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Abstract. Markov chain models and finite mixture models have been widely
applied in various strands of the academic literature. Several studies analyzing
dynamic processes have combined both modeling approaches to account for un-
observed heterogeneity within a population. In this article, we describe mixmcm,
a community-contributed command that fits the general class of mixed Markov
chain models, accounting for the possibility of both entries into and exits from
the population. To account for the possibility of incomplete information within
the data (that is, unobserved heterogeneity), the model is fit with maximum like-
lihood using the expectation-maximization algorithm. mixmcm enables users to fit
the mixed Markov chain models parametrically or semiparametrically, depending
on the specifications chosen for the transition probabilities and the mixing distri-
bution. mixmcm also allows for endogenous identification of the optimal number
of homogeneous chains, that is, unobserved types or “components”. We illustrate
mixmcm’s usefulness through three examples analyzing farm dynamics using an
unbalanced panel of commercial French farms.
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1 Introduction

The Markov chain model (MCM) is a modeling approach widely used in several strands of
the literature to analyze dynamic stochastic processes within a given population where
future states depend on the past according to some probability. Numerous applications
of MCMs can be found, for example, in economics, medicine, sociology, etc. Whatever
the context, one problem practitioners often face is that the population under study
may comprise heterogeneous agents who behave differently. Such heterogeneity is gen-
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erally unobserved and cannot be captured by the observable characteristics of agents.
As a result, some models have been developed to deal with unobserved heterogeneity
(Greene 2018). Among these, finite mixture models offer advantages that have con-
tributed to their prevalence in the literature (Compiani and Kitamura 2016). Briefly,
these models can be considered a special case of individual parameter models, where the
parameters of the model are supposed to differ according to specific types of individuals
or agents. Finite mixture models, also called latent class models, are generally used to
partition a population into homogeneous types to account for heterogeneous behaviors.
In Stata, official commands such as fmm and community-contributed commands (gllamm
by Rabe-Hesketh [1999], lclogit by Pacifico and Yoo [2013], etc.) provide methods for
fitting finite mixture models. However, none of these commands can be used to directly
fit a mixture of MCMs.

Mixed Markov chain models (MMCM) have a long history in the literature and have
proved to be useful for analyzing dynamic Markovian processes in heterogeneous pop-
ulations. MMCM have been applied to analyze several economic issues such as labor
mobility (see Blumen, Kogan, and McCarthy [1955] and Fougère and Kamionka [2003]
for examples); income mobility (see Shorrocks [1976] and Dutta, Sefton, and Weale
[2001] for examples); financial rating (see Frydman and Kadam [2004] and Frydman
and Schuermann [2008] for examples); or firm-size dynamics (see Cipollini, Ferretti,
and Ganugi [2012] and Saint-Cyr and Piet [2017] for examples). Other applications
of MMCM can be found in sociology (see Singer and Spilerman [1974] and Dias and
Vermunt [2007] for examples); in medicine (see Albert [1991], Chen, Duffy, and Tabar
[1997], and Dias and Willekens [2005] for examples); or in other strands of the literature
such as natural resources management (see Jackson [1975] for example). These studies
of dynamics use different forms of the MMCM, ranging from a simple stationary mover–
stayer specification (see Blumen, Kogan, and McCarthy [1955], Fougère and Kamionka
[2003], and Saint-Cyr and Piet [2017] for examples) to more general specifications (see
Dias and Vermunt [2007], Frydman and Schuermann [2008], Saint-Cyr [2017], and Fry-
dman and Matuszyk [2018] for examples).

In this article, we present mixmcm, a community-contributed command that fits the
general form of the MMCM. The rest of this article is structured as follows. Section 2
presents the formulation of the MMCM and the estimation strategy. Section 3 presents
the mixmcm command. Section 4 provides three examples of how the command can be
applied. Section 5 presents some procedure for hypothesis testing, transition probability,
and elasticity derivation using the estimates from the mixmcm command. Section 6
concludes with some possible improvements to the command.

2 Fitting finite mixtures of MCMs

Let N be the total number of agents in the population and K +1 be the total number of
states or choice alternatives. Assuming a discrete-time process, yit represents the state
of agent i (i = 1, 2, . . . , N) at time t (t = 0, 1, . . . , Ti). The indicator variable yit is equal
to j (j = 0, 1, . . . ,K) if agent i is in state j at time t. State j = 0 is arbitrarily chosen
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to indicate entry into or exit from the population. The length of time (Ti) for which an
agent is observed may vary across agents (that is, Ti ≤ T ). Over time period Ti, the
row-vector yi = (yi0, yi1, . . . , yiTi

) represents the set of transitions of agent i over the
K state-space categories. Assuming that the movements of agents follow a first-order
Markov process, the probability density function describing the transition process across
states can be derived as (Dias and Willekens 2005)

f(yi) = P (yi0 = j)

{
Ti∏

t=1

P (yit = k|yit−1 = j)

}

where P (yi0 = j) is the probability that agent i starts in state j at time t = 0 and
P (yit = k|yit−1 = j) is the probability that agent i moves to state k at time t given
that it was in state j at time t− 1.

Suppose now that the observed sample of agents is divided into G homogeneous types
instead of a single type, where agents of the same type are characterized by a similar
Markovian process. The density function of yi is thus a discrete mixing distribution with
G support points (McLachlan and Peel 2000). Assuming heterogeneity, the transition
process of agents can be represented by the MMCM formulated as (Vermunt 2010)

f(yi) =

G∑

g=1

P (gi = g)P (yi0 = j|gi = g)

{
Ti∏

t=1

P (yit = k|yit−1 = j, gi = g)

}
(1)

Thus, the MMCM has three components. The first term on the right-hand side of (1)
represents the probability that agent i belongs to a specific type g. The second and the
third terms, respectively, represent the probability that agent i begins in a specific state
j and the probability that agent i moves across states during the Ti time period, given
that it is of specific type g.

2.1 Specification method

The three components of (1) can be specified as functions of exogenous variables. In this
case, the model is fully parametric. Assuming that the states are finite, exhaustive, and
mutually exclusive, we use a discrete-choice approach to specify initial states (or entry)
and transition probabilities. Furthermore, if independence from irrelevant alternatives
can be assumed for the odds ratios, we can use a multinomial specification (Greene
2018). This leads to a multinomial logit expression for the probability of starting in a
specific state j and the conditional probability of making a transition from state j to
state k. The probability of starting in state j thus writes

P (yi0 = j|gi = g,xi0) =
exp

(
β′
j|gxi0

)

∑K
k=1 exp

(
β′
k|gxi0

) (∀j, k = 1, 2, . . . ,K) (2)

where βj|g is a vector of parameters specific to each type g and each initial state j and
xi0 is the vector of explanatory variables for agent i at time t = 0. One of these vectors
is set to zero for identification purposes.
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The transition probabilities across states are specified as

P (yit = k|yit−1 = j, gi = g,xit−1) =
exp

(
θ′jk|gxit−1

)

∑K
l=1 exp

(
θ′jl|gxit−1

) (3)

where θjk|g is a vector of parameters specific to each type g and each transition jk. Be-
cause entries into the population are specified separately from transitions across states,
the initial state j in (3) takes the values 1, 2, . . . ,K while the final state k takes the
values 0, 1, 2, . . . ,K. Choosing to stay in the same state for two consecutive time peri-
ods as the reference scenario sets θjj|g = 0 ∀g = 1, 2, . . . , G and ∀j = 1, 2, . . . ,K for
identification purposes.

Because agent types are not known beforehand, the probability that an agent belongs
to a specific type is also estimated. For this, we use a fractional multinomial logit
specification because these probabilities are constrained to be between zero and one
(Papke and Wooldridge 1996). Thus, the type-membership probability that agent i
belongs to type g is

P (gi = g|zi) =
exp

(
λ′
gzi
)

∑G
h=1 exp

(
λ′
hzi
) (∀g = 1, 2, . . . , G) (4)

where λg is a vector of parameters and zi is a matrix of agent characteristics supposed
to be constant over time. The vector of parameters λG must be normalized to zero for
identification.

If a nonparametric form is used for type membership probabilities, the mixing dis-
tribution has a nonparametric or discrete-factor interpretation (Pacifico and Yoo 2013).
In this case, the mixture model can be viewed as a semiparametric model because we
use a nonparametric specification for type membership probabilities and a parametric
specification for both the probability of starting in a specific state and the transition
probabilities across states. In such a case, the type-membership probability is the same
for all agents.

2.2 Expectation-maximization algorithm for the MMCM

We estimate the parameters of the MMCM using the maximum-likelihood estimation
technique. Considering that the observed sample of agents is divided into G homoge-
neous types, the log-likelihood (LL) function for the parameters of the model is

LL(y;Φ) =
N∑

i=1

ln




G∑

g=1

P (zi;λg)
K∏

j

{
P (xi0;βj|g)

}dij0

Ti∏

t=1

K∏

j,k

{
P (xit−1;θjk|g)

}dijkt


 (5)
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where Φ = (Φ1,Φ2, . . . ,ΦG) is the vector of parameters to be estimated, with Φg =
(λg,βj|g,θjk|g) ∀g = 1, 2, . . . , G, ∀j = 1, 2, . . . ,K and ∀k = 0, 1, 2, . . . ,K. The indica-
tors dij0 and dijkt, respectively, take the value 1 if agent i starts in state j and moves
from state j to state k at time t and zero otherwise.

The expectation-maximization (EM) algorithm developed by Dempster, Laird, and
Rubin (1977) simplifies the complex LL function in (5) into a set of easily solvable LL

functions by introducing a so-called missing variable.1 Let vig be a discrete unobserved
variable indicating agent type. The random vector vi = (vi1, vi2, . . . , viG) is thus g-
dimensional with vig = 1 if agent i belongs to type g and zero otherwise. Assuming
that vig is unconditionally multinomially distributed with probability πg, the complete
likelihood for (β, π), conditional on observing yc = (y,v), is2

LL(y;Φ) =
N∑

i=1

G∑

g=1

vigln


P (zi;λg)

K∏

j

{
P (xi0;βj|g)

}dij0

Ti∏

t=1

K∏

j,k

{
P (xit−1;θjk|g)

}dijkt


 (6)

Because agent type is not observed, the “posterior” probability that agent i belongs
to type g (that is, vig) must be derived from the observations. The EM algorithm
therefore consists of the following four steps:

i) Initialization: Arbitrarily choose initial values Φ0 = (Φ0
1,Φ

0
2, . . . ,Φ

0
G). To ob-

tain appropriate initial values, we proceed as in Pacifico and Yoo (2013) by ran-
domly assigning each agent to one of the G possible types. Parameters are then
estimated for each type.

ii) Expectation: At iteration p + 1 of the algorithm, compute the expected prob-
ability that agent i belongs to a specific type g given yi and parameters Φp.

This conditional expected (that is, “posterior”) probability v
(p+1)
ig = vig(yi;Φ

p) is
obtained using the following Bayes formula (Dempster, Laird, and Rubin 1977):

v
(p+1)
ig =

P (zi;λg)
∏K

j

{
P (xi0;βj|g)

}dij0 ∏Ti

t=1

∏K
j,k

{
P (xit−1;θjk|g)

}dijkt

∑G
h=1 P (zi;λh)

∏K
j

{
P (xi0;βj|h)

}dij0 ∏Ti

t=1

∏K
j,k

{
P (xit−1;θjk|h)

}dijkt

Replacing vig in (6) by its expected value v
(p+1)
ig gives the conditional expectation

of the LL function for the complete data.

1. Indeed, the likelihood function does not yield an explicit solution for the model parameters. The
EM algorithm maximizes a log of sums that is transformed into a recursive maximization of the
sum of logs (McLachlan and Krishnan 2008).

2. By this assumption, the distribution of the complete-data vector implies the appropriate distribu-
tion for the incomplete-data vector (McLachlan and Peel 2000).
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iii) Maximization: Update Φp by maximizing the complete LL function conditional
on the observations. The model parameters are thus updated as

λ(p+1) = argmaxλg

N∑

i=1

G∑

g=1

v
(p+1)
ig ln {P (zi;λg)} ∀g = 1, 2, . . . , G− 1

β(p+1) = argmaxβj|g

N∑

i=1

G∑

g=1

v
(p+1)
ig

K∑

j

dij0ln
{
P (xi0;βj|g)

}
∀j = 1, 2, . . . ,K − 1

θ(p+1) = argmaxθjk|g

N∑

i=1

G∑

g=1

v
(p+1)
ig

Ti∑

t=1

K∑

j,k

dijktln
{
P (xit−1;θjk|g)

}
∀j 6= k

The maximization process of the above equations is straightforward. The pa-
rameters (Φp) are updated using vig(yi;Φ

p) as a weighting factor for each ob-
servation (Pacifico and Yoo 2013). The built-in mlogit Stata command is used
for the estimation of the starting state and the transition probabilities, while the
community-contributed command fmlogit (Buis 2008) is used for the type mem-
bership probabilities. If a nonparametric form is used for the mixing distribution,
the “prior” type membership probability [that is, P (gi = g)] is the same for all
agents and can be derived as

π(p+1)
g =

∑N
i=1 v

(p+1)
ig∑N

i=1

∑G
h=1 v

(p+1)
ih

∀g ∈ G− 1

iv) Iteration: Return to step ii using π(p+1) and β(p+1), and iterate until the ob-
served LL given by (5) converges, that is, until the relative difference in the LL

between two consecutive iterations is sufficiently small. At convergence, the re-
sulting parameters are considered to be the optimal estimators (Φ̂) given the set
of initial values (Φ0) randomly chosen.

2.3 Heuristic strategy

A problem that often occurs in a mixture analysis with several components is that
some solutions may be suboptimal. Indeed, the nonconcavity of the LL function in (5)
does not make it possible to identify a global maximum in the mixture model, even
for mixtures of multinomial logit models (Hess, Bierlaire, and Polak 2007). Given the
potential presence of a high number of local maximums, the EM solutions may depend
on the initial values chosen for Φ0 (Baudry and Celeux 2015). To increase the chances
of obtaining a global maximum in the estimation procedure reported above, we proceed
as follows.

First, short-run EMs are used to obtain initial values for long-run EMs. For each
short-run EM, the iterative procedure presented in section 2.2 is performed several times
with various randomly chosen initial values for the parameters of the model. To do this,
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the sample is randomly divided into the total number of agent types, and the parameters
of the model are estimated separately over each subsample. The resulting parameters
are then used in the expectation step of the algorithm to compute the “posterior”
probability of agent-type membership. The iterative procedure is stopped after a few
iterations, and the resulting parameters that produce the largest LL according to (5)
are chosen as the best initial values for long-run EMs.

Second, several long-run EMs are used to obtain the best parameters for the model.
For each long-run EM, the iterative procedure is performed until the LL function con-
verges. The parameters that provide the largest LL at the convergence of the EM algo-
rithm are chosen as the global maximum.

3 The mixmcm command

3.1 Syntax

The general syntax for the mixmcm command is

mixmcm depvar
[
indepvars

] [
if
] [

in
] [

weight
]
, id(varname)

timevar(varname)
[
noconstant entry(varlist) exitcode(name)

ncomponents(ncomponents suboptions) membership(varlist)

emiterate(emiterate suboptions) constraints(clist)
]

depvar is the dependent variable that indicates agents’ states at each time period. in-

depvars are optional explanatory variables that enter the specification of transition
probabilities. fweights and pweights are allowed; see [U] 11.1.6 weight.

3.2 Options

id(varname) specifies the variable that identifies agents. mixmcm computes the proba-
bility of belonging to a specific homogeneous type for each id(). id() is required.

timevar(varname) specifies the numeric variable that identifies dates on (or time peri-
ods during) which transitions occur. This variable is used to identify the transitions
of agents across states. timevar() is required.

noconstant suppresses the constant term (or intercept) in the specification of the tran-
sition probabilities. Specifying the noconstant option requires that at least one
indepvar be specified.

entry(varlist) specifies the dependent and independent variables that enter the specifi-
cation of entry probabilities. Specifying entry() requires that at least the dependent
variable indicating the entry state be specified.

exitcode(name) indicates the modality of depvar that identifies the exit state.
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ncomponents(
[
#1 #2, selcrit(name) graph(namelist, twoway options)

save(filename, replace detail) force
]
) specifies the number of (unobserved)

homogeneous types and related options.

#1 and #2 indicate the range for the number of components. If both #1 and
#2 are specified, mixmcm will fit the #1 −#2 MMCM, starting from the model
with the #1 component or components and proceeding to the model with the
#2 components to identify the optimal number of components within this range
based on the selection criterion specified in the suboption selcrit() (see below).
Unless the suboption force is specified (see below), the estimation will stop
automatically when the optimal number of components is found, and the results
will solely be displayed for this optimal number of components. If only #1 is
specified, mixmcm will estimate only the parameters for this number of component
or components, and the corresponding results will be displayed. A standard
(homogeneous) MCM will be fit if the specified number of components is #1 = 1.
By default, a two-components MMCM is fit.

selcrit(name) specifies the information criterion used to select the optimal number
of components within the #1 to #2 range. The available information criteria
are aic, bic, aic3, or caic (the default). See Andrews and Currim (2003) for
a discussion on information criteria for the retention of the optimal number of
components.

graph(namelist, twoway options) specifies that a graph for the information criteria
specified in namelist be drawn for the number of components in the #1 to #2

range. The graph() suboption thus requires that at least one information crite-
rion among aic, bic, aic3, or caic be specified in namelist. Users can manage
the graph using standard twoway options.

save(filename, replace detail) saves the information criteria for the numbers
of components estimated within the #1 to #2 range in filename. Specifying
replace as a suboption will overwrite an existing filename. If detail is specified
as a save() suboption, the resulting parameters for all the estimated numbers
of components will be jointly saved.

force indicates that models should be fit for all the numbers of components within
the #1 to #2 range, even when the optimal number of components is found to
be smaller than #2 based on selcrit(). Therefore, estimations will continue
until #2 in either case.

membership(varlist) specifies the independent variables to be included in the specifi-
cation of the component-membership probabilities. These variables must be con-
stant over time for each agent. The parametric form for the mixing distribution is
fmlogit, which allows the dependent variable to lie between 0 and 1. Specifying
membership() requires that at least one explanatory variable be specified. By de-
fault, type-membership probabilities will be estimated nonparametrically (see Train
[2008]).
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emiterate(
[
lr(#1 #2, eps) sr(#1 #2) seed(#) emlog)

]
) specifies suboptions

for the EM algorithm.

lr(#1 #2, eps) specifies the number of long-run EMs (#1) to be performed, the
maximum number of iterations (#2) to be used for each long-run EM, and the
convergence criterion to stop the iterations (eps), respectively. The default is
lr(5 100, 0.0000001). eps is the tolerance used in the log-likelihood maxi-
mization: mixmcm declares convergence when the proportional increase in the log
likelihood over two consecutive iterations is less than the specified eps.

sr(#1 #2) specifies the number of short-run EMs (#1) and the maximum number
of iterations (#2) for each short-run EM. The default is sr(5 5).

seed(#) sets the pseudouniform random-numbers seed. Initial parameters for
the EM estimation are randomly chosen using the same seed. The default is
seed(123456). The seed is a local macro that replaces seeds that have been
chosen by users outside of the command.

emlog displays the logs for long-run EM iterations.

constraints(clist) lists the constraints to impose on transition probabilities. Each
constraint listed in clist must be specified as constraint # p initialstate finalstate

= 0, where # is the number that identifies the constraint. For now, transition
probabilities can be constrained only to be 0, and this constraint applies across all
components.

4 Examples

To illustrate how mixmcm works, the command is used to estimate size-transition proba-
bilities in the French farming sector under the assumption of a heterogeneous farm pop-
ulation. Data are provided by the Réseau d’Information Comptable Agricole (RICA),
the French implementation of the Farm Accountancy Data Network.3 RICA collects
technical and economic information on a sample of commercial French farms on an
annual basis. The data are freely available online from the RICA France website (see
http://agreste.agriculture.gouv.fr/enquetes/reseau-d-information-comptable/).

For this illustration, we use data from 2000 to 2010. The 11 (annual) databases
were appended together, leading to an unbalanced panel where idnum is the unique
farm identifier and year is a generated time variable that will be used as timevar() in
mixmcm. Some modifications of the full original database were necessary to be able to
use it with mixmcm. First, the population was broken down into three size categories
(K = 3) according to the economic size variable pbuce, which measures the production
potential of farms in terms of Euros of standard output (SO). The resulting category

variable, which will be used as depvar in mixmcm, therefore consists of three categories,
namely, medium farms (denoted medium with pbuce < 100,000 Euros of SO), large farms

3. For more information about the Farm Accountancy Data Network, see http://ec.europa.eu/
agriculture/rica/index en.cfm.

http://agreste.agriculture.gouv.fr/enquetes/reseau-d-information-comptable/
http://ec.europa.eu/agriculture/rica/index_en.cfm
http://ec.europa.eu/agriculture/rica/index_en.cfm
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(denoted large with 100,000 ≤ pbuce < 250,000 Euros of SO), and very large farms
(denoted vlarge with pbuce ≥ 250,000 Euros of SO). We then restricted the sample to
farms that have existed in the database for at least two consecutive years to observe at
least one transition. We also retained only a subset of variables and renamed them for
use in our examples. The new database, mixmcm.dta, is organized as follows:

. use mixmcm.dta

. list idnum year surplus istock icap debtr category in 1/10, noobs
> abbreviate(12) compress separator(10)

idnum year surplus istock icap debtr category

963 2000 36804 22896 76332 7.00 medium
963 2001 28861 17895 76331 6.40 medium
963 2002 30000 30194 76331 3.90 medium
963 2003 5159 0 76331 4.10 medium
1525 2006 58895 202919 283939 14.60 large
1525 2007 51726 101807 283939 22.10 vlarge
1525 2008 54940 176367 283939 27.20 vlarge
1525 2009 51883 198033 283939 20.00 vlarge
1525 2010 88685 183816 283939 18.10 vlarge
1534 2006 90051 124877 110557 51.10 vlarge

. list idnum year crop corp educ young category in 1/10, noobs
> abbreviate(12) compress separator(10)

idnum year crop corp educ young category

963 2000 0 0 1 0 medium
963 2001 0 0 1 0 medium
963 2002 0 0 1 0 medium
963 2003 0 0 1 0 medium
1525 2006 1 1 1 0 large
1525 2007 1 1 1 0 vlarge
1525 2008 1 1 1 1 vlarge
1525 2009 1 1 1 1 vlarge
1525 2010 1 1 1 1 vlarge
1534 2006 1 1 1 0 vlarge

The variables surplus, istock, icap, and debtr are the gross operating surplus,
initial stock in Euros, initial capital in Euros, and the debt ratio of the farm in percent,
respectively. The other (indicator) variables (crop = 1 if the farm specializes in field
crop production, corp = 1 if the farm has corporate legal status, educ = 1 if the farmer
has a higher-level education, and young = 1 if the farmer is under 41) were derived from
original variables for our specific examples.4

4. Note that the examples presented in this article are for illustration purposes only and should not
be considered to produce sound economic conclusions. They are meant only to illustrate the use
of the mixmcm command using real data.
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4.1 Fitting a simple two-component MMCM

To illustrate the basic use of mixmcm, we first fit a two-component MMCM without
considering entries or exits. In this example, we specify transition probabilities as a
function of four explanatory variables, namely, surplus, istock, crop, and corp. The
parameters of the mixing distribution are estimated nonparametrically. As mentioned
in section 2.1, the resulting model is therefore considered to be semiparametric.

. mixmcm category surplus istock crop corp, id(idnum) timevar(year)
(Warning: unbalanced panel data)

Estimating a 2-components mixture of discrete-state Markov chain model

Searching for initial values ...

log-likelihood = -15350.904 Number of obs = 78434
Number of id = 13123

Robust
coef. Std. Err. z p>|z| [95% Conf. Interval]

Component 1

Transition probabilities

large initial state

medium
surplus -.0000147 2.10e-06 -7.00 0.000 -.0000189 -.0000106
istock -.0000334 2.22e-06 -15.03 0.000 -.0000377 -.000029

crop -.4061981 .118146 -3.44 0.001 -.6377643 -.1746319
corp -.159711 .1088367 -1.47 0.142 -.373031 .053609
_cons -2.117094 .1562513 -13.55 0.000 -2.423347 -1.810842

vlarge
surplus 3.11e-06 1.05e-06 2.95 0.003 1.05e-06 5.18e-06
istock 3.06e-07 4.52e-07 0.68 0.499 -5.81e-07 1.19e-06

crop .5234549 .0964274 5.43 0.000 .3344571 .7124527
corp -.1790304 .0978987 -1.83 0.067 -.3709119 .0128511
_cons -4.812017 .1131314 -42.53 0.000 -5.033755 -4.590279

medium initial state

large
surplus 8.46e-06 2.80e-06 3.03 0.002 2.98e-06 .0000139
istock 3.05e-07 1.82e-06 0.17 0.867 -3.26e-06 3.87e-06

crop -.8878777 .1604371 -5.53 0.000 -1.202334 -.573421
corp 7.265593 .1092183 66.52 0.000 7.051525 7.479661
_cons -10.82393 .0941205 -115.00 0.000 -11.00841 -10.63946

vlarge
surplus .0000194 4.80e-06 4.04 0.000 9.98e-06 .0000288
istock -.0000172 .0000109 -1.59 0.113 -.0000385 4.07e-06

crop 14.74219 .3955852 37.27 0.000 13.96684 15.51754
corp .5576473 .5253997 1.06 0.289 -.4721362 1.587431
_cons -21.38917 .3700815 -57.80 0.000 -22.11453 -20.66381
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vlarge initial state

large
surplus -6.64e-06 9.60e-07 -6.92 0.000 -8.53e-06 -4.76e-06
istock -.0000105 8.83e-07 -11.93 0.000 -.0000123 -8.81e-06

crop -.0625092 .1234159 -0.51 0.613 -.3044043 .179386
corp -1.07522 .1237099 -8.69 0.000 -1.317692 -.8327486
_cons -1.966381 .1396501 -14.08 0.000 -2.240095 -1.692666

medium
surplus -7.09e-06 1.63e-06 -4.36 0.000 -.0000103 -3.90e-06
istock -.0000249 6.31e-06 -3.94 0.000 -.0000373 -.0000125

crop .6342508 .4561181 1.39 0.164 -.2597407 1.528242
corp -.5315547 .4040807 -1.32 0.188 -1.323553 .2604434
_cons -3.926738 .4783556 -8.21 0.000 -4.864315 -2.989161

Component 2

Transition probabilities

large initial state

medium
surplus -.0000177 1.07e-06 -16.49 0.000 -.0000198 -.0000156
istock -5.43e-06 9.83e-07 -5.52 0.000 -7.35e-06 -3.50e-06

crop -.3810236 .0677824 -5.62 0.000 -.513877 -.2481701
corp -.3540718 .0726781 -4.87 0.000 -.4965208 -.2116228
_cons -.3752858 .0827246 -4.54 0.000 -.537426 -.2131457

vlarge
surplus .0000111 8.29e-07 13.36 0.000 9.46e-06 .0000127
istock 1.58e-07 4.27e-07 0.37 0.711 -6.79e-07 9.96e-07

crop -.4427715 .074652 -5.93 0.000 -.5890895 -.2964536
corp .650648 .0832685 7.81 0.000 .4874418 .8138542
_cons -3.383384 .0912461 -37.08 0.000 -3.562227 -3.204542

medium initial state

large
surplus .0000136 1.47e-06 9.24 0.000 .0000107 .0000165
istock 3.09e-06 1.78e-06 1.74 0.082 -3.94e-07 6.57e-06

crop -.00887 .0658711 -0.13 0.893 -.1379774 .1202375
corp .3264058 .0740129 4.41 0.000 .1813406 .471471
_cons -2.242076 .0892614 -25.12 0.000 -2.417028 -2.067124

vlarge
surplus -1.87e-06 .000011 -0.17 0.865 -.0000234 .0000197
istock -.0000354 .0000115 -3.08 0.002 -.000058 -.0000129

crop -1.661568 .4817014 -3.45 0.001 -2.605703 -.7174328
corp 1.387473 .4821417 2.88 0.004 .4424748 2.33247
_cons -4.322117 .4144229 -10.43 0.000 -5.134386 -3.509848
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vlarge initial state

large
surplus -6.73e-06 6.85e-07 -9.82 0.000 -8.07e-06 -5.39e-06
istock -2.62e-06 5.31e-07 -4.93 0.000 -3.66e-06 -1.58e-06

crop -.3536559 .0825228 -4.29 0.000 -.5154005 -.1919112
corp -.0087921 .091816 -0.10 0.924 -.1887514 .1711672
_cons -.2200508 .1072874 -2.05 0.040 -.4303342 -.0097674

medium
surplus -.0000181 5.03e-06 -3.61 0.000 -.000028 -8.28e-06
istock 4.18e-07 1.97e-06 0.21 0.832 -3.45e-06 4.29e-06

crop -1.427922 .4640655 -3.08 0.002 -2.337491 -.518354
corp -1.832979 .4402466 -4.16 0.000 -2.695862 -.9700953
_cons -1.929111 .5617308 -3.43 0.001 -3.030103 -.8281189

Type shares

Mean Std. Dev.

pi1 .7233329 .2715939
pi2 .2766671 .2715939

Model estimated via expectation-maximization (EM) algorithm.

The table above reports the resulting coefficients of the explanatory variables for
each component (that is, the degree to which they contribute to explaining the odds
ratios, where remaining in the initial state is the reference scenario). As such, the
values of the coefficients are not directly interpretable (see section 5 for the derivation
of elasticities). If one focuses on the signs, however, it is evident that the contributions of
the coefficients differ across components. For example, the variable corp has a negative
(−0.179) effect on the odds ratio {P (large → vlarge)}/{P (large → large)} for the
first component, while this impact is positive (0.651) for the second component. The
parameters pi1 and pi2, respectively, are the resulting shares of type 1 and type 2 in
the studied sample.

The standard errors reported in the table are obtained from the official Stata com-
mand mlogit, using the option vce(robust) in the model specification. The variance–
covariance matrix is thus obtained by the Huber/White/sandwich estimator. Indeed,
mixmcm performs multiple weighted multinomial logit estimations according to the num-
ber of types × number of initial states specified. Each weighted multinomial logit is
estimated separately. For each estimation, we use the robust or sandwich estimator of
the variance–covariance matrix, assuming that explanatory variables (Xit) and the er-
ror terms (ǫit) are uncorrelated. With these assumptions and a few technical regularity
conditions, each weighted mlogit yields consistent parameter estimates and standard
errors.5 We can thus use the resulting mixmcm parameter estimates and standard errors
for valid statistical inference about the coefficients (see section 5).

5. See [U] 20.21 Obtaining robust variance estimates in Stata 15 for more details on the prop-
erties of the robust variance estimate.
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4.2 Specifying entry, exit, type membership, and constraints on tran-
sition probabilities

In this second example, we fit a two-component MMCM that includes entry and exit. We
also specify a set of explanatory variables for entry and type membership probabilities
and impose constraints on some transition probabilities.

We now consider farms that leave the sample before the final year of the panel (2010)
as exits. We thus add a new category, exits, to the variable category.

. by idnum: generate _last = _n == _N

. drop if _last != 1

. keep idnum year

. by idnum: replace year= year + 1 if _n == _N

. append using "mixmcm.dta"

. sort idnum year

. drop if year > 2010

. replace category = "exits" if category == ""

Similarly, we now consider farms that enter the sample after the first year of the
panel (2000) as entries. We thus generate a new variable, entry class, that indicates
the category in which farms are observed for the first time in the sample.

. by idnum: generate _first = _n == 1

. by idnum: generate str entry_class = "1" if _first == 1 & year != 2000

. levelsof category, local(catlevels)

. foreach cat of local catlevels {
2. replace entry_class = "`cat´" if category == "`cat´" & entry_class == "1"
3. }

. replace entry_class = "." if entry_class == ""

. drop _first

We also generate new variables to be used in the specification of the type-membership
probabilities. To ensure that these probabilities do not vary over time, we take the mean
of the continuous variable debtr and the mode of the dummy variables educ and young.

. by idnum: egen double meandebtr = mean(debtr)

. foreach v in educ young {
2. by idnum: egen double mode`v´ = mode(`v´)
3. by idnum: replace mode`v´ = `v´[_N] if mode`v´ == .
4. }

Finally, we specify two constraints on the transition probabilities: the probability of
moving from the medium category to the vlarge category is set to zero and vice versa.

. constraint 1 p_medium_vlarge = 0

. constraint 2 p_vlarge_medium = 0
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The MMCM under the above specification is therefore fit as

. mixmcm category surplus istock crop corp, id(idnum) timevar(year)
> exitcode(exits) entry(entry_class icap corp)
> membership(meandebt modeeduc modeyoung) constraints(1 2)
(Warning: unbalanced panel data)

Estimating a 2-components mixture of discrete-state Markov chain model

Searching for initial values ...
(Warning: EM not converged)

(Warning: EM not converged)

(Warning: EM not converged)

log-likelihood = -41388.273 Number of obs = 84886
Number of id = 13123

Robust
coef. Std. Err. z p>|z| [95% Conf. Interval]

Component 1

Entry probabilities

large (baseoutcome)

medium
icap 0 (omitted)
corp 0 (omitted)
_cons 0 (omitted)

vlarge
icap 6.53e-06 3.62e-07 18.02 0.000 5.82e-06 7.24e-06
corp 4.196947 .1298916 32.31 0.000 3.942359 4.451535
_cons -5.467211 .1362706 -40.12 0.000 -5.734301 -5.20012

Transition probabilities

large initial state

medium
surplus -.0000173 1.69e-06 -10.24 0.000 -.0000207 -.000014
istock -9.96e-07 1.38e-06 -0.72 0.469 -3.69e-06 1.70e-06

crop -.1183684 .1134126 -1.04 0.297 -.3406571 .1039204
corp -.3344715 .1103856 -3.03 0.002 -.5508274 -.1181157
_cons -3.23115 .1600785 -20.18 0.000 -3.544904 -2.917396

vlarge
surplus 1.41e-06 1.74e-06 0.81 0.418 -2.00e-06 4.82e-06
istock 1.08e-06 5.44e-07 1.99 0.046 1.88e-08 2.15e-06

crop 5.971234 .1515587 39.40 0.000 5.674179 6.268289
corp .0391631 .1421559 0.28 0.783 -.2394624 .3177886
_cons -11.13387 .2006241 -55.50 0.000 -11.52709 -10.74065

exits
surplus 2.25e-06 5.84e-07 3.86 0.000 1.11e-06 3.40e-06
istock 3.69e-07 2.90e-07 1.27 0.203 -1.99e-07 9.38e-07

crop -.256642 .0468104 -5.48 0.000 -.3483904 -.1648935
corp -.5012324 .0479034 -10.46 0.000 -.5951231 -.4073418
_cons -2.213591 .0512114 -43.22 0.000 -2.313965 -2.113217
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medium initial state

large
surplus 7.08e-06 1.98e-06 3.58 0.000 3.20e-06 .000011
istock 1.40e-06 9.52e-07 1.47 0.142 -4.69e-07 3.26e-06

crop -.7205185 .1367084 -5.27 0.000 -.988467 -.45257
corp 3.242979 .1117609 29.02 0.000 3.023928 3.462031
_cons -6.69457 .0963498 -69.48 0.000 -6.883416 -6.505725

vlarge
surplus 0 (omitted)
istock 0 (omitted)

crop 0 (omitted)
corp 0 (omitted)
_cons 0 (omitted)

exits
surplus -1.02e-06 1.24e-06 -0.82 0.410 -3.45e-06 1.41e-06
istock -1.91e-06 9.53e-07 -2.01 0.045 -3.78e-06 -4.45e-08

crop -.0092237 .0443347 -0.21 0.835 -.0961196 .0776723
corp -.4505092 .0684921 -6.58 0.000 -.5847537 -.3162648
_cons -2.031039 .0521962 -38.91 0.000 -2.133343 -1.928734

vlarge initial state

large
surplus -5.51e-06 8.61e-07 -6.40 0.000 -7.20e-06 -3.82e-06
istock 2.74e-07 3.50e-07 0.78 0.434 -4.13e-07 9.60e-07

crop .4757005 .1788323 2.66 0.008 .1251892 .8262118
corp -1.390182 .1674019 -8.30 0.000 -1.71829 -1.062074
_cons -3.466531 .2157733 -16.07 0.000 -3.889447 -3.043615

medium
surplus 0 (omitted)
istock 0 (omitted)

crop 0 (omitted)
corp 0 (omitted)
_cons 0 (omitted)

exits
surplus 1.34e-06 3.48e-07 3.85 0.000 6.58e-07 2.02e-06
istock 3.87e-07 1.02e-07 3.79 0.000 1.87e-07 5.87e-07

crop -.2891374 .0809938 -3.57 0.000 -.4478852 -.1303895
corp -.9858392 .0846571 -11.65 0.000 -1.151767 -.8199113
_cons -1.923489 .0906852 -21.21 0.000 -2.101232 -1.745746

Component 2

Entry probabilities

large (baseoutcome)

medium
icap -1.74e-06 3.40e-07 -5.12 0.000 -2.41e-06 -1.07e-06
corp -1.201836 .089677 -13.40 0.000 -1.377603 -1.026069
_cons -.1009562 .0637887 -1.58 0.113 -.225982 .0240696

vlarge
icap 1.89e-06 2.34e-07 8.08 0.000 1.43e-06 2.35e-06
corp .5776288 .0875169 6.60 0.000 .4060958 .7491619
_cons -1.080876 .0834172 -12.96 0.000 -1.244374 -.9173786
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Transition probabilities

large initial state

medium
surplus -.0000157 1.02e-06 -15.35 0.000 -.0000177 -.0000137
istock -9.58e-06 9.01e-07 -10.63 0.000 -.0000113 -7.81e-06

crop -.4394746 .0679593 -6.47 0.000 -.5726749 -.3062743
corp -.3699244 .0723282 -5.11 0.000 -.5116876 -.2281612
_cons -.5153514 .0773583 -6.66 0.000 -.6669736 -.3637292

vlarge
surplus 9.48e-06 7.42e-07 12.78 0.000 8.03e-06 .0000109
istock 1.91e-06 3.98e-07 4.79 0.000 1.13e-06 2.69e-06

crop -.3887311 .0704429 -5.52 0.000 -.5267992 -.2506631
corp .4924593 .0769143 6.40 0.000 .3417073 .6432113
_cons -3.290045 .0845741 -38.90 0.000 -3.45581 -3.12428

exits
surplus 9.79e-07 8.31e-07 1.18 0.238 -6.49e-07 2.61e-06
istock -2.51e-06 4.84e-07 -5.18 0.000 -3.46e-06 -1.56e-06

crop -.2224568 .053576 -4.15 0.000 -.3274657 -.1174478
corp -.5241336 .0578154 -9.07 0.000 -.6374517 -.4108154
_cons -1.785737 .0674397 -26.48 0.000 -1.917919 -1.653555

medium initial state

large
surplus .0000115 1.36e-06 8.44 0.000 8.85e-06 .0000142
istock 9.45e-06 9.85e-07 9.59 0.000 7.52e-06 .0000114

crop -.1324843 .0674814 -1.96 0.050 -.2647478 -.0002208
corp .2581651 .0750526 3.44 0.001 .1110621 .4052682
_cons -2.24129 .0766323 -29.25 0.000 -2.391489 -2.09109

vlarge
surplus 0 (omitted)
istock 0 (omitted)

crop 0 (omitted)
corp 0 (omitted)
_cons 0 (omitted)

exits
surplus -.0000116 1.76e-06 -6.59 0.000 -.000015 -8.12e-06
istock -8.68e-06 1.68e-06 -5.15 0.000 -.000012 -5.38e-06

crop -.1185502 .0607494 -1.95 0.051 -.2376191 .0005186
corp -.111747 .083309 -1.34 0.180 -.2750327 .0515387
_cons -1.088767 .0755732 -14.41 0.000 -1.236891 -.9406437
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vlarge initial state

large
surplus -4.62e-06 6.07e-07 -7.61 0.000 -5.80e-06 -3.43e-06
istock -5.23e-06 4.81e-07 -10.88 0.000 -6.17e-06 -4.29e-06

crop -.4181612 .0799961 -5.23 0.000 -.5749535 -.2613688
corp .1599688 .0853567 1.87 0.061 -.0073304 .327268
_cons -.9184241 .0978913 -9.38 0.000 -1.110291 -.7265572

medium
surplus 0 (omitted)
istock 0 (omitted)

crop 0 (omitted)
corp 0 (omitted)
_cons 0 (omitted)

exits
surplus 4.72e-07 4.08e-07 1.16 0.247 -3.28e-07 1.27e-06
istock 1.35e-07 1.17e-07 1.15 0.248 -9.44e-08 3.65e-07

crop -.2717015 .0777804 -3.49 0.000 -.4241512 -.1192518
corp -.3866597 .0814266 -4.75 0.000 -.5462558 -.2270636
_cons -2.025348 .0875228 -23.14 0.000 -2.196893 -1.853803

Type shares

Mean Std. Dev.

pi1 .6512266 .3125167
pi2 .3487734 .3125167

Membership probabilities

Robust
coef. Std. Err. z p>|z| [95% Conf. Interval]

proba1 (baseoutcome)

proba2
meandebtr .0221298 .0001892 116.99 0.000 .021759 .0225006
modeeduc .2498734 .0203545 12.28 0.000 .2099786 .2897681
modeyoung .0804814 .0115482 6.97 0.000 .0578469 .1031158

_cons -1.833442 .021202 -86.48 0.000 -1.874998 -1.791886

Model estimated via expectation-maximization (EM) algorithm.

Compared with the first example, this one has three additional sets of parameters.
First, the parameters for the exit state now appear in the table of results. Because
entries are estimated separately, the total number of initial states remains the same as
in example 1.
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Second, the parameters for the probability of entering in a given size category
are reported in the section Entry probabilities of the table of results. The coef-
ficients represent the contribution of the explanatory variables in explaining the odds
ratios, with the large category as the reference.6 The parameters for the odds ratio
{P (medium)}/{P (large)} in component 1 are set to zero, meaning that there are not
enough observations for the identification of these parameters in this component. As in
example 1, the effect of the explanatory variables also differs across components. For
example, the results show that the variable corp has a larger positive effect on the odds
ratio {P (vlarge)}/{P (large)} for farms that belong to the first component. The esti-
mated coefficient is 4.197 for farms belonging to component 1 and only 0.578 for farms
belonging to component 2.

Third, the parameters for the membership probabilities are given in the Membership
probabilities section of the results table, after the resulting type shares pi1 and pi2.
The coefficients represent the contribution of the explanatory variables in explaining
the odds ratios using the probability of belonging to component 1 as the reference. All
three chosen variables (meandebtr, modeeduc, and modeyoung) have a positive effect on
the probability of belonging to component 2 versus component 1.

Finally, one can verify that the parameters for the transition probabilities that were
constrained to zero are not estimated by the model, because they appear as set to zero
and indicated as (omitted) in the table of results.

4.3 Choosing the optimal number of components

In this last example, we illustrate how the number of components can be chosen by
relying on statistical information rather than a priori knowledge on the total number
of components as in the previous examples. In this case, the criteria used to select the
most relevant model are generally based on the value of −2LLG(y; Φ̂) of the model,

where LLG(y; Φ̂) represents the maximum LL estimate adjusted for the number of free
parameters in the model. The basic principle here is parsimony: all other things being
equal, the model with fewer parameters should be preferred. In the case of latent class
models such as the MMCM, the selection of the total number of types G is generally
based on the following criterion (Andrews and Currim 2003; Dias and Willekens 2005)

CG = −2LLG

(
y; Φ̂

)
+ κ×NG

where NG is the total number of free parameters of a model with G types. Different
values for the penalizing factor κ lead to the various well known information criteria: the
Akaike information criterion (AIC) with κ = 2 and the Bayesian information criterion
(BIC) with κ = log(n) (Andrews and Currim 2003). Other information criteria can also
be derived such as the consistent Akaike information criterion (CAIC) with κ = log(n)+1

6. Note that mixmcm estimates the effect of explanatory variables on the probability of entering a spe-
cific state conditional on the agent having entered the sample. Other assumptions and calculations
are necessary to derive the probabilities of new entries when analyzing population dynamics.
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and a modified AIC (AIC3) with κ = 3 (Andrews and Currim 2003). For each of these
heuristic criteria, smaller values indicate more parsimonious models.

As an illustration, we search for the optimal model for our RICA data by letting
the number of unobserved types vary within the range of one to five components. We
also set alternative numbers of short-run and long-run EM iterations to increase the
chances of obtaining a global maximum in each case. We choose the optimal number
of components based on the CAIC criterion (the default), but a graph is drawn for all
available information criteria. Finally, we also save the estimated parameters for all
models in a file that can be used for further analysis. To do so, we use mixmcm as
follows:

. mixmcm category surplus istock crop corp, id(idnum) timevar(year)
> ncomponents(1 5, graph(aic bic caic aic3, title("Fig. 1")
> ytitle("Information criteria") xtitle("Number of components") xlabel(1(1)5)
> scheme(sj) saving(figure.eps, replace)) save(icbtable, replace detail) force)
> emiterate(lr(3 200, 0.000001) sr(3 5)) exitcode(exits)
> entry(entry_class icap corp) membership(meandebtr modeeduc modeyoung)
> constraints(1 2)
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Figure 1. Comparison of statistical information criteria for different numbers of unob-
served farm types

Figure 1 shows that, based on the model specification and according to the CAIC, a
mixture of three types of farms should be chosen as the optimal number of components.
It also shows that the BIC is consistent with the CAIC in identifying three components
while, according to the AIC and AIC3, a higher number of farm types should be preferred.
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In these two latter cases, however, the improvement in the values of the criteria is
relatively small when specifying more than three types so that three components may
overall be a relevant compromise.

The command output displays the results regarding the optimal number of com-
ponents. The corresponding table is not reported here because it is essentially similar
to that of example 2, the difference being that it reports the results for three com-
ponents instead of two. Additionally, because we use the suboption force for the
ncomponents() option, the information criteria and the full set of estimated parame-
ters for all fitted models (from one to five components) are saved to disk in the specified
filename icbtable; an excerpt of this file is provided in the appendix. Finally, mixmcm
stores the following in e():

Scalars
e(N components) optimal number of homogeneous types
e(min components) minimum number of homogeneous types estimate
e(max components) maximum number of homogeneous types estimate
e(ll) log likelihood
e(N) number of observations
e(N id) number of agents identified by id()
e(k) number of free parameters estimated
e(aic) Akaike information criterion
e(aic3) restricted Akaike information criterion
e(bic) Bayesian information criterion
e(caic) consistent Akaike information criterion
e(converged) 1 if the EM algorithm converged, 0 otherwise

Macros
e(cmd) mixmcm command name
e(cmdline) command line as it was written
e(depvar) name of the dependent variable
e(title) title in estimation output
e(id) name of the id() variable
e(states) modalities of the dependent variable
e(exitcode) name of the exit state
e(indepvars) independent variables for transition probabilities
e(entry var) name of the entry() variable
e(entry indepvars) independent variables for entry probabilities
e(compvars) independent variables for component membership probabilities
e(mpf) functional form of the mixing distribution
e(selcrit) information criterion for the selection of the optimal number of

components
e(seed) pseudouniform random-number seed

Matrices
e(b tpm) vector of coefficients for entry and transition probabilities
e(V tpm) covariance matrix of the coefficients for entry and transition

probabilities
e(b proba) vector of coefficients for component membership probabilities
e(V proba) covariance matrix of the coefficients for component membership

coefficients
e(pi) vector of component shares
e(Cns tpm) matrix of constraints

The estimated coefficients and the variance–covariance matrices for the transition
probabilities and for component membership are given in matrices e(b tpm), e(V tpm),
e(b proba), and e(V proba), respectively. The matrices e(pi) and e(Cns tpm) contain
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the components’ shares and the constraints on transition probabilities, respectively.
Standard deviations are also reported for the shares of each type component in the
matrix e(pi). The elements of matrix e(Cns tpm) take the value 1 if the respective
transition probability is constrained to be 0. Otherwise, the elements of the matrix are
set to 0.

5 Hypothesis testing, transition probability, and elasticity
derivation

Because the parameters estimated by the mixmcm command usually are not directly
interpretable in applied work, this section demonstrates how to derive empirically useful
information from these estimated parameters. For example, they can be used to conduct
hypothesis testing to compare specific parameters across components. They can also be
used to compute transition probabilities and derive probability elasticities and structure
elasticities.

To perform postestimation calculations for hypothesis testing, transition probability
computation, and elasticity derivation, we must first put the vector of coefficients and
the variance–covariance matrix in b and V, respectively. To do this, we can use the
following subroutine:

. matrix BETA=e(b_tpm)

. matrix COVB=e(V_tpm)

. matrix SHARE=e(pi)

. capture program drop fill_bV

. program define fill_bV, eclass
1. ereturn clear
2. matrix b = BETA
3. matrix V = COVB
4. ereturn post b V
5. end

Then, the above subroutine must first be called just before using any Stata postes-
timation command for the calculations. In the following, we present how to perform
hypothesis testing, transition probability, and elasticity derivation for example 1 but
the method would apply to any MMCM model fit with the mixmcm command.

5.1 Hypothesis testing

Wald tests of simple and composite linear hypotheses about the parameters of the model
can be performed to conduct hypothesis testing. For example, users can test whether
the estimated parameters are different from zero as follows:
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i) A test on a specific parameter of a specific transition for a specific component.

. test [p_1_large_vlarge]:L.surplus

( 1) [p_1_large_vlarge]L.surplus = 0

chi2( 1) = 8.72
Prob > chi2 = 0.0032

ii) A joint test on all the parameters of a specific transition and a specific component.

. test [p_2_medium_vlarge]:L.surplus L.istock L.crop L.corp

( 1) [p_2_medium_vlarge]L.surplus = 0
( 2) [p_2_medium_vlarge]L.istock = 0
( 3) [p_2_medium_vlarge]L.crop = 0
( 4) [p_2_medium_vlarge]L.corp = 0

chi2( 4) = 23.84
Prob > chi2 = 0.0001

iii) A joint test on all the parameters of all the transitions for all components.

. test L.surplus L.istock L.crop L.corp

( 1) [p_1_large_large]oL.surplus = 0
( 2) [p_1_large_medium]L.surplus = 0
( 3) [p_1_large_vlarge]L.surplus = 0
( 4) [p_1_medium_large]L.surplus = 0
( 5) [p_1_medium_medium]oL.surplus = 0

(output omitted )

For the last example, we report only the first five lines of the output to save space.
The Wald test is performed for all the estimated parameters of all the transitions,
including the base outcome identified with the prefix o for each explanatory variable.

In any of the specific examples above, considered Wald tests show that the tested
parameters all are different from 0 at the 1% significance level at least.7

Users may also test whether the same parameters for two different components are
different from each other, that is, whether the MMCM identify agent types characterized
by specific parameter values.

i) A test on specific parameters for specific transition probabilities across two specific
components.

. test [p_1_large_vlarge=p_2_large_vlarge]:L.surplus

( 1) [p_1_large_vlarge]L.surplus - [p_2_large_vlarge]L.surplus = 0

chi2( 1) = 35.30
Prob > chi2 = 0.0000

7. See, for instance, [R] test for a formal interpretation of the results of the Wald test of simple and
composite linear hypotheses about the parameters from the fit model.
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ii) A joint test on all the parameters for a specific transition across two specific
components.

. test [p_1_large_vlarge=p_2_large_vlarge]

( 1) [p_1_large_vlarge]L.surplus - [p_2_large_vlarge]L.surplus = 0
( 2) [p_1_large_vlarge]L.istock - [p_2_large_vlarge]L.istock = 0
( 3) [p_1_large_vlarge]L.crop - [p_2_large_vlarge]L.crop = 0
( 4) [p_1_large_vlarge]L.corp - [p_2_large_vlarge]L.corp = 0

chi2( 4) = 182.63
Prob > chi2 = 0.0000

In these specific examples, the considered Wald test shows that the two components,
that is, the two endogenous types of farms, are characterized by different estimated
parameter values at the 0.1% significance level at least for the probability to move from
category large to the category vlarge. Of course, such tests can be performed for any
transition and whatever the number of components.

5.2 Transition probabilities

As mixmcm performs multiple multinomial logistic regressions to estimate the parame-
ters, the predict Stata command cannot be used to directly derive transition probabil-
ities.8 Considering the results from example 1, we can compute transition probabilities
using (3). To save space, we report the code lines for the calculations in the appendix.
The transition probabilities are reported below.

. forvalues s=1/2 {
2. display _newline
3. summarize pr_`s´_medium_medium pr_`s´_medium_large pr_`s´_medium_vlarge

> pr_`s´_large_medium pr_`s´_large_large pr_`s´_large_vlarge
> pr_`s´_vlarge_medium pr_`s´_vlarge_large pr_`s´_vlarge_vlarge,
> separator(3)

4. }

Variable Obs Mean Std. Dev. Min Max

pr_1_mediu~m 23,458 .9929139 .0152545 .4269942 .9999997
pr_1~m_large 23,458 .0061466 .014383 2.79e-07 .466761
pr_1_mediu.. 23,458 .0009395 .00304 8.21e-16 .2149646

pr_1_large~m 29,022 .0091439 .0137811 1.15e-29 .7265102
pr_1_large.. 29,022 .9782463 .0136064 .272103 .9938283
pr_1_large.. 29,022 .0126098 .0042574 .0013868 .092576

pr_1_vlarg~m 12,831 .0023512 .0051253 6.03e-54 .2039687
pr_1_vlarg.. 12,831 .0145335 .0213587 5.44e-24 .4155616
pr_1_vlarg.. 12,831 .9831152 .0258175 .3804698 1

8. A postestimation command for mixmcm is under construction and will be made available for the
users to more easily perform predictions and derive other parameters of interest.
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Variable Obs Mean Std. Dev. Min Max

pr_2_mediu~m 23,458 .8208468 .0711365 .00101 .9979493
pr_2~m_large 23,458 .1753561 .0713373 .0020507 .99899
pr_2_mediu.. 23,458 .0037971 .0043659 3.95e-35 .0426982

pr_2_large~m 29,022 .0990758 .0733726 4.99e-10 .9912049
pr_2_large.. 29,022 .8117434 .0625643 .0087897 .9795649
pr_2_large.. 29,022 .0891808 .0685449 5.44e-06 .9907419

pr_2_vlarg~m 12,831 .0057708 .0182524 6.14e-13 .7566274
pr_2_vlarg.. 12,831 .176613 .0942067 3.48e-07 .6508636
pr_2_vlarg.. 12,831 .8176161 .1012113 .0144417 .9999994

The results in the table above show that transition probabilities differ across the two
considered components. The farms in type 1 exhibit a very high probability to remain
in the same category of size two consecutive years (above 0.95), whatever their initial
category. These probabilities are lower for farms in type 2 (below 0.85), which means
that those farms are more likely to move across the size categories over the years.

The above procedure can be applied to compute entry probability from (2) and
probability of type membership from (4) if a parametric form is used for the mixing
distribution.9

5.3 Probability elasticities

As mentioned earlier (see section 4.1), the impacts of explanatory variables on log-
odds ratios are difficult to interpret directly (Greene 2018). In this case, the impacts
of explanatory variables are rather given with respect to transition probabilities, as
measured in terms of elasticities. “Probability elasticities” thus measure the (relative)
effect of a 1% change in the ith explanatory variable on the transition probabilities
(Zepeda 1995). In our mixture model, average transition-probability elasticities from
one period to the next for farms belonging to a specific type g can be derived as

δjk|g =

(
βjk|g −

K∑

l=1

βjl|gpjl|g

)
x, ∀j, k ∈ K, ∀g ∈ G

where δjk|g is a vector gathering elasticities at the means over the period T − 1 of
the explanatory variables in vector x on the transition probability from category j to
category k conditional on belonging to type g (pjk|g); and βjk|g is the corresponding

vector of estimated parameters.10

9. Stata codes are given in the appendix to derive probability membership when a nonparametric
form is used for the mixing distribution.

10. Note that yearly transition-probability elasticities can be also derived using the following equation:

δjkt|g =

(
βjk|g −

K∑

l=1

βjl|gpjlt|g

)
x̄t−1
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Considering again example 1, we can use the transition probabilities computed in
section 5.2 to derive transition-probability elasticities using the nlcom Stata command
as follows:

. /* Save transition probabilities as scalars */

. forvalues s=1/2 {
2. foreach ist in medium large vlarge {
3. foreach fst in medium large vlarge {
4. quietly summarize pr_`s´_`ist´_`fst´ if category[_n-1]=="`ist´"
5. scalar prmean_`s´_`ist´_`fst´ = r(mean)
6. }
7. }
8. }

. /* Compute means of explanatory variables over the period (T-1) */

. foreach x in surplus istock crop corp {
2. quietly summarize `x´ if year < 2010
3. scalar mean_`x´ = r(mean)
4. }

. /* Derive transition-probability elasticities */

. forvalues s=1/2 {
2. foreach ist in medium large vlarge {
3. foreach x in surplus istock crop corp {
4. foreach fst in medium large vlarge {
5. local sum_`s´_`ist´_`x´ "`sum_`s´_`ist´_`x´´-_b

> [p_`s´_`ist´_`fst´:L.`x´]*prmean_`s´_`ist´_`fst´"
6. }
7. local sum_`s´_`ist´_`x´ `=substr("`sum_`s´_`ist´_`x´´",2,.)´
8. }
9. fill_bV // call the subroutine to put the mixmcm estimates in b and V
10. nlcom (prelast_`s´_`ist´_medium_surplus:(_b[p_`s´_`ist´_medium:L.surplus]

> -`sum_`s´_`ist´_surplus´) * mean_surplus)
> (prelast_`s´_`ist´_large_surplus:(_b[p_`s´_`ist´_large:L.surplus]-
> `sum_`s´_`ist´_surplus´) * mean_surplus)
> (prelast_`s´_`ist´_vlarge_surplus:(_b[p_`s´_`ist´_vlarge:L.surplus]-
> `sum_`s´_`ist´_surplus´) * mean_surplus), noheader
11. }
12. }

Coef. Std. Err. z P>|z| [95% Conf. Interval]

prelast_1_m~s -.0048678 .0012316 -3.95 0.000 -.0072818 -.0024539
prelast_1_m~s .581688 .1926161 3.02 0.003 .2041674 .9592087
prelast_1_m~s 1.338917 .3325685 4.03 0.000 .6870949 1.99074

Coef. Std. Err. z P>|z| [95% Conf. Interval]

prelast_1_l~s -1.014097 .1444923 -7.02 0.000 -1.297297 -.7308972
prelast_1_l~s .0066127 .0016208 4.08 0.000 .0034359 .0097894
prelast_1_l~s .222363 .0721659 3.08 0.002 .0809204 .3638056
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Coef. Std. Err. z P>|z| [95% Conf. Interval]

prelast_1_v~s -.4832283 .1124587 -4.30 0.000 -.7036433 -.2628134
prelast_1_v~s -.4526748 .0655823 -6.90 0.000 -.5812137 -.3241359
prelast_1_v~s .0078477 .0010028 7.83 0.000 .0058821 .0098132

Coef. Std. Err. z P>|z| [95% Conf. Interval]

prelast_2_m~s -.1644774 .0180879 -9.09 0.000 -.199929 -.1290257
prelast_2_m~s .7762924 .084016 9.24 0.000 .611624 .9409607
prelast_2_m~s -.2941227 .7593928 -0.39 0.699 -1.782505 1.19426

Coef. Std. Err. z P>|z| [95% Conf. Interval]

prelast_2_l~s -1.170893 .0670389 -17.47 0.000 -1.302287 -1.0395
prelast_2_l~s .0527253 .0089617 5.88 0.000 .0351607 .0702898
prelast_2_l~s .820892 .0528679 15.53 0.000 .7172729 .9245111

Coef. Std. Err. z P>|z| [95% Conf. Interval]

prelast_2_v~s -1.16719 .3466737 -3.37 0.001 -1.846658 -.4877224
prelast_2_v~s -.3766976 .0391418 -9.62 0.000 -.4534141 -.299981
prelast_2_v~s .0896085 .0086226 10.39 0.000 .0727086 .1065085

The resulting coefficients in the table above show that, for example, a 1% increase in
the amount of farm total surplus will decrease the probability to remain in the medium
category of size two consecutive years by about 0.005% for farms in type 1 but by about
0.164% for those in type 2.

The above procedure can be applied to derive entry-probability elasticities and prob-
ability elasticities for type membership if a parametric form is used for the mixing
distribution.

5.4 Structure elasticities

The estimated parameters can be also used to derive “structure elasticities”. In the
context of our agricultural examples, structure elasticities measure the impacts of the
exogenous variable on the distribution of farms across size categories. In other words,
farm structure elasticities measure the variation in percentage of the total number of
farms in a specific category k for a 1% change in the ith explanatory variable. In our
mixture model, average structure elasticities from one period to the next can be derived
as follows.
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The total number of farms in a specific category k at any specific time can be
obtained as

nk =
G∑

j=1

πg

K∑

j

nj × pjk|g, ∀k ∈ K (7)

where πg is the probability of belonging to type g, nj is the total number of farms
in category j at the preceding time period, and pjk|g is the probability of making a
transition from category j to category k from one year to the next. The vector of farm
structure elasticities is then defined as

ηk =
∂nk
∂x

× x

nk

where x is the vector of means of the explanatory variables over the period T − 1.

In (7), only transition probabilities depend on exogenous variables. Farm struc-
ture elasticities can therefore be obtained using the corresponding transition-probability
marginal effects. Average structure elasticities from one period to the next are thus given
by

ηk =




G∑

g=1

πg

K∑

j=1

nj ×
∂pjk|g

∂x


 x

nk

where (∂pjk|g)/(∂x) are the marginal effects at the means of the corresponding explana-
tory variables.11

Considering example 1, we can derive structure elasticities at the means of explana-
tory variables by following three steps: i) computing farm numbers across size categories
from the sample; ii) computing predictive margins at the means of the explanatory
variables using the estimates; iii) deriving structure elasticities using the distribution of
farms across size categories and predictive margins.

. /* Compute farm numbers across size categories */

. foreach ist in medium large vlarge {
2. quietly summarize idnum if year < 2010
3. scalar n_t_1_`ist´ = r(mean)
4. quietly summarize idnum if year > 2000
5. scalar n_t_`ist´ = r(mean)
6. }

11. Note that yearly structure elasticities can also be derived using yearly marginal effects (see
Saint-Cyr [2017] for more details).
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. /* Formula of predictive margins at the means of the explanatory variables */

. forvalues s=1/2 {
2. foreach x in surplus istock crop corp {
3. foreach fst in medium large vlarge {
4. foreach ist in medium large vlarge {
5. local m_`s´_`fst´_`x´ "`m_`s´_`fst´_`x´´+n_t_1_`ist´*

> (prmean_`s´_`ist´_`fst´*(_b[p_`s´_`ist´_`fst´:L.`x´]-`sum_`s´_`ist´_`x´´))"
6. }
7. local m_`s´_`fst´_`x´ `=substr("`m_`s´_`fst´_`x´´",2,.)´
8. }
9. }
10. }

. /* Compute structure elasticities using predictive margins */

. fill_bV // call the subroutine to put the mixmcm estimates in b and V

. nlcom (stelast_medium_surplus:(SHARE[1,1] * `m_1_medium_surplus´ + SHARE[1,2]
> * `m_2_medium_surplus´) * (mean_surplus/n_t_medium))
> (stelast_large_surplus:(SHARE[1,1] * `m_1_large_surplus´ + SHARE[1,2]
> * `m_2_large_surplus´) * (mean_surplus/n_t_large))
> (stelast_vlarge_surplus:(SHARE[1,1] * `m_1_vlarge_surplus´ + SHARE[1,2]
> * `m_2_vlarge_surplus´) * (mean_surplus/n_t_vlarge)), noheader

Coef. Std. Err. z P>|z| [95% Conf. Interval]

stelast_med~s -.170922 .0080758 -21.16 0.000 -.1867503 -.1550937
stelast_lar~s .0161174 .0108267 1.49 0.137 -.0051025 .0373374
stelast_vla~s .1548046 .008474 18.27 0.000 .1381958 .1714133

The coefficients in the table above show that the number of farms in the medium size
category will decrease by 0.171% if farm total surplus increases by 1% from one year
to the next. Because in example 1 we do not consider exits or entries, these 0.171% of
medium farms will move to the large category for 0.016% and to the vlarge category
for 0.155%.

Structure elasticities can also be derived, accounting for entries and exits as in
example 2. To do this, we can use the same procedure considering the corresponding
predictive margins.

6 Discussion

The community-contributed mixmcm command proposed here enables the estimation of
MMCMs in Stata. The command is especially adapted to fit mixtures of nonstationary
MCMs, accounting for entries and exits in the population under study. The examples
presented in the preceding sections can easily be reproduced using other data provided
that they are organized or rearranged in a similar fashion.

Future developments of the command will take three directions. First, the speci-
fication of constraints will be made more general to allow for constraining transition
probabilities for only a subset of components. This would, for instance, allow for the
implementation of the so-called mover–stayer model, a restricted form of the MMCM that
has been widely applied in the literature (Saint-Cyr 2017). In this model, only two types
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of agents are considered, the “movers”, who follow a standard Markovian process, and
the “stayers”, who always remain in their starting category. In this setting, the stayers’
transition matrix degenerates to a diagonal matrix, where all but the diagonal transition
probabilities are constrained to zero while the diagonal probabilities are constrained to
unity, and the movers’ transition matrix may be unconstrained. Generalizing the con-
straints syntax in mixmcm would thus allow for the implementation of such a model, or
even a more sophisticated model composed of one stayer type and several mover types.
Second, the command will also be improved to be able to account for other parametric
forms (logit, Poisson, etc.) of the mixing distribution, for which there is already some
precedent in the literature (Lindsay and Lesperance 1995; Greene and Hensher 2003;
Train 2009). Finally, specific postestimation commands will be incorporated so that
deriving second-order parameters of interest such as those exemplified in section 5 will
be directly and easily available with no further coding as stand-alone in-line commands.
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A Appendix

A.1 Results from example 3
. mixmcm category surplus istock crop corp, id(idnum) timevar(year)
> ncomponents(1 5, graph(aic bic caic aic3, title("Fig. 1")
> ytitle("Information criteria") xtitle("Number of components") xlabel(1(1)5)
> scheme(sj) saving(figure.eps, replace)) save(icbtable, replace detail) force)
> emiterate(lr(3 200, 0.000001) sr(3 5)) exitcode(exits)
> entry(entry_class icap corp) membership(meandebtr modeeduc modeyoung)
> constraints(1 2)
(file figure.eps saved)
(Warning: unbalanced panel data)

(output omitted )

log-likelihood = -40983.226 Number of obs = 84886
Number of id = 13123

Robust
coef. Std. Err. z p>|z| [95% Conf. Interval]

Component 1

Entry probabilities

large (baseoutcome)

medium
icap -2.73e-06 5.77e-07 -4.74 0.000 -3.87e-06 -1.60e-06
corp -1.717319 .1016484 -16.89 0.000 -1.91655 -1.518088
_cons .4525435 .0907567 4.99 0.000 .2746603 .6304268

vlarge
icap 3.37e-06 3.61e-07 9.33 0.000 2.66e-06 4.07e-06
corp 1.831689 .1633747 11.21 0.000 1.511475 2.151904
_cons -3.467929 .1687544 -20.55 0.000 -3.798688 -3.13717

Transition probabilities

large initial state

medium
surplus -.000018 1.14e-06 -15.82 0.000 -.0000202 -.0000158
istock -4.46e-06 1.07e-06 -4.18 0.000 -6.55e-06 -2.37e-06

crop -.1936054 .071734 -2.70 0.007 -.334204 -.0530068
corp -.6566904 .0772081 -8.51 0.000 -.8080183 -.5053626
_cons -.2696556 .0894501 -3.01 0.003 -.4449777 -.0943335

vlarge
surplus .0000112 8.43e-07 13.30 0.000 9.57e-06 .0000129
istock 1.95e-06 4.16e-07 4.69 0.000 1.14e-06 2.77e-06

crop -.5334796 .0823049 -6.48 0.000 -.6947972 -.3721619
corp 1.207092 .0974889 12.38 0.000 1.016014 1.398171
_cons -3.887953 .1072533 -36.25 0.000 -4.098169 -3.677736

exits
surplus 6.47e-06 9.33e-07 6.93 0.000 4.64e-06 8.30e-06
istock -5.69e-06 6.79e-07 -8.38 0.000 -7.02e-06 -4.36e-06

crop -.2926585 .0639043 -4.58 0.000 -.417911 -.167406
corp -.735256 .0688008 -10.69 0.000 -.8701055 -.6004065
_cons -1.848153 .0814931 -22.68 0.000 -2.007879 -1.688427
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medium initial state

large
surplus 8.94e-06 1.53e-06 5.84 0.000 5.94e-06 .0000119
istock 3.89e-06 9.36e-07 4.16 0.000 2.05e-06 5.72e-06

crop -.1340931 .0719786 -1.86 0.062 -.2751711 .006985
corp .1633837 .082237 1.99 0.047 .0021991 .3245682
_cons -1.560572 .0795478 -19.62 0.000 -1.716486 -1.404659

vlarge
surplus 0 (omitted)
istock 0 (omitted)

crop 0 (omitted)
corp 0 (omitted)
_cons 0 (omitted)

exits
surplus -.0000125 1.96e-06 -6.39 0.000 -.0000164 -8.67e-06
istock 1.45e-06 1.53e-06 0.95 0.344 -1.55e-06 4.44e-06

crop -.0111323 .0759815 -0.15 0.884 -.1600561 .1377915
corp -.1360791 .1024887 -1.33 0.184 -.336957 .0647988
_cons -1.39741 .0940792 -14.85 0.000 -1.581806 -1.213015

vlarge initial state

large
surplus -6.19e-06 7.60e-07 -8.15 0.000 -7.68e-06 -4.70e-06
istock -4.20e-06 5.48e-07 -7.67 0.000 -5.28e-06 -3.13e-06

crop -.2655335 .093431 -2.84 0.004 -.4486584 -.0824086
corp -.1009242 .1070697 -0.94 0.346 -.3107809 .1089324
_cons .1730211 .1274562 1.36 0.175 -.0767931 .4228353

medium
surplus 0 (omitted)
istock 0 (omitted)

crop 0 (omitted)
corp 0 (omitted)
_cons 0 (omitted)

exits
surplus 1.38e-06 4.66e-07 2.96 0.003 4.68e-07 2.29e-06
istock 3.35e-07 1.40e-07 2.39 0.017 5.97e-08 6.10e-07

crop -.1276811 .1040235 -1.23 0.220 -.3315671 .076205
corp -.6197546 .1012326 -6.12 0.000 -.8181704 -.4213387
_cons -1.801007 .1128898 -15.95 0.000 -2.022271 -1.579743

Component 2

Entry probabilities

large (baseoutcome)

medium
icap 0 (omitted)
corp 0 (omitted)
_cons 0 (omitted)

vlarge
icap .0000128 7.49e-07 17.10 0.000 .0000113 .0000143
corp 8.392369 .8229348 10.20 0.000 6.779417 10.00532
_cons -13.7123 .9212189 -14.88 0.000 -15.51789 -11.90671
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Transition probabilities

large initial state

medium
surplus -.0000288 1.69e-06 -17.00 0.000 -.0000321 -.0000255
istock -.0000188 1.50e-06 -12.56 0.000 -.0000218 -.0000159

crop -.9911957 .1134279 -8.74 0.000 -1.213514 -.768877
corp .3123283 .1018867 3.07 0.002 .1126303 .5120263
_cons -.7619696 .1343828 -5.67 0.000 -1.02536 -.4985792

vlarge
surplus -2.13e-07 1.69e-06 -0.13 0.899 -3.52e-06 3.09e-06
istock 1.93e-06 5.28e-07 3.66 0.000 8.94e-07 2.96e-06

crop 14.30387 .1328083 107.70 0.000 14.04356 14.56417
corp 1.16041 .1910299 6.07 0.000 .785991 1.534828
_cons -20.19702 .2057501 -98.16 0.000 -20.60029 -19.79375

exits
surplus 3.53e-06 6.47e-07 5.46 0.000 2.27e-06 4.80e-06
istock -8.66e-08 3.32e-07 -0.26 0.794 -7.38e-07 5.65e-07

crop -.3289612 .0543866 -6.05 0.000 -.435559 -.2223634
corp -.5046155 .0553418 -9.12 0.000 -.6130855 -.3961455
_cons -2.229801 .0571992 -38.98 0.000 -2.341911 -2.11769

medium initial state

large
surplus .0000216 2.06e-06 10.53 0.000 .0000176 .0000257
istock 2.88e-06 1.03e-06 2.80 0.005 8.64e-07 4.89e-06

crop -.8224463 .1157572 -7.10 0.000 -1.04933 -.5955622
corp 2.29892 .10971 20.95 0.000 2.083889 2.513952
_cons -5.975013 .0996405 -59.97 0.000 -6.170309 -5.779718

vlarge
surplus 0 (omitted)
istock 0 (omitted)

crop 0 (omitted)
corp 0 (omitted)
_cons 0 (omitted)

exits
surplus -4.29e-06 1.47e-06 -2.92 0.003 -7.17e-06 -1.41e-06
istock -7.87e-06 1.03e-06 -7.67 0.000 -9.88e-06 -5.86e-06

crop -.0498999 .0479314 -1.04 0.298 -.1438454 .0440455
corp -.3045666 .0725609 -4.20 0.000 -.446786 -.1623473
_cons -1.806748 .0575469 -31.40 0.000 -1.91954 -1.693956
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vlarge initial state

large
surplus -8.71e-06 1.35e-06 -6.43 0.000 -.0000114 -6.06e-06
istock 3.06e-07 3.68e-07 0.83 0.406 -4.15e-07 1.03e-06

crop -.7007915 .2080657 -3.37 0.001 -1.1086 -.2929826
corp -.3687532 .1979199 -1.86 0.062 -.7566763 .0191698
_cons -2.27068 .2616954 -8.68 0.000 -2.783603 -1.757757

medium
surplus 0 (omitted)
istock 0 (omitted)

crop 0 (omitted)
corp 0 (omitted)
_cons 0 (omitted)

exits
surplus 1.88e-06 4.01e-07 4.69 0.000 1.10e-06 2.67e-06
istock 2.85e-07 1.10e-07 2.59 0.010 6.92e-08 5.01e-07

crop -.4222275 .1074133 -3.93 0.000 -.6327575 -.2116975
corp -.8750444 .1070356 -8.18 0.000 -1.084834 -.6652546
_cons -1.936757 .1149548 -16.85 0.000 -2.162069 -1.711446

Component 3

Entry probabilities

large (baseoutcome)

medium
icap -6.02e-06 4.84e-07 -12.43 0.000 -6.97e-06 -5.07e-06
corp -1.133343 .0911934 -12.43 0.000 -1.312082 -.954604
_cons -.082066 .0681124 -1.20 0.228 -.2155663 .0514343

vlarge
icap 2.89e-06 2.68e-07 10.77 0.000 2.36e-06 3.41e-06
corp .9864864 .0863775 11.42 0.000 .8171865 1.155786
_cons -1.357328 .0882696 -15.38 0.000 -1.530337 -1.18432

Transition probabilities

large initial state

medium
surplus -6.16e-08 2.42e-06 -0.03 0.980 -4.81e-06 4.69e-06
istock -.0000455 3.50e-06 -13.01 0.000 -.0000524 -.0000387

crop 1.032274 .157029 6.57 0.000 .7244969 1.34005
corp -.7022026 .1827769 -3.84 0.000 -1.060445 -.34396
_cons -3.892133 .2018793 -19.28 0.000 -4.287816 -3.496449

vlarge
surplus 6.58e-06 8.88e-07 7.40 0.000 4.84e-06 8.32e-06
istock -3.10e-07 5.18e-07 -0.60 0.549 -1.32e-06 7.05e-07

crop .1236297 .0921907 1.34 0.180 -.0570641 .3043235
corp -.618462 .0915013 -6.76 0.000 -.7978046 -.4391195
_cons -3.698632 .097256 -38.03 0.000 -3.889254 -3.508011

exits
surplus -1.56e-06 6.70e-07 -2.33 0.020 -2.87e-06 -2.48e-07
istock 1.01e-06 3.30e-07 3.07 0.002 3.68e-07 1.66e-06

crop -.144217 .0492098 -2.93 0.003 -.2406682 -.0477659
corp -.4534594 .051372 -8.83 0.000 -.5541486 -.3527703
_cons -2.023236 .0588712 -34.37 0.000 -2.138624 -1.907849
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medium initial state

large
surplus -2.82e-08 2.50e-06 -0.01 0.991 -4.93e-06 4.87e-06
istock 1.15e-06 1.04e-06 1.11 0.269 -8.86e-07 3.18e-06

crop .9217199 .1263195 7.30 0.000 .6741337 1.169306
corp .1662634 .1541611 1.08 0.281 -.1358924 .4684192
_cons -4.788261 .1087963 -44.01 0.000 -5.001502 -4.575021

vlarge
surplus 0 (omitted)
istock 0 (omitted)

crop 0 (omitted)
corp 0 (omitted)
_cons 0 (omitted)

exits
surplus 8.57e-07 1.35e-06 0.63 0.526 -1.79e-06 3.51e-06
istock -1.16e-06 1.06e-06 -1.10 0.272 -3.23e-06 9.09e-07

crop -.058948 .0545807 -1.08 0.280 -.1659262 .0480302
corp -.5020593 .0850698 -5.90 0.000 -.6687961 -.3353224
_cons -1.815007 .0553823 -32.77 0.000 -1.923557 -1.706458

vlarge initial state

large
surplus -5.33e-06 8.71e-07 -6.12 0.000 -7.04e-06 -3.63e-06
istock -8.80e-06 8.24e-07 -10.67 0.000 -.0000104 -7.18e-06

crop -.0435028 .1148826 -0.38 0.705 -.2686727 .181667
corp -1.19845 .1154647 -10.38 0.000 -1.424761 -.9721393
_cons -1.507748 .1288795 -11.70 0.000 -1.760352 -1.255144

medium
surplus 0 (omitted)
istock 0 (omitted)

crop 0 (omitted)
corp 0 (omitted)
_cons 0 (omitted)

exits
surplus 5.48e-08 4.22e-07 0.13 0.897 -7.73e-07 8.82e-07
istock 2.17e-07 1.20e-07 1.81 0.070 -1.78e-08 4.52e-07

crop -.2726227 .0756379 -3.60 0.000 -.420873 -.1243724
corp -.6692721 .0794823 -8.42 0.000 -.8250573 -.5134869
_cons -1.982747 .082816 -23.94 0.000 -2.145066 -1.820428

Type shares

Mean Std. Dev.

pi1 .1843579 .2460405
pi2 .4187667 .3302194
pi3 .3968754 .3012153
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Membership probabilities

Robust
coef. Std. Err. z p>|z| [95% Conf. Interval]

proba1 (baseoutcome)

proba2
meandebtr -.0534433 .0003089 -173.02 0.000 -.0540487 -.0528379
modeeduc -.306331 .0282084 -10.86 0.000 -.3616194 -.2510426
modeyoung .0015993 .0148086 0.11 0.914 -.0274255 .0306241

_cons 2.965792 .0301302 98.43 0.000 2.906736 3.024847

proba3
meandebtr .0109601 .0002757 39.75 0.000 .0104197 .0115006
modeeduc -.1730981 .0276553 -6.26 0.000 -.2273024 -.1188937
modeyoung -.2885172 .0141397 -20.40 0.000 -.316231 -.2608034

_cons .4402923 .0295252 14.91 0.000 .3824228 .4981618

Model estimated via expectation-maximization (EM) algorithm.

CAIC values are used to identify the optimal number of components.

A.2 Parameters saved in table of results

The two tables below report only the first 20 lines of icbtable.dta. nco~s, npa~s,
com~t, ist, and fst, respectively, stand for the number of components, the number
of parameters, the component number, the initial state, and the final state. The table
reports the estimated parameters only for one explanatory variable, namely, surplus.
To save space, we truncate the numbers of the variables var pi and pi to three decimal
places.
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. use "icbtable.dta", clear

. list ncomponents LL nparameters aic bic caic aic3 in 1/20, abbreviate(5)
> compress noobs separator(20)

nco~s LL npa~s aic bic caic aic3

1 -43066.907 41 86215.814 86599.126 86640.126 86256.814
1 -43066.907 41 86215.814 86599.126 86640.126 86256.814
1 -43066.907 41 86215.814 86599.126 86640.126 86256.814
1 -43066.907 41 86215.814 86599.126 86640.126 86256.814
1 -43066.907 41 86215.814 86599.126 86640.126 86256.814
1 -43066.907 41 86215.814 86599.126 86640.126 86256.814
1 -43066.907 41 86215.814 86599.126 86640.126 86256.814
1 -43066.907 41 86215.814 86599.126 86640.126 86256.814
1 -43066.907 41 86215.814 86599.126 86640.126 86256.814
1 -43066.907 41 86215.814 86599.126 86640.126 86256.814
1 -43066.907 41 86215.814 86599.126 86640.126 86256.814
1 -43066.907 41 86215.814 86599.126 86640.126 86256.814
1 -43066.907 41 86215.814 86599.126 86640.126 86256.814
1 -43066.907 41 86215.814 86599.126 86640.126 86256.814
1 -43066.907 41 86215.814 86599.126 86640.126 86256.814
2 -41410.741 86 82993.482 83797.501 83883.501 83079.482
2 -41410.741 86 82993.482 83797.501 83883.501 83079.482
2 -41410.741 86 82993.482 83797.501 83883.501 83079.482
2 -41410.741 86 82993.482 83797.501 83883.501 83079.482
2 -41410.741 86 82993.482 83797.501 83883.501 83079.482

. format var_pi pi_ %12.3f

. list ncomponents component ist fst b_surplus se_surplus pi_ var_pi_ in 1/20,
> abbreviate(5) compress noobs separator(20)

nco~s com~t ist fst b_surplus se_surp~s pi_ var~_

1 1 entry large . . 1.000 .
1 1 entry medium . . 1.000 .
1 1 entry vlarge . . 1.000 .
1 1 large exits 1.817e-06 5.627e-07 1.000 .
1 1 large large 0 0 1.000 .
1 1 large medium -.00001792 1.043e-06 1.000 .
1 1 large vlarge 7.392e-06 6.672e-07 1.000 .
1 1 medium exits -3.911e-06 1.168e-06 1.000 .
1 1 medium large .00001078 1.357e-06 1.000 .
1 1 medium medium 0 0 1.000 .
1 1 medium vlarge 0 0 1.000 .
1 1 vlarge exits 8.403e-07 3.319e-07 1.000 .
1 1 vlarge large -5.599e-06 5.627e-07 1.000 .
1 1 vlarge medium 0 0 1.000 .
1 1 vlarge vlarge 0 0 1.000 .
2 1 entry large . . 0.660 0.312
2 1 entry medium . . 0.660 0.312
2 1 entry vlarge . . 0.660 0.312
2 1 large exits 2.548e-06 5.810e-07 0.660 0.312
2 1 large large 0 0 0.660 0.312
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A.3 Compute transition probabilities

. /* Generate the components of the multinomial logit formula */

. sort idnum year

. quietly xtset idnum year // declare panel data

. forvalues s=1/2 {
2. foreach ist in medium large vlarge {
3. by idnum: generate double deno_betax_`s´_`ist´= 0 if
> category[_n-1]=="`ist´"
4. foreach fst in medium large vlarge {
5. if "`ist´"=="`fst´" {
6. by idnum: generate double sum_betax_`s´_`ist´_`fst´=0 if
> category[_n-1]=="`ist´"
7. }
8. else {
9. by idnum: generate double sum_betax_`s´_`ist´_`fst´=
> BETA[rownumb(BETA,"r1"), colnumb(BETA,"p_`s´_`ist´_`fst´:_cons")] if
> category[_n-1]=="`ist´"
10. foreach x in surplus istock crop corp {
11. local sum_betax_`s´_`ist´_`fst´ "`sum_betax_`s´_`ist´_`fst´´ +
> (p_`s´_`ist´_`fst´:L.`x´)*L.`x´"
12. by idnum: replace sum_betax_`s´_`ist´_`fst´=
> sum_betax_`s´_`ist´_`fst´ + (BETA[rownumb(BETA,"r1"),
> colnumb(BETA,"p_`s´_`ist´_`fst´:L.`x´")])*L.`x´ if category[_n-1]=="`ist´"
13. }
14. by idnum: replace deno_betax_`s´_`ist´= deno_betax_`s´_`ist´ +
> exp(sum_betax_`s´_`ist´_`fst´) if category[_n-1]=="`ist´"
15. }
16. }
17. }
18.}

. /* Use the multinomial logit formula to compute transition probabilities */

. forvalues s=1/2 {
2. foreach ist in medium large vlarge {
3. foreach fst in medium large vlarge {
4. capture drop pr_`s´_`ist´_`fst´
5. quietly generate double pr_`s´_`ist´_`fst´ =.
6. by idnum: replace pr_`s´_`ist´_`fst´ = exp(sum_betax_`s´_`ist´_`fst´)/
> (1+deno_betax_`s´_`ist´) if category[_n-1]=="`ist´"
7. }
8. }
9.}
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A.4 Compute type membership probabilities

. /* Generate the components of the Bayes formula */

. capture drop _obs

. by idnum: generate _obs=1 if _n==1

. capture drop _dens_tot

. generate double _dens_tot = 0

. forvalues s=1/2 {
2. capture drop _pr_`s´
3. generate double _pr_`s´ = 1
4. foreach ist in medium large vlarge {
5. foreach fst in medium large vlarge {
6. by idnum: replace _pr_`s´ = pr_`s´_`ist´_`fst´ if
> category[_n]=="`fst´" & category[_n-1]=="`ist´"
7. }
8. }
9. capture drop _dens1_`s´
10. capture drop sumprod1_`s´
11. by idnum: gen double sumprod1_`s´=exp(sum(ln(_pr_`s´)))
12. by idnum: gen double _dens1_`s´ = sumprod1_`s´[_N]
13. capture drop pi_dens_`s´
14. quietly generate double pi_dens_`s´ = round(SHARE[rownumb(SHARE,"Mean"),
> colnumb(SHARE,"pi_`s´")],0.01)*_dens1_`s´
15. quietly replace _dens_tot = _dens_tot+pi_dens_`s´
16.}

. /* Use the Bayes formula to compute posterior membership probabilities */

. forvalues s=1/2 {
2. capture drop proba_`s´
3. quietly generate double proba_`s´ = pi_dens_`s´/_dens_tot
4. summarize proba_`s´ if _obs==1
5.}

Variable Obs Mean Std. Dev. Min Max

proba_1 13,123 .7233329 .2715939 2.39e-19 1

Variable Obs Mean Std. Dev. Min Max

proba_2 13,123 .2766671 .2715939 4.04e-16 1
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