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Abstract. A major challenge of outcomes research is measuring hospital perfor-
mance using readily available administrative data. When the outcome measure
is mortality or morbidity, rates are adjusted to account for preexisting conditions
that may confound their assessment. However, the concept of “risk-adjusted” out-
comes is frequently misunderstood. In this article, we try to clarify things, and we
describe Stata tools for appropriately calculating and displaying risk-standardized
outcome measures. We offer practical guidance and illustrate the application of
these tools to an example based on real data (30-day mortality following acute
myocardial infarction in Latvia).
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1 Introduction

Outcomes research frequently aims to measure the performance of a physician or a
hospital. This is often called provider profiling (Gatsonis 2005). The outcome rates
are generally adjusted to remove the effect of age, allowing for an unbiased compari-
son between populations that may differ with respect to age. Countless biostatistics
and epidemiology textbooks address this topic, so the direct and indirect methods to
calculate age-adjusted rates are widely known.

Things get more complicated when other variables, such as clinical factors, are ac-
counted for to derive risk-adjusted measures. Although age is generally the main source
of confounding in epidemiological studies, other characteristics can significantly impact
the patient’s individual risk and are outside the quality of care delivered. These addi-
tional characteristics can be retrieved from the hospital discharge records—also known
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as discharge abstracts or administrative claims—which are generally inexpensive and
enable the analysis of large populations as well as many conditions and pathologies.
This source of data is largely used in outcome studies but is nonetheless criticized
because of limited accuracy of medical billing diagnosis and procedure coding. De-
spite this limitation, healthcare administrative databases are rich sources of informa-
tion that are being leveraged for research purposes and used for policy decision making
(Cadarette and Wong 2015).

In outcomes research, risk-adjustment techniques develop from logistic regression
analysis. It seems trivial at first glance, but the assumption of independence does not
hold when observations are clustered within second-level units (for example, hospitals),
so one must take important precautions. We also think that the literature regarding
risk adjustment still lacks structure, possibly because the topic is broad, disputed, and
somewhat sensitive. Risk-adjusted outcomes are used to designate centers of excellence,
to determine reimbursement levels in pay for performance programs, and to classify
providers as outliers, so it is no surprise that their correct conceptualization and inter-
pretation goes beyond the strict academic concern (Shahian and Normand 2008).

For whatever reason, the result is a list of definitions and abbreviations that might
confuse someone first encountering this field of statistics. In this article, we try to
clarify things by explaining step by step which techniques should be used to calculate
and display the risk-adjusted outcome rates. We follow key methodological concepts
with details of how to run risk-adjustment models in Stata using a practical example
derived from real data (30-day mortality following acute myocardial infarction [AMI] in
Latvia in 2016). Because this article is addressed to all health-services professionals
and researchers skilled with numbers, we do not review advanced techniques, such as
Bayesian hierarchical models.

2 Risk-standardized mortality rates

2.1 Logistic regression

The easiest way to obtain risk-adjusted outcome measures across providers is to build a
conventional logistic regression model, where Y is a binary outcome measure expressed
as 0/1 (say, death) and covariates Xi are the patient case mix (age, sex, comorbidities,
etc.). We will describe methodological details on how these variables can be selected
for inclusion in the model in section 3.

Regression coefficient estimates capture the effect of patient characteristics on the
study outcome across all hospitals together. The predicted probability of the outcome
can be derived for each patient by combining the regression coefficients estimated by
the model with the patient set of covariates. In this way, each patient has both the
actual outcome and the predicted probability of that outcome accounting for risk factors
identified in the model. These measures are then summed over all records within each
provider to derive the observed and the expected number of events. The expected
number of events is the number of events that would occur if the “standard” event rates
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had happened, given the actual provider case mix. Standard event rates are estimated
from the entire group of providers.

The adjusted outcome measure for each provider is presented as the ratio of the
observed to the expected number of events. This is called the observed-to-expected
ratio or, when the events are deaths, the standardized mortality ratio (SMR) (Naing
2000). The SMR compares the outcomes for the specific distribution of patients at a
hospital with their expected results had they been treated by an average provider in
the reference population. The SMR is favorable if less than 1 and unfavorable if greater
than 1.

As a final step, the SMR should be multiplied by the overall outcome rate to allow
for comparison of each hospital performance with the national or regional average.
This measure is named either risk-standardized mortality rate (RSMR) or risk-adjusted
mortality rate and is given by the following formula:

RSMR = SMR× overall mortality rate

The RSMR is favorable when it is below the overall mortality rate and unfavorable
when it is above the overall mortality rate.

2.2 Confidence intervals for RSMRs

Because the RSMRs for each hospital are derived from the reference population, it is
appropriate to assess whether these rates are statistically different from the overall
state or region mortality rate. This is achieved by determining whether the confidence
interval (CI) for a hospital-specific RSMR includes the overall rate. If no overlap exists,
the hospital is most commonly classified as a statistical outlier (Shahian and Normand
2008).

The analyst will have many choices because many formulas have been proposed
to build CIs. These formulas are based on the assumption that the observed deaths
are Poisson variates (that is, random variables with a Poisson distribution), while the
expected deaths are not variates.

To avoid the iterative calculations needed for the exact results, we suggest construct-
ing the CIs of RSMRs following the formula that relates the chi-squared distribution and
the Poisson distribution:

(1− α)100%CIRSMR =

(
R

2E
χ2
2O,α/2;

R

2E
χ2
2(O+1),1−α/2

)

where O and E are, respectively, the number of observed and number of expected deaths
for the provider, R is the overall mortality rate, and χ2

ν,α denotes the 100αth percentile
of a chi-squared distribution with ν degrees of freedom (Garwood 1936).
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2.3 Generalized estimating equations

It is likely that responses of patients from within the same hospital are correlated, even
after adjusting for the effects of age, sex, and other potential confounders. This positive
correlation is because each hospital has a unique mixture of staff, policies, and medical
culture that combine to influence patient results. Fitting conventional regression models
to correlated data often leads to inefficient parameter estimates and systematically small
standard errors (Houchens, Chu, and Steiner 2007). Inefficient regression estimates are
more widely scattered around the true population value than they would be if the
within-group correlation were incorporated in the analysis.

Generalized estimating equations (GEEs) are one of the methods that account for cor-
related observations. GEEs are a flexible tool that can be trivially seen as an extension of
conventional regression models, such as linear, logistic, or Poisson. A working correlation
matrix reflecting average dependence among correlated observations must be specified
when running GEEs to improve the efficiency of the parameter estimates. In Stata, the
default within-group correlation structure corresponds to the equal-correlation model,
also called “exchangeable”. The equal-correlation model is appropriate for profiling
studies, where no time-varying outcomes or covariates must be investigated (Ballinger
2004).

Ample literature has suggested the use of a robust estimation of standard errors
(also known as sandwich or Huber–White standard errors) when conducting analyses on
correlated data and especially in conjunction with GEEs (Liang and Zeger 1986). These
robust estimates allow the correct specification of the mean model while relaxing the
assumption of correctly specifying the form of the variance model, that is, the working
correlation matrix. In other words, GEEs are generally robust to misspecification of the
variance model.

A known limitation of the robust variance estimate is that it can present issues in
underestimating the variance when there are not enough clusters. A rule of thumb
states that with fewer than 50 clusters, there may be concern about a biased estimate,
while with more than 50 clusters, the estimate is likely to be asymptotically unbiased.
It is thus advisable to correct robust standard error estimates for small sample sizes
by using the divisor M − P , where M is the number of hospitals and P is the number
of regression parameter estimates, instead of the default M (Huang, Fiero, and Mell
2016).

2.4 GEEs versus conventional logistic regression

GEEs should be generally preferred to conventional regression models when observations
are clustered within groups. However, results from GEEs and logistic regression with
robust standard errors are identical if the within-group correlation is close to 0.

To test whether observations are actually correlated, one should compare a GEE

model with an exchangeable working matrix and with an independent working matrix.
The best model between the two has the lowest quasilikelihood under independence



J. Lenzi and S. Pildava 481

criterion (QIC). The QIC is an extension of the widely used Akaike information criterion
for model selection in GEE analysis (Pan 2001).

2.5 Stata code

A GEE model for a binary outcome (depvar) can be fit, and individual risk factors
(indepvars) can be estimated using the Stata commands displayed below. The variable
varname i uniquely identifies providers. Note that, by adding the eform option, xtgee
will report odds ratios instead of regression coefficients. Before launching xtgee, the
default matrix size may need to be increased (11,000 is the maximum allowed number
of variables).

xtset varname i
set matsize 11000
xtgee depvar indepvars [if] [in], family(binomial) link(logit) ///

vce(robust) nmp corr(exchangeable)

To compare two GEE models with different within-group correlation structures (such
as exchangeable and independent), you should first download the qic package by
typing ssc install qic. You can then use the qic command (Cui 2007).

qic depvar indepvars [if] [in], family(binomial) link(logit) ///
i(varname i) robust nmp corr(exchangeable)

qic depvar indepvars [if] [in], family(binomial) link(logit) ///
i(varname i) robust nmp corr(independent)

The model with the lowest QIC must be preferred. If the model with an independent
working matrix is the best fitting one, you can run a conventional logistic regression
with clustered sandwich estimates to get the same output.

logit depvar indepvars [if] [in], vce(cluster varname i)

All these commands incorporate robust estimators. Of course, categorical indepvars
must be preceded by i. to create dummies.

After running the best model between the two, we use predict to save in newvar

the estimated individual risk for each patient using the observed values of his or her
confounding variables. Note that logit postestimation asks for pr instead of rate. The
expected number of events per provider can be then summarized with tabstat.

predict newvar [if] [in], rate
tabstat newvar [if] [in], by(varname i) statistic(sum)

As a further step, one might want to calculate the RSMRs with 95% CIs for each
hospital. To manipulate data at the hospital level, we use collapse—do not forget to
launch preserve first (see [P] preserve). Let us assume that the variable containing
the predicted probabilities for each patient has been named p hat. After collapsing
the total number of observed events (Obs), expected events (Exp), and patients (N) for
each hospital, we generate a new variable (say, MR) containing the crude mortality rates.
With the help of tabstat, we define a scalar (say, Rate) containing the overall mortality
rate value that will be useful to derive the RSMRs.
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preserve
collapse (sum) Obs = depvar Exp = p_hat (count) N = depvar, ///

by(varname i)
generate MR = Obs*100/N
tabstat Obs N, statistic(sum) save
matrix total = r(StatTotal)
scalar Rate = total[1,1]*100/total[1,2]

Hospital-specific RSMRs (RSMR) with 95% CIs (lb RSMR, ub RSMR) are calculated us-
ing the following commands, which are based on the formulas described in section 2.1
and 2.2.

generate RSMR = Obs/Exp*Rate
generate lb_RSMR = (invchi2(2*Obs,0.05/2)/2)/Exp*Rate
generate ub_RSMR = (invchi2(2*Obs+2,1-0.05/2)/2)/Exp*Rate

Before restoring the original dataset, results must be saved as a new data file. If
your filename contains embedded spaces, remember to enclose it in double quotes. This
data file will be used to produce plots of either crude or risk-standardized rates (see
section 5).

save filename, replace
restore

3 Confounder selection

The choice of predictive variables in regression analysis is somewhat of an art. Ideally,
specific clinical variables to be included in each outcome model should be selected from
expert panels and literature reviews of existing models.

There are some predefined sets of comorbidities, such as Elixhauser’s (Quan et al.
2005), that might be adopted to risk-adjust a broad spectrum of outcomes. However,
to avoid model overfitting and misclassification, only significant risk factors should be
included as covariates in regression analyses, either GEE or logistic. Many automated
selection methods have been proposed—we describe in detail the one suggested by
Austin and Tu (2004), which has the advantage to assess the stability of estimated
regression coefficients. It can be summarized in four steps:

• Conditions whose prevalence is less than 1% in the population are excluded from
further analyses.

• Simple regression models with clustered sandwich estimators are used to analyze
the crude association between each potential confounder and outcome, and vari-
ables that are significantly associated with the outcome with a significance level
of P < 0.25 are selected for possible inclusion in multivariable regression.
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• A bootstrap backward procedure is adopted to determine which of these factors
are significantly associated with the outcome in multivariable models. Using this
approach, 1,000 replicated bootstrap samples are selected from the original data.
In each replicated sample, age and sex are forced into the model, while a backward
elimination of potential confounders is applied with a significance level of removal
equal to 0.05.

• Risk factors selected in at least 500 (50%) of the replicates are included as con-
founders in the multivariable model, from which RSMRs are then computed.

To save time, the entire procedure might be based on logistic regression models
instead of GEEs. To account for potential nonlinear relationships between age and
outcome, age could be either transformed or subdivided into groups of similar size.
Because a bootstrap assessment is performed to determine whether a given variable truly
is an independent predictor of the outcome, this procedure does not necessarily have to
be regularly done unless any changes occur in coding practices or disease epidemiology.

The Stata code to perform the bootstrap backward procedure is presented be-
low. Note that the seed(#) option should be added for reproducibility of the re-
sults. Let us say that sex and age group are sex and age group, respectively, for each
patient. The mfpboot command can be installed by typing net install mfpboot,

from(http://www.homepages.ucl.ac.uk/~ucakjpr/stata) (Royston and Sauerbrei
2009).

xi: mfpboot, select(.05, sex i.age group: 1) df(1) clear ///
outfile(boot_logit) replicates(1000) center(no): logit depvar ///
sex i.age group indepvars, vce(cluster varname i)

mfpboot creates a new output file—here boot logit.dta—with one record (the
first) for the analysis of the original data and the rest for the analysis of each bootstrap
sample. A summary of the resulting bootstrap inclusion fractions for each variable
can be displayed by typing mfpboot bif. Variables with a bootstrap inclusion fraction
≥ 50% will be included in the final multivariable model.

Now that the individual risk factors have been selected, GEE analysis can be run
using the commands described earlier (in section 2.5). That being said, note that more
advanced tools are available in the mfpboot command for stability analysis. For more
details, see Royston and Sauerbrei (2009) and their other contributions to the subject.

4 Direct comparison of hospitals

Hospital-specific RSMRs are the result of an indirect form of standardization. These mea-
sures are obtained by comparing the observed mortality rates of the patients with their
expected rates. The estimated rate is the “counterfactual” (Holland 1986; Rubin 2005),
an ideal result obtained under a different set of hypothetical circumstances, which is
the primary motivator for risk-adjustment model development (Shahian and Normand
2008).
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Almost all profiling studies and public reports use indirect standardization. As
anticipated, because RSMRs are derived from the overall reference population, it is most
appropriate to compare the RSMRs of each individual hospital with the overall mortality
rate.

Furthermore, some seek to perform a side-by-side comparison of healthcare providers.
Many statisticians have developed balancing methods, such as propensity scores (Rosen-
baum and Rubin 1984; D’Agostino 2007; Rubin 2007), to improve case mix balance
between institutions and to justify such comparisons. Some Italian authors (Arcà et al.
2006) have recommended including provider dummies in the regression model to allow
a direct form of standardization and pairwise comparisons. Currently, the Programma
Nazionale Esiti uses this approach to measure hospital performance in Italy. However,
RSMRs should never be used to compare one provider with another unless study de-
sign or post hoc adjustments have been shown to be successful in balancing risk factor
distribution (Shahian and Normand 2008).

5 Graphical representations of RSMRs

Outcome rates can be displayed in many ways. Bar graphs, in which bar height corre-
sponds to the provider rate, are much appreciated by healthcare consumers, interested
stakeholders, and the media. However, because these plots do not operate any dis-
tinction between small and large providers, it is impossible to ascertain whether large
deviations from the state average are systematic or due to chance.

A common practice of agencies for healthcare quality is to exclude small hospitals
from public report cards. We discourage this approach because it gives an incomplete
representation of a country’s provision of healthcare services. Two effective graphs that
illustrate outcome measures across providers and incorporate sample-size information
are the caterpillar plot (sometimes inaccurately referred to as the forest plot) and the
funnel plot (Spiegelhalter 2005).

The caterpillar plot is a sort of league table in which providers are ranked according
to a performance indicator and, with the aid of CIs (section 2.2), outlying providers are
identified. To avoid data misinterpretation, the providers should never be labeled with
their rank, and outlying rates must be strictly determined using CIs. The providers that
serve few patients have wider CIs that are due to small sample sizes.

Plots of estimates and CIs can be obtained in Stata using the eclplot package
(Newson 2003), downloadable from the Statistical Software Components archive.
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Funnel plots are an alternative graphical aid for reporting outcome rates. Each
hospital rate (y axis) is plotted relative to its denominator size (x axis). The control
limits form a sort of funnel around the target outcome, which corresponds to the state or
regional average. These boundaries are a measure of precision of the hospital rates and
depend on denominator sizes. In most cases, 95% (≈ 2 standard deviation) and 99.8%
(≈ 3 standard deviation) limits around the overall mortality rate are superimposed on
the scatterplot. Hospitals lying outside the control limits can be seen as outliers.

Given r as the overall rate, n as the hospital volume, and z as the standard normal
distribution quantile, control limits are plotted at

yα/2(r, n) = r ± zα/2

√
r(1− r)

n

where zα/2 is 1.96 for 95% control limits and 3.09 for 99.8% control limits. Alternative
methods to compute control limits are described by Spiegelhalter (2005).

Funnel plots should be preferred to caterpillar plots because 1) the eye is instinctively
drawn to important points that lie outside the funnel, 2) there is no spurious ranking
of institutions, 3) there is allowance for additional variability in institutions with small
volume, 4) the relationship of outcome with volume can be informally assessed, and most
importantly, 5) pairwise comparisons between providers are naturally discouraged.

Funnel plots can be obtained using the funnelcompar command (Forni and Gini
2013) or by combining a scatterplot (twoway scatter) with two-way function plots
(twoway function). In the next section, we see how to obtain customized caterpillar
and funnel plots in Stata.

6 Example

As an example, we use real data from 20 hospitals in Latvia in 2016. The outcome of
interest is the 30-day AMI mortality rate. Death within 30 days of hospital admission is
Death30Days, expressed as 0/1, and the hospital identification number is HospitalID.
A total of 2,916 patients met the study inclusion criteria. The overall mortality rate is
17.5%.

For each patient, we have collected this clinical information: ST elevation status
(AMItype), history of AMI (AMIPREV), and 31 comorbidities based on the Elixhauser
method, which has been shown to perform well in predicting in-hospital AMI mortal-
ity (Southern, Quan, and Ghali 2004). All these variables are expressed as 0/1 except
AMItype, which comprises three categories (STEMI/NSTEMI/unspecified STEMI). Dis-
charge data were retrieved from the hospital discharge records; deaths were retrieved
from the Mortality Register Database.
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First, clinical conditions whose prevalence is less than 1% must be identified and
discarded from further analyses. With tabstat, we see that 13 comorbidities (PARA,
HYPOTHY, AIDS, etc.) occur in fewer than 29 out of 2,916 patients:

. use dataset

. tabstat AMIPREV CHF CARDARRH VALVE PULMCIRC PERIVASC HTN HTN_NCX HTN_CX PARA
> NEURO CHRNLUNG DM DMCX HYPOTHY RENLFAIL LIVER ULCER AIDS LYMPH METS TUMOR
> ARTH COAG OBESE WGHTLOSS LYTES BLDLOSS ANEMDEF ALCOHOL DRUG PSYCH DEPRESS,
> stat(sum) columns(statistics)

variable sum

AMIPREV 145
CHF 1581

CARDARRH 558
VALVE 101

PULMCIRC 67
PERIVASC 227

HTN 1382
HTN_NCX 1007
HTN_CX 481

PARA 8
NEURO 44

CHRNLUNG 190
DM 187

DMCX 194
HYPOTHY 26

RENLFAIL 254
LIVER 55
ULCER 29
AIDS 3
LYMPH 8
METS 13
TUMOR 98
ARTH 12
COAG 7
OBESE 47

WGHTLOSS 1
LYTES 8

BLDLOSS 29
ANEMDEF 60
ALCOHOL 27

DRUG 2
PSYCH 11

DEPRESS 2

The crude associations between each clinical condition and the outcome are analyzed
using logit. For the sake of brevity, we report only results for two Elixhauser comor-
bidities with prevalence > 1%: congestive heart failure (CHF) and cardiac arrhythmias
(CARDARRH). While CHF is not significantly associated with 30-day mortality (P = 0.806),
CARDARRH is (P < 0.001):
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. logit Death30Day CHF, or vce(cluster HospitalID) nolog

Logistic regression Number of obs = 2,916
Wald chi2(1) = 0.06
Prob > chi2 = 0.8064

Log pseudolikelihood = -1351.3293 Pseudo R2 = 0.0003

(Std. Err. adjusted for 20 clusters in HospitalID)

Robust
Death30Days Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

CHF 1.095374 .4070913 0.25 0.806 .5287088 2.269384
_cons .2016202 .046718 -6.91 0.000 .1280265 .317518

Note: _cons estimates baseline odds.

. logit Death30Day CARDARRH, or vce(cluster HospitalID) nolog

Logistic regression Number of obs = 2,916
Wald chi2(1) = 18.05
Prob > chi2 = 0.0000

Log pseudolikelihood = -1320.3344 Pseudo R2 = 0.0232

(Std. Err. adjusted for 20 clusters in HospitalID)

Robust
Death30Days Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

CARDARRH 2.449718 .5165904 4.25 0.000 1.62038 3.703526
_cons .171386 .0264607 -11.42 0.000 .1266357 .23195

Note: _cons estimates baseline odds.

Using mfpboot, we perform an automated model-selection procedure on conditions
associated with the outcome in previous analyses (P < 0.25). These are cardiac arrhyth-
mias (CARDARRH), valvular disease (VALVE), pulmonary circulation disorders (PULMCIRC),
peripheral vascular disease (PERIVASC), chronic pulmonary disease (CHRNLUNG), diabetes
with chronic complications (DMCX), renal failure (RENLFAIL), liver disease (LIVER), solid
tumors without metastasis (TUMOR), and STEMI status (AMItype). The full command is
presented below (please note that factor variables, such as AMItype, must be in paren-
theses):

. xi: mfpboot, select(.05, i.Sex i.AgeCL4: 1) df(1) clear outfile(boot_logit)
> replicates(1000) seed(81869) center(no): logit Death30Day i.Sex i.AgeCL4
> CARDARRH VALVE PULMCIRC PERIVASC CHRNLUNG DMCX RENLFAIL LIVER TUMOR
> (i.AMItype), vce(cluster HospitalID)

(output omitted )
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The bootstrap inclusion fractions for each variable can be easily derived from the
boot logit.dta output file by typing mfpboot bif:

. use boot_logit, clear

. mfpboot_bif
_ISex_1: 1000 100.00

_IAgeCL4_2: 1000 100.00
_IAgeCL4_3: 1000 100.00
_IAgeCL4_4: 1000 100.00

CARDARRH: 995 99.50
VALVE: 78 7.80

PULMCIRC: 831 83.10
PERIVASC: 923 92.30
CHRNLUNG: 204 20.40

DMCX: 986 98.60
RENLFAIL: 111 11.10

LIVER: 107 10.70
TUMOR: 294 29.40

_IAMItype_2: 1000 100.00
_IAMItype_3: 1000 100.00

Variables with nonmissing values in at least half of the replicates (≥ 500) are eligible
for inclusion in the final model. These are CARDARRH, PULMCIRC, PERIVASC, DMCX, and
AMItype. Age and sex are retained in each bootstrap replicate because they have been
forced into the model.

The next step is to choose the best working correlation structure for the regression
model. We first calculate the QIC value for the exchangeable correlation structure, and
then we calculate the QIC value for the independent correlation structure. Both of the
models have the covariates chosen in the previous analyses, plus age and sex. Because
we have a large sample, the default matrix size must be augmented first to the maximum
allowed. In this example, we use the nolog and nodisplay options to save space and
suppress the display of the iteration log and regression coefficients. The output is as
follows:

. use dataset, clear

. set matsize 11000

. xi: qic Death30Day Sex i.AgeCL4 CARDARRH PULMCIRC PERIVASC DMCX i.AMItype,
> eform family(binomial) link(logit) nmp i(HospitalID) corr(exchangeable)
> nodisplay nolog
i.AgeCL4 _IAgeCL4_1-4 (naturally coded; _IAgeCL4_1 omitted)
i.AMItype _IAMItype_1-3 (naturally coded; _IAMItype_1 omitted)

QIC and QIC_u
___________________________________________
Corr = exchangeable
Family = binomial
Link = logit
p = 11
Trace = 13.999
QIC = 2479.168
QIC_u = 2473.171
___________________________________________
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. xi: qic Death30Day Sex i.AgeCL4 CARDARRH PULMCIRC PERIVASC DMCX i.AMItype,
> eform family(binomial) link(logit) nmp i(HospitalID) corr(independent)
> nodisplay nolog
i.AgeCL4 _IAgeCL4_1-4 (naturally coded; _IAgeCL4_1 omitted)
i.AMItype _IAMItype_1-3 (naturally coded; _IAMItype_1 omitted)

QIC and QIC_u
___________________________________________
Corr = independent
Family = binomial
Link = logit
p = 11
Trace = 18.931
QIC = 2429.175
QIC_u = 2413.313
___________________________________________

The exchangeable correlation structure has a QIC of 2479.168, while the independent
correlation structure has a QIC of 2429.175. We conclude that conventional logistic
regression is the best fitting model here:

. logit Death30Day Sex i.AgeCL4 CARDARRH PULMCIRC PERIVASC DMCX i.AMItype,
> or vce(cluster HospitalID) nolog
i.AgeCL4 _IAgeCL4_1-4 (naturally coded; _IAgeCL4_1 omitted)
i.AMItype _IAMItype_1-3 (naturally coded; _IAMItype_1 omitted)

Logistic regression Number of obs = 2,916
Wald chi2(10) = 1388.99
Prob > chi2 = 0.0000

Log pseudolikelihood = -1195.6566 Pseudo R2 = 0.1155

(Std. Err. adjusted for 20 clusters in HospitalID)

Robust
Death30Days Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

Sex 1.046859 .1123145 0.43 0.669 .8483312 1.291848
_IAgeCL4_2 2.342332 .3945279 5.05 0.000 1.683749 3.258514
_IAgeCL4_3 3.72511 .8730198 5.61 0.000 2.353156 5.896949
_IAgeCL4_4 7.319825 1.821989 8.00 0.000 4.493935 11.9227

CARDARRH 1.835576 .4022704 2.77 0.006 1.19462 2.820428
PULMCIRC 2.372894 .8879484 2.31 0.021 1.139606 4.940855
PERIVASC 1.802321 .2482871 4.28 0.000 1.375849 2.360985

DMCX 2.315345 .4964455 3.92 0.000 1.520915 3.524734
_IAMItype_2 .4575801 .0678873 -5.27 0.000 .3421225 .6120018
_IAMItype_3 1.312559 .253742 1.41 0.159 .8985984 1.91722

_cons .0513947 .0109805 -13.89 0.000 .033811 .0781229

Note: _cons estimates baseline odds.
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The predicted probabilities and hospital-specific RSMRs with 95% CIs are calculated
and saved in rsmr.dta by using the following command lines:

. predict p_hat, pr

. preserve

. collapse (sum) Obs = Death30Day Exp = p_hat (count) N = Death30Day,
> by(HospitalID)

. generate MR = Obs*100/N

. tabstat Obs N, statistic(sum) save

stats Obs N

sum 510 2916

. matrix total = r(StatTotal)

. scalar Rate = total[1,1]*100/total[1,2]

. generate RSMR = Obs/Exp*Rate

. generate lb_RSMR = (invchi2(2*Obs,0.05/2)/2)/Exp*Rate
(1 missing value generated)

. generate ub_RSMR = (invchi2(2*Obs+2,1-0.05/2)/2)/Exp*Rate

. save RSMR, replace
file RSMR.dta saved

. restore
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The list of hospital-specific crude rates, RSMRs, and 95% CIs can be obtained from
rsmr.dta by using list. Table 1 shows the final results of our analysis.

Table 1. Summary of volumes, crude, and risk-standardized 30-day AMI mortality rates
in 20 hospitals in Latvia in 2016. The observed and expected number of deaths for each
hospital are also reported.

Observed Expected Crude RSMR 95% CI

Hospital Patients deaths deaths rate RSMR Lower Upper

1 23 6 3.3 26.1 32.2 11.8 70.0
2 38 5 6.3 13.2 13.8 4.5 32.3
3 46 14 9.5 30.4 25.8 14.1 43.3
4 234 36 35.1 15.4 18.0 12.6 24.9
5 21 3 4.1 14.3 12.7 2.6 37.2
6 102 23 20.9 22.6 19.3 12.2 28.9
7 116 28 18.0 24.1 27.3 18.1 39.4
8 35 12 6.2 34.3 33.7 17.4 58.9
9 7 4 2.1 57.1 33.2 9.0 84.9

10 26 6 4.1 23.1 25.3 9.3 55.1
11 157 22 24.8 14.0 15.5 9.7 23.5
12 52 4 8.0 7.7 8.8 2.4 22.4
13 60 14 12.2 23.3 20.1 11.0 33.8
14 709 91 124.8 12.8 12.8 10.3 15.7
15 1 0 0.3 0.0 0.0 . 200.6
16 124 31 25.3 25.0 21.4 14.6 30.4
17 849 142 152.2 16.7 16.3 13.7 19.2
18 36 17 7.9 47.2 37.8 22.0 60.5
19 182 36 30.6 19.8 20.6 14.4 28.5
20 98 16 14.4 16.3 19.5 11.1 31.6

Now we are ready to display the risk-standardized AMI mortality rates saved in
rsmr.dta. The RSMR of hospital #15, with only one patient diagnosed with AMI, is
removed from all graphs. The annotated Stata syntax to get a caterpillar plot on the
2016 Latvian data is shown below. Before launching eclplot, a new variable with the
ranking of hospitals (Rank) must be created.

. use RSMR, clear

. tabstat Obs N, statistic(sum) save

stats Obs N

sum 510 2916

. matrix total = r(StatTotal)



492 Tips for calculating and displaying risk-standardized hospital outcomes

. scalar Rate = total[1,1]*100/total[1,2] // Storing the overall mortality rate
> as "Rate"

. drop if HospitalID == 15 // Dropping hospital #15 from graphics
(1 observation deleted)

. sort RSMR // Sorting hospitals according to RSMRs

. generate Rank = _n

. * Caterpillar plot with a line equal to ``Rate´´ in the background

. eclplot RSMR lb_RSMR ub_RSMR Rank,
> plotregion(color(white) ilcolor(black) margin(zero)) graphregion(color(white))
> ylabel(0(10)100, angle(360) notick nogrid)
> yscale(noextend noline) ytitle("RSMR (%)") xlabel(0 " " 20 " ", notick)
> xscale(noextend noline) xtitle("") estopts(mlabel(HospitalID) mlabposition(0)
> mlabcolor(white) msymbol(o) msize(huge) mcolor(gs6))
> ciopts(msize(zero) lwidth(medthick) lcolor(gs10))
> baddplot(function y = Rate, col(black) lwidth(thin) range(0 20))

Figure 1 shows the result of these command lines. The RSMR of hospital #14 is
significantly below the overall rate, while hospitals #7 and #18 have RSMR values
significantly above the overall rate. There is no other statistically significant deviation
from the state average.
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Figure 1. Caterpillar plot of RSMRs following AMI in 19 hospitals in Latvia in 2016. 95%
CIs are plotted and compared with the overall rate of 17.5%. Hospital #15 is excluded.
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Instead of using the command funnelcompar, we build a customized scatterplot
with superimposed 95% and 99.8% control limits. The annotated Stata syntax for a
funnel plot with the range of x axis up to 900 and the range of y axis up to 60% is
shown below.

. * Setting highest and lowest values for control limits, based on y range

. local up95 = (Rate*(100-Rate))/((60-Rate)/1.96)^2

. local low95 = (Rate*(100-Rate))/((0-Rate)/1.96)^2

. local up99 = (Rate*(100-Rate))/((60-Rate)/3.09)^2

. local low99 = (Rate*(100-Rate))/((0-Rate)/3.09)^2

. * Scatterplot with superimposed control limits

. twoway
> (function y = Rate+1.96*sqrt((Rate*(100-Rate))/x), col(black) lwidth(thin)
> lpattern(dash) range(`up95´ 900))
> (function y = Rate-1.96*sqrt((Rate*(100-Rate))/x), col(black) lwidth(thin)
> lpattern(dash) range(`low95´ 900))
> (function y = Rate+3.09*sqrt((Rate*(100-Rate))/x), col(black) lwidth(thin)
> lpattern(shortdash) range(`up99´ 900))
> (function y = Rate-3.09*sqrt((Rate*(100-Rate))/x), col(black) lwidth(thin)
> lpattern(shortdash) range(`low99´ 900))
> (function y = Rate, col(black) lwidth(thin) range(0 900))
> (scatter RSMR N,
> plotregion(color(white) ilcolor(black) margin(zero))
> ytitle("RSMR (%)") xtitle("AMI patients", height(5))
> ylabel(0(10)60, angle(360) glcolor(gs15) glwidth(vthin) nogmax nogmin notick)
> xlabel(0(100)900, grid glcolor(gs15) glwidth(vthin) nogmax nogmin notick)
> xscale(noextend noline) yscale(noextend noline) mlabcolor(black)
> mlabsize(vsmall) mfcolor(none) mlcolor(black) mlwidth(thin) bgcolor(white)
> graphregion(color(white)) mlabel(HospitalID) mlabposition(0) msymbol(o)
> msize(huge) mlcolor(gs6) mfcolor(gs6) mlabcolor(white)
> legend(order(3 "99.8% Control limit" 1 "95% Control limit"
> 5 "Overall mortality rate")
> size(small) col(1) ring(0) pos(2) region(style(none))))

Figure 2 shows the result of these command lines. The outlying positions of hospitals
#7, #14, and #18 are confirmed. In addition, hospital #8 lies just outside the upper
95% control limit. We have seen that the two plots provide similar information in terms
of outlier detection, although the caterpillar plot is slightly more conservative than the
funnel plot.
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Figure 2. Funnel plot of RSMRs following AMI in 19 hospitals in Latvia in 2016. The
target is the overall rate of 17.5%. Hospital #15 is excluded.

7 Conclusions

In this article, we have tried to give a theoretical and methodological overview of risk
adjustment and to provide some hopefully useful tips for calculating risk-standardized
outcomes from regression modeling. Stata provides many powerful tools in this field of
statistics, including automated model-selection techniques (mfpboot) and GEE analysis
(xtgee and qic).

The RSMR of a hospital should be compared with the entire experience of a larger
population of providers (that is, a country or region). Appropriate comparisons can be
performed and made public with the aid of caterpillar plots, funnel plots, or both.

8 Acknowledgments

The data presented in this article are based on work from the European Commission’s
health systems performance assessment project “Developing Health System Performance
Assessment for Slovenia and Latvia” (grant agreement: SRSS/S2017/019), in conjunc-
tion with the Ministry of Health of Latvia and the Management and Health Laboratory
of the Sant’Anna School of Advanced Studies of Pisa, Italy.



J. Lenzi and S. Pildava 495

We are grateful to Professor Sabina Nuti from the Sant’Anna School, who was
appointed by the European Commission as the project leader for the Latvian health
system performance assessment, and to Jana Lepiksone, head of the Research and Health
Statistics Department at the Centre for Disease Prevention and Control of Latvia. We
wish to thank Guido Noto, Federico Vola, and Ilaria Corazza, from the Sant’Anna
School, for giving important contributions to this project. We also thank Professor
Maria Pia Fantini from the University of Bologna for her inspiring lectures on outcomes
research.

9 References
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