv() and the implied time cost. Consider a generic log-likelihood
function

L (θ,α) = L (θ, α1, . . . , αN) =
∑

i,t

log f (Yit|Xit; θ, αi)

Y. Sun and G. Dhaene 361

where θ is a scalar common parameter and α = (α1, . . . , αN)′ is the vector of fixed-
effects parameters. [M-5] deriv() approximates the first derivative of L(θ, α1, . . . , αN),

(
∂L (θ,α)

∂θ
,
∂L (θ,α)

∂α′

)
=

(
∂L (θ,α)

∂θ
,
∂L (θ,α)

∂α1
, . . . ,

∂L (θ,α)

∂αN

)
(3)

as

∂L (θ,α)

∂θ
=
L (θ + h,α)− L (θ − h,α)

2h
∂L (θ,α)

∂αi
=
L (θ, α1, . . . , αi + h, . . . , αN)− L (θ, α1, . . . , αi − h, . . . , αN)

2h
, i = 1, . . . , N

for some small h. This is the standard formula discussed in many textbooks, includ-
ing those cited above. (Higher-order techniques also exist; see, for example, Fornberg
[1988].) Now, assuming the time cost of evaluating L(θ,α) is O(1), the time cost
of approximating (3) as above is O(2N + 2) or, when θ is a vector of P elements,
O(2N + 2P). That is, it takes 2(N + P) times as much time to compute the first
derivative as to compute the value of the log-likelihood function. When the second
derivative is approximated in the same way, the time cost becomes even much higher.
In typical microeconomic panel datasets, N is large and T is small, so this algorithm is
computationally very slow.

xtspj implements an alternative algorithm for numerical differentiation, exploiting
the property that the model may be expressed in terms of linear indices. Given (2), the
log-likelihood function may be written as

L (µ1, . . . , µM) =
∑

i,t

log f (Yit|µ1,it, . . . , µM,it)

where µm is the NT × 1 vector collecting all the elements µm,it. Correspondingly, let
Xm be the NT × Pm matrix collecting all the values of the regressors that appear in
the mth linear index. Observing that

∂µm

∂θ′m
= Xm

for every m, we have

∂L (µ1, . . . ,µM)

∂θ′m
=
∂L (µ1, . . . ,µM)

∂µ′
m

∂µm

∂θ′m
=
∂L (µ1, . . . ,µM)

∂µ′
m

Xm

Here we only have to approximate ∂L(µ1, . . . ,µM)/∂µm as

∂L (µ1, . . . ,µM)

∂µm

=
L (µ1, . . . ,µm + h, . . . ,µM)− L (µ1, . . . ,µm − h, . . . ,µM)

2h

which requires just two evaluations of the log-likelihood function. For the fixed-effects
parameter αi, we have

∂L (θ,α)

∂αi
=
∑

t

∂ log f (Yit|µ1,it, . . . , µM,it)

∂µ1,it

362 xtspj: Split-panel jackknife

which is linked to objects already computed because

∂L (µ1, . . . ,µM)

∂µ1

=
∑

i,t

∂ log f (Yit|µ1,it, . . . , µM,it)

∂µ1,it

For the second derivative, a similar computation follows easily.

The algorithm just described is efficient in that the time cost is only slightly higher
than O(2M), so the time spent obtaining the first derivative is roughly the same as
that of evaluating the log-likelihood function 2M times. In typical settings, M is much
less than N + P . For example, in the probit model, M = 1. In the linear model,
M = 2 (there is a constant linear index for the error variance, say, µ2,it = θ2 = σ2).
In addition, for some models, the time cost of evaluating the derivatives analytically
exceeds the time cost of computing them numerically using the proposed algorithm.

xtspj currently sets h equal to epsilon(1)^0.25, where epsilon(1) is the machine
precision (see [M-5] epsilon()).

6.2 Details on the Newton–Raphson algorithm

The Newton–Raphson algorithm is a common technique for numerical optimization
of functions that are twice differentiable. Its properties, potential problems, and im-
plementation details can be found in, for example, Süli and Mayers (2003, chap. 4),
Bonnans et al. (2006, chap. 4), and Press et al. (2007, chap. 9). In Stata and Mata, ml,
optimize(), and moptimize() (see [R]ml, [M-5] optimize(), and [M-5] moptimize())
are numerical optimizers. In the context of ML estimation of fixed-effects models, the
problem with these optimizers, including the standard way of implementing the Newton–
Raphson algorithm, is that they do not exploit the sparsity of the Hessian matrix, which
makes them slow and memory inefficient. This section reviews these problems and dis-
cusses how xtspj implements the Newton–Raphson algorithm more efficiently.

Consider first how one may fit a fixed-effects model by ML in Stata when no xt

command is available. As an example, suppose one wishes to fit a fixed-effects probit
model, given a panel dataset with a binary regressand Y, a regressor X, and a group
variable i indexing the individuals (i is the panelvar in xtset). Then, one would run

1 quietly tabulate i, generate(group)

2 probit Y X group*, nocons

This code is conveniently short but can be slow. As an example, we ran it with
Stata/MP2 15.1 on an Intel i7-6820HQ computer for balanced datasets generated with
Xit, αi ∼ N (0, 1), T = 10, θ0 = 0.5, and various values of N . As shown in table 1, the
time cost of probit grows rapidly with N , while that of xtspj is roughly proportional
to N .

Y. Sun and G. Dhaene 363

Table 1. Time cost of probit versus xtspj

Time using probit Time using xtspj

N Mean Max Mean Max

10 0.03 0.05 0.04 0.06
100 0.15 0.17 0.06 0.08
500 4.26 4.51 0.16 0.18
1000 32.95 33.83 0.29 0.32
2000 277.03 281.55 0.51 0.54

notes: Time is reported in seconds. Mean and max are obtained
by running probit and xtspj 10 times on the same dataset, gen-
erated with Xit and αi drawn from N (0, 1), T = 10, and θ0 = 0.5.

The number of parameters in fixed-effects models is N +dimθ, so when N is large,
standard optimization methods become very slow. The SPJ adds to the challenge be-
cause the model has to be fit several times or, in the case of the jackknifed log likelihood,
one has to optimize simultaneously over several sets of fixed-effects parameters. The
number of fixed-effects parameters that implicitly enter l̇(θ) varies between 3N (when
Tj is even for all i) and 5N (when Tj is odd for all i). In short, when N is large, the
optimization problem is high dimensional. Standard optimizers that use second deriva-
tives, such as the Newton–Raphson algorithm, become slow in high dimensions because
the Hessian is high dimensional. Here, however, the Hessian is also sparse. In particu-
lar, the matrix of second derivatives of the original (unconcentrated) log likelihood with
respect to all fixed-effects parameters is a diagonal matrix. This is also true, as shown
in appendix C, for the Hessian of the unconcentrated objective function underlying l̇(θ),
which depends on multiple sets of fixed-effects parameters. The sparsity of the Hessian
simplifies its inversion and the updating step of the Newton–Raphson algorithm, as
detailed below.

Let θ be a P × 1 column vector, and consider an objective function of the form

l̇ (θ,φ) =
∑

j

wj l̇j
(
θ,αj ,γj , δj

)

φ =
(
α1
1, . . . , α

1
N1
, γ11 , . . . , γ

1
N1
, δ11 , . . . , δ

1
N1
, . . . , αJ

1 , . . . , α
J
NJ
, γJ1 , . . . , γ

J
NJ
, δJ1 , . . . , δ

J
NJ

)′

where wj is the weight associated with the jth balanced panel andα, γ, and δ are vectors
of fixed-effects parameters associated with, respectively, all time periods, the first half,
and the second half of the time periods (assuming Tj is even for all j). Partition the
gradient and the Hessian as

g (θ,φ) =

(
gθ (θ,φ)
gφ (θ,φ)

)
, H (θ,φ) =

(
Hθθ (θ,φ) Hθφ (θ,φ)
Hφθ (θ,φ) Hφφ (θ,φ)

)

364 xtspj: Split-panel jackknife

Given the parameter vector (θ(k)′,φ(k)′)′ at the kth iteration, the Newton–Raphson
algorithm obtains the updated parameter vector as

(
θ(k+1)

φ(k+1)

)
=

(
θ(k)

φ(k)

)
+ u

(
θ(k),φ(k)

)

where
u (θ,φ) = −H−1 (θ,φ) g (θ,φ)

When dimφ is large, computing u(θ,φ) by Gaussian elimination is slow and inaccurate.
As suggested by Hall (1978) and Chamberlain (1980), the computation of u(θ,φ) can
be carried out more efficiently using a block inversion algorithm. Because Hφφ(θ,φ)
is diagonal, only its diagonal needs to be stored, and it is straightforward and fast to
compute

h−1
φφ (θ,φ) = diag

{
H−1

φφ (θ,φ)
}

A (θ,φ) = Hφθ (θ,φ)⊙
{
h−1
φφ (θ,φ)1′

P

}

B (θ,φ) = Hθθ (θ,φ)−Hθφ (θ,φ)A (θ,φ)

where ⊙ denotes the Hadamard product, 1P is the P × 1 vector of ones, and diag(V)
is the column vector formed by the diagonal elements of V. Then

u (θ,φ) =

(
uθ (θ,φ)
uφ (θ,φ)

)

is given by

uθ (θ,φ) = −B−1 (θ,φ) {gθ (θ,φ)−A′ (θ,φ) gφ (θ,φ)}
uφ (θ,φ) = −gφ (θ,φ)⊙ h−1

φφ (θ,φ)−A (θ,φ)uθ (θ,φ)

This way of computing the updated parameter vector is memory efficient and dramati-
cally speeds up the Newton–Raphson algorithm.

7 Conclusion

xtspj implements the SPJ of Dhaene and Jochmans (2015) in Stata using code written
in Mata. The command allows for unbalanced panels. It implements two variants of
the SPJ: the jackknifed ML estimator and the jackknifed (concentrated) log likelihood.
The model is generically defined through linear indices. The log-likelihood gradient
and Hessian may be supplied by the user or computed numerically by xtspj. The
command is much faster than standard Stata code because it is written in Mata and
the maximization of the log likelihood is carried out by a tailored Newton–Raphson
algorithm that exploits the sparsity of the Hessian.

The current version of xtspj is preliminary in several respects. For instance, unlike
other Stata routines such as optimize(), moptimize(), and ml, xtspj does not support

Y. Sun and G. Dhaene 365

the Nelder–Mead algorithm (see, for example, Dennis and Woods [1987]) and does not
allow constraints in the maximization. Further, xtspj provides a bias correction for
fixed effects but not for time dummies (although the model may include time effects,
treated as common parameters). Recently, Fernández-Val and Weidner (2016) extended
the SPJ to models with both fixed and time effects, in an asymptotic setting where N/T
converges to a positive constant. Also, xtspj is restricted to first-order bias correction,
whereas higher-order versions of the SPJ exist as well (see Dhaene and Jochmans [2015]).
Finally, xtspj focuses on estimating θ—the common parameter. There are, however,
many other estimands of interest, for example, average marginal (or partial) effects or
other average quantities that depend on θ, the fixed effects, and the covariate values.
The ML estimates of such quantities are also biased because of the estimation of the
fixed effects and may be bias corrected by the SPJ.

In applied work with panel data, most panel datasets are unbalanced. On the other
hand, most theoretical work on panel data assumes balanced data. Here a version of
the SPJ for unbalanced data is proposed, and its properties are investigated. We find
that mild degrees of data unbalancedness pose no problem for the SPJ. The properties
of the estimators under more extreme forms of data unbalancedness, for example, when
the vast majority of individuals have only a few data periods remain to be investigated.

8 Acknowledgments

We are grateful to a referee for valuable comments and suggestions. Financial sup-
port from the Flemish Science Foundation grant G.0505.11 and from the Fundamental
Research Funds for the Central Universities (grant 2412018QD026) are gratefully ac-
knowledged.

9 References

Andersen, E. B. 1970. Asymptotic properties of conditional maximum-likelihood esti-
mators. Journal of the Royal Statistical Society, Series B 32: 283–301.

Arellano, M., and S. Bonhomme. 2009. Robust priors in nonlinear panel data models.
Econometrica 77: 489–536.

Arellano, M., and J. Hahn. 2016. A likelihood-based approximate solution to the inci-
dental parameter problem in dynamic nonlinear models with multiple effects. Global
Economic Review 45: 251–274.

Baldick, R. 2006. Applied Optimization: Formulation and Algorithms for Engineering
Systems. Cambridge: Cambridge University Press.

Bonnans, J.-F., J. C. Gilbert, C. Lemaréchal, and C. A. Sagastizábal. 2006. Numerical
Optimization: Theoretical and Practical Aspects. 2nd ed. New York: Springer.

Burden, R. L., D. J. Faires, and A. M. Burden. 2016. Numerical Analysis. 10th ed.
Boston: Cengage Learning.

366 xtspj: Split-panel jackknife

Chamberlain, G. 1980. Analysis of covariance with qualitative data. Review of Economic
Studies 47: 225–238.

. 2010. Binary response models for panel data: Identification and information.
Econometrica 78: 159–168.

Chudik, A., M. H. Pesaran, and J.-C. Yang. 2018. Half-panel jackknife fixed-effects
estimation of linear panels with weakly exogenous regressors. Journal of Applied
Econometrics 33: 816–836.

Cox, D. R., and N. Reid. 1987. Parameter orthogonality and approximate conditional
inference. Journal of the Royal Statistical Society, Series B 49: 1–39.

Cruz-Gonzalez, M., I. Fernández-Val, and M. Weidner. 2017. Bias corrections for probit
and logit models with two-way fixed effects. Stata Journal 17: 517–545.

Dennis, J. E., Jr., and D. J. Woods. 1987. Optimization on microcomputers: The
Nelder-Mead simplex algorithm. In New Computing Environments: Microcomputers
in Large-Scale Computing, ed. A. Wouk, 116–122. Philadelphia: Society for Industrial
and Applied Mathematics.

Dhaene, G., and K. Jochmans. 2015. Split-panel jackknife estimation of fixed-effect
models. Review of Economic Studies 82: 991–1030.

Egger, P. H., and K. E. Staub. 2016. GLM estimation of trade gravity models with fixed
effects. Empirical Economics 50: 137–175.

Fernández-Val, I. 2009. Fixed effects estimation of structural parameters and marginal
effects in panel probit models. Journal of Econometrics 150: 71–85.

Fernández-Val, I., and M. Weidner. 2016. Individual and time effects in nonlinear panel
models with large N, T. Journal of Econometrics 192: 291–312.

Fornberg, B. 1988. Generation of finite difference formulas on arbitrarily spaced grids.
Mathematics of Computation 51: 699–706.

Greene, W. 2004. Fixed effects and bias due to the incidental parameters problem in
the tobit model. Econometric Reviews 23: 125–147.

Griewank, A., and A. Walther. 2008. Evaluating Derivatives: Principles and Tech-
niques of Algorithmic Differentiation. 2nd ed. Philadelphia: Society for Industrial
and Applied Mathematics.

Griffin, J. M., and G. Maturana. 2016. Who facilitated misreporting in securitized
loans? Review of Financial Studies 29: 384–419.

Hahn, J., and G. Kuersteiner. 2002. Asymptotically unbiased inference for a dynamic
panel model with fixed effects when both n and T are large. Econometrica 70: 1639–
1657.

Y. Sun and G. Dhaene 367

. 2011. Bias reduction for dynamic nonlinear panel models with fixed effects.
Econometric Theory 27: 1152–1191.

Hahn, J., and W. Newey. 2004. Jackknife and analytical bias reduction for nonlinear
panel models. Econometrica 72: 1295–1319.

Hall, B. H. 1978. A general framework for the time series-cross section estimation.
Annales de l’Inséé 30/31: 177–202.

Honoré, B. E., and E. Tamer. 2006. Bounds on parameters in panel dynamic discrete
choice models. Econometrica 74: 611–629.

Katz, E. 2001. Bias in conditional and unconditional fixed effects logit estimation.
Political Analysis 9: 379–384.

Lancaster, T. 2000. The incidental parameter problem since 1948. Journal of Econo-
metrics 95: 391–413.

. 2002. Orthogonal parameters and panel data. Review of Economic Studies 69:
647–666.

Li, H., B. G. Lindsay, and R. P. Waterman. 2003. Efficiency of projected score methods
in rectangular array asymptotics. Journal of the Royal Statistical Society, Series B
65: 191–208.

Milner, A., L. Krnjacki, P. Butterworth, and A. D. LaMontagne. 2016. The role of social
support in protecting mental health when employed and unemployed: A longitudinal
fixed-effects analysis using 12 annual waves of the HILDA cohort. Social Science and
Medicine 153: 20–26.

Neyman, J., and E. Scott. 1948. Consistent estimates based on partially consistent
observations. Econometrica 16: 1–32.

Nickell, S. 1981. Biases in dynamic models with fixed effects. Econometrica 49: 1417–
1426.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. 2007. Numerical
Recipes: The Art of Scientific Computing. 3rd ed. Cambridge: Cambridge University
Press.

Quenouille, M. H. 1949. Approximate tests of correlation in time-series 3. InMathemati-
cal Proceedings of the Cambridge Philosophical Society, vol. 45, 483–484. Cambridge:
Cambridge University Press.

. 1956. Notes on bias in estimation. Biometrika 43: 353–360.

Süli, E., and D. F. Mayers. 2003. An Introduction to Numerical Analysis. Cambridge:
Cambridge University Press.

368 xtspj: Split-panel jackknife

Wincek, M. A., and G. C. Reinsel. 1986. An exact maximum likelihood estimation
procedure for regression-ARMA time series models with possibly nonconsecutive data.
Journal of the Royal Statistical Society, Series B 48: 303–313.

Woutersen, T. 2001. Robustness against incidental parameters and mixing dis-
tributions. University of Western Ontario, Department of Economics, Work-
ing Paper No. 2001-10. https:// ir.lib.uwo.ca/cgi/viewcontent.cgi?article=1382&
context=economicsresrpt.

About the authors

Yutao Sun is a postdoctoral researcher at Erasmus University Rotterdam, holding an affiliation
also in Northeast Normal University. His research interests include panel-data econometrics
and maximum likelihood methods.

Geert Dhaene is a professor at KU Leuven. His research interests focus on theoretical and
applied econometrics, with a focus on panel-data methods.

A Jackknifed log-likelihood estimates for the linear

model

The model is
yit = αi +X′

itβ + εit, εit ∼ N
(
0, σ2

)

Suppose, initially, that the panel is balanced. Define the demeaned variables

ỹit = yit −
1

T

∑

t

yit, X̃it = Xit −
1

T

∑

t

Xit

The ML estimate is
β̂ = A−1b, σ̂2 = MSR

(
β̂
)

where

A =
1

NT

∑

i,t

X̃itX̃
′
it, b =

1

NT

∑

i,t

X̃itỹit, MSR(β) =
1

NT

∑

i,t

(
ỹit − X̃′

itβ
)2

With the mean squared residual (MSR) written as

MSR(β) = σ̂2 +
(
β − β̂

)′
A
(
β − β̂

)

the concentrated log likelihood (normalized by number of observations) is

l
(
β, σ2

)
= −1

2
log(2π)− 1

2
log σ2 −

σ̂2 +
(
β − β̂

)′
A
(
β − β̂

)

2σ2

Suppose, initially, that T is even. For the subpanels 1 and 2, define, respectively,

ỹit1, X̃it1, A1,b1, SSR1(β), β̂1, σ̂
2
1 , l1

(
β, σ2

)

ỹit2, X̃it2, A2,b2, SSR2(β), β̂2, σ̂
2
2 , l2

(
β, σ2

)

https://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=1382&context=economicsresrpt
https://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=1382&context=economicsresrpt

Y. Sun and G. Dhaene 369

by analogy to the earlier definitions. The jackknifed concentrated log likelihood is

l̇
(
β, σ2

)
= −1

2
log(2π)− 1

2
log σ2 −

σ̂2 +
(
β − β̂

)′
A
(
β − β̂

)

σ2

+
∑

r=1,2

σ̂2
r +

(
β − β̂r

)′
Ar

(
β − β̂r

)

4σ2

Hence, β̇ follows on minimizing the quadratic form

2
(
β − β̂

)′
A
(
β − β̂

)
− 1

2

∑

r=1,2

(
β − β̂r

)′
Ar

(
β − β̂r

)

The solution is

β̇ = {2A− (A1 +A2)/2}−1
{
2Aβ̂ −

(
A1β̂1 +A2β̂2

)
/2
}

σ̇2 = 2MSR

(
β̇
)
−

MSR1

(
β̇
)
+MSR2

(
β̇
)

2

When T is possibly odd,

l̇
(
β, σ2

)
= −1

2
log(2π)− 1

2
log σ2 −

σ̂2 +
(
β − β̂

)′
A
(
β − β̂

)

σ2

+
∑

r,s=1,2

ωrs

σ̂2
rs +

(
β − β̂rs

)′
Ars

(
β − β̂rs

)

4σ2

with Ars, β̂rs, σ̂
2
rs corresponding to subpanel Srs as defined in section 3.2, and

ωrs =

{
⌈T/2⌉

T , if r = s

1− ⌈T/2⌉
T , if r 6= s

hence,

β̇ =
(
2A− 1

2

∑
r,sωrsArs

)−1 (
2Aβ̂ − 1

2

∑
r,sωrsArsβ̂rs

)

σ̇2 = 2MSR

(
β̇
)
− 1

2

∑
r,sωrsMSRrs

(
β̇
)

The generalization to the unbalanced case is as follows. When all Tj are even,

l̇
(
β, σ2

)
=
∑

j

wj l̇
j
(
β, σ2

)

370 xtspj: Split-panel jackknife

and

β̇ =

∑

j

wj

{
2Aj −

(
Aj

1 +Aj
2

)
/2
}

−1
∑

j

wj

{
2Ajβ̂

j −
(
Aj

1β̂
j

1 +Aj
2β̂

j

2

)
/2
}

σ̇2 =
∑

j

wj

2MSR

j
(
β̇
)
−

MSR
j
1

(
β̇
)
+MSR

j
2

(
β̇
)

2

where the superscript j indicates the jth balanced subpanel; when some Tj are possibly
odd,

β̇ =

∑

j

wj

(
2Aj − 1

2

∑
r,sω

j
rsA

j
rs

)

−1
∑

j

wj

(
2Ajβ̂

j − 1
2

∑
r,sω

j
rsA

j
rsβ̂

j

rs

)

σ̇2 =
∑

j

wj

{
2MSR

j
(
β̇
)
− 1

2

∑
r,sω

j
rsMSR

j
rs

(
β̇
)}

B Mata classes

Linear model

mata
class xtspjlinear extends xtspjModel {

public: void Evaluate(), Check()
}
void function xtspjlinear::Evaluate(real matrix Y, real matrix XB,

real colvector LogLikelihood, real matrix Gradient,
pointer(real colvector) matrix Hessian) {

YXB=(Y:-XB[.,1])
S=exp(XB[.,2]) // variance
LogLikelihood=lnnormalden(YXB,sqrt(S))
Gradient=J(rows(Y),2,0)
Hessian=J(2,2,NULL)
Gradient[.,1]=YXB:/S
Gradient[.,2]=(YXB:^2:/(2:*S):-1/2)
Hessian[1,1]=&(-1:/S)
Hessian[2,2]=&((-YXB:^2:/S:^2:-1:/(2:*S)):+(-YXB:^2:/S:^1:-1/2))
Hessian[1,2]=&((-YXB:/S))
Hessian[2,1]=Hessian[1,2]

}
void function xtspjlinear::Check(real matrix Data, real scalar Keep) {

if (rows(Data)<=1) {Keep=0;}
else {Keep=1;}

}
end

Y. Sun and G. Dhaene 371

Probit model

mata
class xtspjprobit extends xtspjModel {

public: void Evaluate(), Check()
}
void function xtspjprobit::Evaluate(real matrix Y, real matrix XB,

real colvector LogLikelihood, real matrix Gradient,
pointer(real colvector) matrix Hessian) {

q=(Y:*2:-1)
LogLikelihood=lnnormal(q:*XB)
Gradient=q:*(normalden(q:*XB):/normal(q:*XB))
Hessian=&(-Gradient:*(XB+Gradient))

}
void function xtspjprobit::Check(real matrix Data, real scalar Keep) {

if (sum(Data[.,1])==0 || sum(Data[.,1])==rows(Data) || rows(Data)<=1) {Keep=0;}
else {Keep=1;}

}
end

Logit model

mata
class xtspjlogit extends xtspjModel {

public: void Evaluate(), Check()
}
void function xtspjlogit::Evaluate(real matrix Y, real matrix XB,

real colvector LogLikelihood, real matrix Gradient,
pointer(real colvector) matrix Hessian) {

LogLikelihood=ln((exp(-XB)):^(1:-Y) :/ (exp(-XB):+1))
Gradient=(Y:+Y:*exp(-XB):-1):/(1:+exp(-XB))
Hessian=&(-exp(-XB):/(1:+exp(-XB)):^2)

}
void function xtspjlogit::Check(real matrix Data, real scalar Keep) {

if (sum(Data[.,1])==0 || sum(Data[.,1])==rows(Data) || rows(Data)<=1) {Keep=0;}
else {Keep=1;}

}
end

Poisson model

mata
class xtspjpoisson extends xtspjModel {

public: void Evaluate(), Check()
}
void function xtspjpoisson::Evaluate(real matrix Y, real matrix XB,

real colvector LogLikelihood, real matrix Gradient,
pointer(real colvector) matrix Hessian) {

LogLikelihood=Y:*ln(exp(XB))-exp(XB)-lnfactorial(Y)
Gradient=Y-exp(XB)
Hessian=&(-exp(XB))

}
void function xtspjpoisson::Check(real matrix Data, real scalar Keep) {

if (allof(Data[.,1],0) || rows(Data)<=1) {Keep=0;}
else {Keep=1;}

}
end

372 xtspj: Split-panel jackknife

Exponential model

mata
class xtspjexponential extends xtspjModel {

public: void Evaluate(), Check()
}
void function xtspjexponential::Evaluate(real matrix Y, real matrix XB,

real colvector LogLikelihood, real matrix Gradient,
pointer(real colvector) matrix Hessian) {

LogLikelihood=ln(1/exp(XB))-Y:/exp(XB)
}
void function xtspjexponential::Check(real matrix Data, real scalar Keep) {

if (sum(Data[.,1]:<=0)!=0 || rows(Data)<=1) {Keep=0;}
else {Keep=1;}

}
end

Weibull model

mata
class xtspjweibull extends xtspjModel {

public: void Evaluate(), Check()
}
void function xtspjweibull::Evaluate(real matrix Y, real matrix XB,

real colvector LogLikelihood, real matrix Gradient,
pointer(real colvector) matrix Hessian) {

u=exp(XB[.,1])
k=exp(XB[.,2])
LogLikelihood=ln(k)+(k:-1):*ln(Y)+ln(u)-u:*Y:^k

}
void function xtspjweibull::Check(real matrix Data, real scalar Keep) {

if (sum(Data[.,1]:<=0)!=0 || rows(Data)<=1) {Keep=0;}
else {Keep=1;}

}
end

Y. Sun and G. Dhaene 373

Gamma model

mata
class xtspjgamma extends xtspjModel {

public: void Evaluate(), Check()
}
void function xtspjgamma::Evaluate(real matrix Y, real matrix XB,

real colvector LogLikelihood, real matrix Gradient,
pointer(real colvector) matrix Hessian) {

u=exp(XB[.,1])
k=XB[.,2]
LogLikelihood=-lngamma(k)-k:*ln(u)+(k:-1):*ln(Y)-Y:/u
dldXB_u=(-k:/u+Y:/u:^2):*u
dldXB_k=-digamma(k)-ln(u)+ln(Y)
Gradient=(dldXB_u,dldXB_k)
dl2dXB2_u2=((k:/u:^2-2:*Y:/u:^3):*u+(-k:/u+Y:/u:^2)):*u
dl2dXB2_uk=(-1:/u):*u
dl2dXB2_k2=-trigamma(k)
Hessian=(&dl2dXB2_u2,&dl2dXB2_uk&dl2dXB2_uk,&dl2dXB2_k2)

}
void function xtspjgamma::Check(real matrix Data, real scalar Keep) {

if (sum(Data[.,1]:<=0)!=0 || rows(Data)<=1) {Keep=0;}
else {Keep=1;}

}
end

Negbin2 model

mata
class xtspjnegbin extends xtspjModel {

public: void Evaluate(), Check()
}
void function xtspjnegbin::Evaluate(real matrix Y, real matrix XB,

real colvector LogLikelihood, real matrix Gradient,
pointer(real colvector) matrix Hessian) {

u=exp(XB[.,1])
r=exp(-XB[.,2])
LogLikelihood=lngamma(r+Y)-lngamma(Y:+1)

-lngamma(r)-r:*ln(1:+u:/r)-Y:*ln(1:+r:/u)
dldXB_u=-r:/u:*(u-Y):/(r+u):*u
dldXB_r=1:/(r+u):*(Y-u+r:*ln(1:+u:/r)+u:*ln(1:+u:/r)

-(r+u):*digamma(r+Y)+(r+u):*digamma(r)):*(r)
Gradient=(dldXB_u,dldXB_r)

}
void function xtspjnegbin::Check(real matrix Data, real scalar Keep) {

if (allof(Data[.,1],0) || rows(Data)<=1) {Keep=0;}
else {Keep=1;}

}
end

374 xtspj: Split-panel jackknife

C Sparsity of the Hessian

Assuming that Tj is even for all j, the unconcentrated version of l̇j(θ) is

l̇j
(
θ,αj ,γj , δj

)
= 2lj

(
θ,αj

)
− 1

2

{
lj1
(
θ,γj

)
+ lj2

(
θ, δj

)}

where αj = (αj
1, . . . , α

j
Nj

), γj = (γj1, . . . , γ
j
Nj

), and δj = (δj1, . . . , δ
j
Nj

) are the three sets

of fixed-effects parameters implicit in l̇j(θ), and

lj
(
θ,αj

)
=

1

NjTj

Nj∑

i=1

Tj∑

t=1

log f
(
Yj

it|Xj
it;θ, α

j
i

)

lj1
(
θ,γj

)
=

1

NjTj/2

Nj∑

i=1

Tj/2∑

t=1

log f
(
Yj

it|Xj
it;θ, γ

j
i

)

lj2
(
θ, δj

)
=

1

NjTj/2

Nj∑

i=1

Tj∑

t=Tj/2+1

log f
(
Yj

it|Xj
it;θ, δ

j
i

)

Here lj(θ,αj), lj1(θ,γ
j), and lj2(θ, δ

j) are unconcentrated log-likelihood functions. Thus,
each has a sparse Hessian. It is also easy to see that

∂2 l̇j
(
θ,αj ,γj , δj

)

∂η1∂η2
= 0

for every pair (η1, η2) of distinct elements of (αj ,γj , δj).

	Table of Contents
	Articles and Columns
	qmodel: A command for fitting parametric quantile modelsto.44em.to.44em.M. Bottai and N. Orsini
	mixmcm: A community-contributed command for fitting mixtures of Markov chain models using maximum likelihood and the EM algorithmto.44em.to.44em.L. D. F. Saint-Cyr and L. Piet
	xtspj: A command for split-panel jackknife estimationto.44em.Y. Sun and G. Dhaene
	Generalized two-part fractional regression with cmpto.44em.J. N. Wulff
	Statistical analysis of the item-count technique using Statato.44em.C.-l. Tsai
	Fuzzy differences-in-differences with Statato.44em.to.44em.C. de Chaisemartin, X. D'Haultfœuille, and Y. Guyonvarch
	Grade functionsto.44em.J. L. Gallup
	Tips for calculating and displaying risk-standardized hospital outcomes in Statato.44em.to.44em.J. Lenzi and S. Pildava

	Software Updates
	announce43.pdf
	Articles and Columns

