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Abstract. Differences-in-differences evaluates the effect of a treatment. In its
basic version, a “control group” is untreated at two dates, whereas a “treatment
group” becomes fully treated at the second date. However, in many applications
of this method, the treatment rate increases more only in the treatment group. In
such fuzzy designs, de Chaisemartin and D’Haultfœuille (2018b, Review of Eco-

nomic Studies 85: 999–1028) propose various estimands that identify local average
and quantile treatment effects under different assumptions. They also propose
estimands that can be used in applications with a nonbinary treatment, multi-
ple periods, and groups and covariates. In this article, we present the command
fuzzydid, which computes the various corresponding estimators. We illustrate
the use of the command by revisiting Gentzkow, Shapiro, and Sinkinson (2011,
American Economic Review 101: 2980–3018).
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1 Introduction

Differences-in-differences (DID) is a method to evaluate the effect of a treatment when
experimental data are not available. In its basic version, a “control group” is untreated
at two dates, whereas a “treatment group” becomes fully treated at the second date.
However, in many applications of the DID method, the treatment rate increases more
in some groups than in others, but there is no group that goes from fully untreated to
fully treated, and there is also no group that remains fully untreated. In such fuzzy
designs, a popular estimator of treatment effects is the Wald DID, which is the DID of
the outcome divided by the DID of the treatment.

As shown by de Chaisemartin and D’Haultfœuille (2018b), the Wald DID identifies
a local average treatment effect (LATE) if two assumptions on treatment effects are
satisfied. First, the effect of the treatment should not vary over time. Second, when the
treatment increases both in the treatment and in the control group, treatment effects
should be equal in these two groups. de Chaisemartin and D’Haultfœuille (2018b) also
propose two alternative estimands of the same LATE. These estimands do not rely on any
assumption on treatment effects, and they can be used when the share of treated units
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is stable in the control group. The time-corrected (TC) Wald ratio relies on common
trends assumptions within subgroups of units sharing the same treatment at the first
date. The changes-in-changes (CIC) Wald ratio generalizes the CIC estimand introduced
by Athey and Imbens (2006) to fuzzy designs. Under the same assumptions as those
used for the Wald CIC, local quantile treatment effects (LQTE) are also identified.

In this article, we describe the fuzzydid command, which computes the estimators
corresponding to these estimands and performs inference on the LATE and LQTE using
the bootstrap. When one computes standard errors and confidence intervals, clustering
along one dimension can be allowed for. One can also perform equality tests between
the Wald DID, Wald TC, Wald CIC, and placebo tests. This is important for choosing
between these different estimands because they identify the LATE under different sets
of assumptions.

The identification results mentioned above hold with a control group where the share
of treated units does not change over time, a binary treatment, no covariates, two groups,
and two periods. Nonetheless, they can be extended in several directions. First, under
the same assumptions as those underlying the Wald TC estimand, the LATE of treatment
group switchers can be bounded when the share of treated units changes over time in
the control group. Second, nonbinary treatments can be easily handled by modifying
the parameter of interest. Third, when the assumptions are more credible conditional
on some controls, one can modify the Wald DID, Wald TC, and Wald CIC estimands to
incorporate such controls. The fuzzydid command handles these extensions.

Finally, results can be extended to applications with multiple periods and groups that
are prevalent in applied work. Researchers then estimate treatment effects via linear
regressions, including time and group fixed effects. de Chaisemartin and D’Haultfœuille
(2018a) show that around 19% of all empirical articles published by the American
Economic Review between 2010 and 2012 use this research design. They also show that
these regressions are extensions of the Wald DID to multiple periods and groups and
that they identify weighted averages of LATEs with possibly many negative weights.1

Thus, they do not satisfy the no-sign reversal property: the coefficient of the treatment
variable in those regressions may be negative even if the treatment effect is positive for
every unit in the population. On the other hand, the Wald DID, Wald TC, and Wald
CIC estimands can be extended to applications with multiple groups and periods, and
they then identify a LATE under the same assumptions as in the two groups and two
periods case. Again, the fuzzydid command computes the corresponding estimators.

The remainder of the article is organized as follows. Section 2 presents the esti-
mands and estimators considered by de Chaisemartin and D’Haultfœuille (2018b) in
the simplest setup with two groups and periods, a binary treatment, and no covariates.
Section 3 discusses the various extensions covered by the fuzzydid command. Section 4
presents fuzzydid. Section 5 illustrates fuzzydid by revisiting Gentzkow, Shapiro, and
Sinkinson (2011), who estimate the effect of newspapers on electoral participation. Sec-
tion 6 presents the finite sample performances of the various estimators through Monte
Carlo simulations. Section 7 concludes.

1. A command computing these weights is available on the authors’ webpages.
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2 Setup

2.1 Parameters of interest, assumptions, and estimands

We seek to identify the effect of a treatment D on some outcome. In this section, we
assume that D is binary.2 Y (1) and Y (0) denote the two potential outcomes of the same
individual with and without treatment, while Y = Y (D) denotes the observed outcome.
We assume the data can be divided into time periods represented by a random variable
T ∈ {0, . . . , t} and into groups represented by a random variable G ∈ {0, . . . , g}. We
start by considering the simple case where t = g = 1, thus implying that there are two
groups and two periods. In this case, G = 1 for units in the treatment group, and G = 0
for units in the control group, respectively.

We use the following notation hereafter. For any random variable R, S(R) denotes its
support. Rgt and Rdgt are two other random variables such that Rgt ∼ R|G = g, T = t
and Rdgt ∼ R|D = d,G = g, T = t, where ∼ denotes equality in distribution. For any
event or random variable A, FR and FR|A denote the cumulative distribution function
(CDF) of R and its CDF conditional on A, respectively. Finally, for any increasing
function F on the real line, we let F−1(q) = inf {x ∈ R : F (x) ≥ q}. In particular, F−1

R

is the quantile function of R.

We maintain assumptions 1–3 below in most of this article.

Assumption 1. Fuzzy design

E(D11) > E(D10) and E(D11)− E(D10) > E(D01)− E(D00)

Assumption 2. Stable percentage of treated units in the control group

For all d ∈ S(D), P (D01 = d) = P (D00 = d) ∈ (0, 1).

Assumption 3. Treatment participation equation

There exist D(0), . . . , D(t) such that D = D(T ), D(t)⊥⊥T |G (t ∈ {0, . . . , t}) and for
all t ∈ {1, . . . , t},

P{D(t) ≥ D(t− 1)|G} = 1 or P{D(t) ≤ D(t− 1)|G} = 1

In standard “sharp” designs, we have D = G × T , meaning that only observa-
tions in the treatment group and in period 1 get treated. With assumption 1, we
consider instead “fuzzy” settings where D 6= G× T in general but where the treatment
group experiences a higher increase of its treatment rate between periods 0 and 1. As-
sumption 2 requires that the treatment rate remain constant in the control group and
be strictly included between 0 and 1. This assumption is testable. Assumption 3 is
equivalent to the latent index model D = 1{V ≥ vGT } (with V⊥⊥T |G) considered in
de Chaisemartin and D’Haultfœuille (2018b). In repeated cross-sections, D(t) denotes

2. We still define our assumptions and estimands for any scalar treatment to avoid redefining them
when we will extend our results to nonbinary treatments.
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the treatment status of a unit at period t, and only D = D(T ) is observed. In single
cross-sections where cohort of birth plays the role of time, D(t) denotes instead the
potential treatment of a unit had he or she been born at T = t. Here again, only
D = D(T ) is observed.

We consider the subpopulation S = {D(0) < D(1), G = 1}, hereafter called the
treatment group switchers. Our parameters of interest are their LATE and LQTE, which
are, respectively, defined by

∆ = E {Y (1)− Y (0)|S, T = 1}
τq = F−1

Y (1)|S,T=1(q)− F−1
Y (0)|S,T=1(q), q ∈ (0, 1)

We introduce the main estimands in de Chaisemartin and D’Haultfœuille (2018b).
We start by considering the three estimands of ∆. The first is the Wald DID defined by

WDID =
E(Y11)− E(Y10)− {E(Y01)− E(Y00)}
E(D11)− E(D10)− {E(D01)− E(D00)}

WDID is the coefficient of D in a two-stage least-squares regression of Y on D with G
and T as included instruments and G× T as the excluded instrument.

The second estimand of ∆ is the Wald TC ratio defined by

WTC =
E(Y11)− E(Y10 + δD10

)

E(D11)− E(D10)

where δd = E(Yd01) − E(Yd00), for d ∈ S(D). Without the δD10
term, WTC would

correspond to the coefficient of D in a two-stage least-squares regression of Y on D
using T as the excluded instrument within the treatment group. δ0 and δ1 measure
the evolution of the outcome among untreated and treated units in the control group,
respectively. Under the assumption that these evolutions are the same in the two groups
(see assumption 4’ below), the δD10

term accounts for the effect of time on the outcome
in the treatment group.

The third estimand of ∆ is the Wald CIC defined by

WCIC =
E(Y11)− E{QD10

(Y10)}
E(D11)− E(D10)

where Qd(y) = F−1
Yd01

◦ FYd00
(y) is the quantile–quantile transform of Y from period 0

to 1 in the control group conditional on D = d. WCIC is similar to WTC except that it
accounts for the effect of time on the outcome through the quantile–quantile transform
instead of the additive term δD10

.

Finally, we consider an estimand of τq. Let

FCIC,d =
P (D11 = d)FYd11

− P (D10 = d)FQd(Yd10)

P (D11 = d)− P (D10 = d)
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and
τCIC,q = F−1

CIC,1(q)− F−1
CIC,0(q)

The estimands above identify ∆ or τq under combinations of the following assumptions:

Assumption 4. Common trends

For all t ∈ {1, . . . , t}, E{Y (0)|G,T = t}−E{Y (0)|G,T = t− 1} does not depend on
G.

Assumption 4’. Conditional common trends

For all d ∈ S(D) and all t ∈ {1, . . . , t}, E{Y (d)|G,T = t,D(t − 1) = d} −
E{Y (d)|G,T = t− 1, D(t− 1) = d} does not depend on G.

Assumption 5. Stable treatment effect over time

For all d ∈ S(D) and all t ∈ {1, . . . , t}, E{Y (d) − Y (0)|G,T = t,D(t − 1) = d} =
E{Y (d)− Y (0)|G,T = t− 1, D(t− 1) = d}.

Assumption 6. Monotonicity and time invariance of unobservables

Y (d) = hd(Ud, T ), with Ud ∈ R and hd(u, t) strictly increasing in u for all (d, t) ∈
S(D)× S(T ). Moreover, Ud⊥⊥T |G,D(0).

Assumption 7. Data restrictions

1. S(Ydgt) = S(Y ) = [y, y] with −∞ ≤ y < y ≤ +∞, for (d, g, t) ∈ S{(D,G, T )}.

2. FYdgt
is continuous on R and strictly increasing on S(Y ), for (d, g, t) ∈

S{(D,G, T )}.

Assumption 4 is the usual common trends condition, under which the DID estimand
identifies the average treatment effect on the treated in sharp designs where D = G×T .
Assumption 4’ is a conditional version of this common trend condition, which requires
that the means of Y (0) and Y (1) among untreated and treated units at period 0 follow
the same evolution in both groups, respectively. Assumption 5 requires that in each
group, the average treatment effect among units treated in period 0 remains stable
between periods 0 and 1. Assumption 6 requires that potential outcomes be strictly
increasing functions of a scalar and stationary unobserved term, as in Athey and Imbens
(2006). Assumption 7 is a testable restriction on the distribution of Y that is necessary
only for the Wald CIC and τq,CIC estimands.
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Theorem 1. (de Chaisemartin and D’Haultfœuille 2018b) Suppose that assump-
tions 1–3 hold.

1. If assumptions 4 and 5 also hold, then WDID = ∆.

2. If assumptions 4’ also hold, then WTC = ∆.

3. If assumptions 6–7 also hold, then WCIC = ∆ and τq,CIC = τq.

Theorem 1 gives several sets of conditions under which we can identify ∆ using one
of the three estimands above. It also shows that τq can be identified under the same
conditions as those under which the Wald CIC identifies ∆. Compared with the Wald
DID, the Wald TC and Wald CIC do not rely on the stable treatment-effect assumption,
which may be implausible. The choice between the Wald TC and the Wald CIC estimands
should be based on the suitability of assumptions 4’ and 6 in the application under
consideration. Assumption 4’ is not invariant to the scaling of the outcome, but it
restricts only its mean. Assumption 6 is invariant to the scaling of the outcome, but it
restricts its entire distribution. When the treatment and control groups have different
outcome distributions conditional on D in the first period, the scaling of the outcome
might have a large effect on the Wald TC. The Wald CIC is less sensitive to the scaling
of the outcome, so using this estimand might be preferable. On the other hand, when
the two groups have similar outcome distributions conditional on D in the first period,
using the Wald TC might be preferable.

To test the assumptions underlying those estimands, one can test whether they
are equal. If they are not, at least one of those assumptions must be violated. An
alternative approach is to perform placebo tests. For instance, if three time periods are
available (T = −1, 0, or 1) and if the treatment rate remains stable in both groups
between T = −1 and 0, then the numerators of the Wald DID, Wald TC, and Wald CIC

estimands for those two periods should be equal to 0.

2.2 Estimators

We now turn to the estimation of ∆ and τq,CIC using plugin estimators of the es-
timands above. Let (Yi, Di, Gi, Ti)i=1...n denote an independent and identically dis-
tributed sample of (Y,D,G, T ) and define Igt = {i : Gi = g, Ti = t} and Idgt =
{i : Di = d,Gi = g, Ti = t}. Let ngt and ndgt denote the size of Igt and Idgt for all
(d, g, t) ∈ S(D)× {0, 1}2.

First, let

ŴDID =
1

n11

∑
i∈I11

Yi − 1
n10

∑
i∈I10

Yi − 1
n01

∑
i∈I01

Yi +
1

n00

∑
i∈I00

Yi
1

n11

∑
i∈I11

Di − 1
n10

∑
i∈I10

Di − 1
n01

∑
i∈I01

Di +
1

n00

∑
i∈I00

Di
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be the estimator of the Wald DID. Second, for any d ∈ S(D), let δ̂d = (1/nd01)
∑

i∈Id01

Yi − (1/nd00)
∑

i∈Id00
Yi. Then, let

ŴTC =

1
n11

∑
i∈I11

Yi − 1
n10

∑
i∈I10

(
Yi + δ̂Di

)

1
n11

∑
i∈I11

Di − 1
n10

∑
i∈I10

Di

be the estimator of the Wald TC. Third, for all (d, g, t) ∈ S(D)×{0, 1}2, let F̂Ydgt
(y) =

1/ndgt
∑

i∈Idgt
1{Yi ≤ y} denote the empirical CDF of Ydgt. Let

Q̂d(y) = max
{
F̂−1
Yd01

◦ F̂Yd00
(y),min(Yi : i ∈ Id01)

}

be the estimator of the quantile–quantile transform Qd, and let

ŴCIC =
1

n11

∑
i∈I11

Yi − 1
n10

∑
i∈I10

Q̂Di
(Yi)

1
n11

∑
i∈I11

Di − 1
n10

∑
i∈I10

Di

be the estimator of the Wald CIC. Finally, let P̂ (Dgt = d) = ndgt/ngt and

F̂ pi
CIC,d =

P̂ (D11 = d)F̂Yd11
− P̂ (D10 = d)F̂Q̂d(Yd10)

P̂ (D11 = d)− P̂ (D10 = d)

The function F̂ pi
CIC,d is the plugin estimator of FCIC,d, but it has the drawback of not

being necessarily a proper CDF. It may not be nondecreasing and may not belong to
[0, 1]. To avoid these issues, we consider a rearranged version F̂ arr

CIC,d of F̂ pi
CIC,d, following

Chernozhukov, Fernández-Val, and Galichon (2010). Moreover, we let

F̂CIC,d(y) = max
[
min

{
F̂ arr
CIC,d(y), 1

}
, 0
]

With this proper CDF at hand, let

τ̂q = F̂−1
CIC,d(q)− F̂−1

CIC,d(q)

be the estimator of τq.

de Chaisemartin and D’Haultfœuille (2018b) show that ŴDID, ŴTC, ŴCIC, and τ̂q
are root-n consistent and asymptotically normal under standard regularity conditions.3

de Chaisemartin and D’Haultfœuille (2018b) also establish the validity of the bootstrap
to draw inference on ∆ and τq based on these estimators. The fuzzydid command
uses the bootstrap to compute the standard errors of all estimators and the percentile
bootstrap to compute confidence intervals.

3. de Chaisemartin and D’Haultfœuille (2018b) consider an estimator of τq based on F̂pi

CIC,d
rather

than F̂CIC,d. However, these two estimators are equal on any compact set with probability tending
to one whenever FCIC,d is strictly increasing. Thus, the two estimators of τq also coincide with
probability tending to one, and their result also applies to the estimator considered here.
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3 Extensions

3.1 Including covariates

The basic setup can be extended to include covariates. Let X denote a vector of
covariates, and for any random variable R, let mR

gt(x) = E(Rgt|X = x). Also, let

δd(x) = E(Yd01|X = x) − E(Yd00|X = x) and δ̃(x) = E {δD10
(X10)|X = x}. Then,

define

WX
DID =

E(Y11)− E{mY
10(X11)} −

[
E{mY

01(X11)} − E{mY
00(X11)}

]

E(D11)− E{mD
10(X11)} −

[
E{mD

01(X11)} − E{mD
00(X11)}

]

WX
TC =

E(Y11)− E
{
mY

10(X11) + δ̃(X11)
}

E(D11)− E{mD
10(X11)}

In their article’s supplement, de Chaisemartin and D’Haultfœuille (2018b) show that
WX

DID or WX
TC identifies ∆ under the common support condition S(Xgt) = S(X) for all

(g, t) and S(Xdgt) = S(X) for all (d, g, t) and conditional versions of assumptions 1–3
and 4–5 or 4’, respectively.4

Let us turn to estimators of WX
DID and WX

TC. We first consider nonparametric
estimators. Let us assume that X ∈ R

r is a vector of continuous covariates. Adding
discrete covariates is easy by reasoning conditional on each corresponding cell. Like for
instance Frölich (2007), we first estimate conditional expectations by series estimators.
For any positive integer K, let pK(x) = {p1K(x), . . . , pKK(x)}′ be a vector of basis
functions and PK

gt = {pK(X1), . . . , p
K(Xn)}. For any random variable R, we estimate

mR(x) = E(R|X = x) by the series estimator

m̂R(x) = pKn(x)′
(
PKnPKn ′

)−
PKn (R1, . . . , Rn)

′

where (.)− denotes the generalized inverse and Kn is an integer. We then estimate
mR

gt(x) = E(Rgt|X = x) by the series estimator above on the subsample {i: Gi = g,

Ti = t}. mR
dgt(x) = E(Rdgt|X = x) is estimated similarly. Then, our nonparametric

estimators of WX
DID and WX

TC are defined as

ŴX
DID,NP =

1
n11

∑
i∈I11

{
Yi − m̂Y

10(Xi)− m̂Y
01(Xi) + m̂Y

00(Xi)
}

1
n11

∑
i∈I11

{
Di − m̂D

10(Xi)− m̂D
01(Xi) + m̂D

00(Xi)
}

ŴX
TC,NP =

1
n11

∑
i∈I11

[
Yi − m̂Y

10(Xi)− m̂D
10(Xi)δ̂1(Xi)− {1− m̂D

10(Xi)}δ̂0(Xi)
]

1
n11

∑
i∈I11

{
Di − m̂D

10(Xi)
}

where δ̂d(x) = m̂Y
d01(x) − m̂Y

d00(x). Under regularity conditions, these estimators are
root-n consistent and asymptotically normal (see the supplement to de Chaisemartin
and D’Haultfœuille [2018b, sec. 2.3]).

4. In their supplement, de Chaisemartin and D’Haultfœuille (2018b) also propose a Wald CIC esti-
mand with covariates, but the corresponding estimator is not computed by the fuzzydid command.
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Second, we consider semiparametric estimators of WX
DID and WX

TC. For instance,

assume that for (d, g, t) ∈ {0, 1}3, E(Ygt|X) = X′βY
gt, E(Ydgt|X) = X′βY

dgt, and

E(Dgt|X) = X′βD
gt. Under this assumption, we have

WX
DID =

E(Y11)− E
(
X′

11β
Y
10

)
−
(
E
(
X′

11β
Y
01

)
− E

(
X′

11β
Y
00

))

E(D11)− E
(
X′

11β
D
10

)
−
{
E
(
X′

11β
D
01

)
− E

(
X′

11β
D
00

)}

WX
TC =

E(Y11)− E
[
X′

11

{
βY
10 +X′

11β
D
10

(
βY
101 − βY

100

)
+ (1−X′

11β
D
10)
(
βY
001 − βY

000

)}]

E(D11)− E(X′
11β

D
10)

Then, semiparametric estimators of WX
DID and WX

TC can be defined as

ŴX
DID,OLS =

∑
i∈I11

(
Yi −X′

iβ̂
Y

10 −X′
iβ̂

Y

01 +X′
iβ̂

Y

00

)

∑
i∈I11

(
Di −X′

iβ̂
D

10 −X′
iβ̂

D

01 +X′
iβ̂

D

00

)

ŴX
TC,OLS =

∑
i∈I11

Yi −
[
X′

iβ̂
Y

10 +X′
i

{
X′

iβ̂
D

10

(
β̂
Y

101 − β̂
Y

100

)
+
(
1−X′

iβ̂
D

10

)(
β̂
Y

001 − β̂
Y

000

)}]

∑
i∈I11

(
Di −X′

iβ̂
D

10

)

where for (d, g, t) ∈ {0, 1}3, β̂Y

gt and β̂
Y

dgt denote the coefficient of X in an ordinary
least-squares (OLS) regression of Y on X in the subsamples Igt and Idgt, respectively,
and β̂

D

gt denotes the coefficient of X in an OLS regression of D on X in the subsample
Igt. When either Y or D is binary, one might prefer to posit a probit or a logit model for
its conditional expectation functions in the various subsamples. Other semiparametric
estimators can be defined accordingly.

Finally, researchers may sometimes wish to include a large set of controls in their
estimation, which may lead to violations of the common support assumptions S(Xgt) =
S(X) and S(Xdgt) = S(X).5 For instance, when the researcher wants to estimate
the Wald DID, there might be values of X for which all units belong to the treatment
group, thus implying that for those values, there are no control units with which the
trends experienced by treatment group units can be compared. Let x0 denote one such
problematic value; that is, x0 ∈ S(X11) but E(Y0t|X = x0) and E(D0t|X = x0) are
not defined for some t ∈ {0, 1}. To avoid dropping treatment group units with X = x0,
we use all control units to predict their counterfactual trends. Namely, in WX

DID, we
replace E(Y01|X = x0) − E(Y00|X = x0) and E(D01|X = x0) − E(D00|X = x0) by
E(Y01)−E(Y00) and E(D01)−E(D00). If instead the researcher wants to estimate the
Wald TC, the same principle applies.

5. Using a recategorized treatment D̃ = h(D) may help alleviate this issue by weakening the support

condition to S(X
d̃gt

) = S(X) for all d̃ ∈ S(D̃).
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3.2 Multiple periods and groups

We now extend our initial setting to multiple periods and groups. We first define, at
each period t ∈ {1, . . . , t}, the following “supergroup” variable:

G∗
t = 1{E(Dgt) > E(Dgt−1)} − 1{E(Dgt) < E(Dgt−1)}

Let T =
{
t ∈ {1, . . . , t} : P (G∗

t = 0) > 0
}
denote the subset of periods t for which there

exists at least one group with stable treatment rate between t − 1 and t. We let S =
{D(T ) 6= D(T −1), T ∈ T } denote the population of units switching between T −1 and
T ∈ T and define ∆ in this setup as ∆ = E{Y (1)− Y (0)|S}. For any random variable
R and any (d, g, t) ∈ {0, 1} × {−1, 1} × T , we also define the following quantities:

DID
∗
R(g, t) =E(R|G∗

t = g, T = t)− E(R|G∗
t = g, T = t− 1)

− {E(R|G∗
t = 0, T = t)− E(R|G∗

t = 0, T = t− 1)}
δ∗dt =E(Y |D = d,G∗

t = 0, T = t)− E(Y |D = d,G∗
t = 0, T = t− 1)

Q∗
dt(y) =F

−1
Y |D=d,G∗

t=0,T=t ◦ FY |D=d,G∗
t=0,T=t−1(y)

W ∗
DID(g, t) =

DID∗
Y (g, t)

DID∗
D(g, t)

W ∗
TC(g, t) =

E(Y |G∗
t = g, T = t)− E(Y + δ∗Dt|G∗

t = g, T = t− 1)

E(D|G∗
t = g, T = t)− E(D|G∗

t = g, T = t− 1)

W ∗
CIC(g, t) =

E(Y |G∗
t = g, T = t)− E{Q∗

Dt(Y )|G∗
t = g, T = t− 1}

E(D|G∗
t = g, T = t)− E(D|G∗

t = g, T = t− 1)

When P (G∗
t = g) = 0, the three ratios above are not defined. Then, we simply let

W ∗
DID(g, t) =W ∗

TC(g, t) =W ∗
CIC(g, t) = 0.

Let us then introduce the following weights,

wt =
DID∗

D(1, t)P (G∗
t = 1, T = t)− DID∗

D(−1, t)P (G∗
t = −1, T = t)

∑t
t=1 DID∗

D(1, t)P (G∗
t = 1, T = t)− DID∗

D(−1, t)P (G∗
t = −1, T = t)

w10|t =
DID∗

D(1, t)P (G∗
t = 1, T = t)

DID∗
D(1, t)P (G∗

t = 1, T = t)− DID∗
D(−1, t)P (G∗

t = −1, T = t)

where again we set DID∗
D(g, t) = 0 when P (G∗

t = g) = 0. The extensions of the Wald
DID, Wald TC, and Wald CIC to multiple groups and periods are defined as

W ∗
DID =

∑

t∈T

wt

{
w10|tW

∗
DID(1, t) + (1− w10|t)W

∗
DID(−1, t)

}

W ∗
TC =

∑

t∈T

wt

{
w10|tW

∗
TC(1, t) + (1− w10|t)W

∗
TC(−1, t)

}

W ∗
CIC =

∑

t∈T

wt

{
w10|tW

∗
CIC(1, t) + (1− w10|t)W

∗
CIC(−1, t)

}
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Finally, we consider the following assumption, which replaces assumption 2.

Assumption 8. Existence of “stable” groups and independence between groups
and time

T 6= ∅, S(D|G∗
t 6= 0, T = t− 1) ⊂ S(D|G∗

t = 0, T = t− 1) for all t ∈ T , and G⊥⊥T .
Theorem 2 below shows that under our previous conditions plus assumption 8, the

three estimands point identify ∆. This theorem is proved for the Wald DID and Wald
TC in de Chaisemartin and D’Haultfœuille (2018a) and can be proved along the same
lines for the Wald CIC.6

Theorem 2. Suppose that assumptions 3 and 8 hold.

1. If assumptions 4 and 5 are satisfied, W ∗
DID = ∆.

2. If assumption 4’ is satisfied, W ∗
TC = ∆.

3. If assumptions 6 and 7 are satisfied, W ∗
CIC = ∆.

To estimate W ∗
DID, W

∗
TC, and W ∗

CIC, we suppose that the (G∗
t )t=1...t are known.

This is the case in applications where the treatment is constant at the group × period
level, as is the case in the example we revisit in section 5. When the (G∗

t )t=1...t are
unknown, it is also possible to estimate them consistently without affecting the asymp-
totic distribution of the estimators of W ∗

DID, W
∗
TC, and W

∗
CIC. We refer to section 2.1

in de Chaisemartin and D’Haultfœuille’s (2018b) supplement for details.

Let us focus on the estimator of W ∗
DID. The estimators of W ∗

TC and W ∗
CIC are

constructed following exactly the same logic. For any random variable R and any
(g, t) ∈ {−1, 0, 1} × T , let

D̂ID
∗
R(g, t) =

1

n∗gt,t

∑

i∈I∗
gt,t

Ri −
1

n∗gt,t−1

∑

i∈I∗
gt,t−1

Ri

−


 1

n∗0t,t

∑

i∈I∗
0t,t

Ri −
1

n∗0t,t−1

∑

i∈I∗
0t,t−1

Ri




6. de Chaisemartin and D’Haultfœuille (2018a) obtain the same result on slightly different estimands
and without assuming G⊥⊥T . Under this additional condition, their estimands are equal to
the Wald DID and Wald TC considered here. Theorem 2 is also similar to theorem S1 in
de Chaisemartin and D’Haultfœuille’s (2018b) supplement, but they consider slightly different
weights and prove the result under stronger conditions.
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where I∗
gt,t′ = {i : G∗

ti = g, Ti = t′} and n∗gt,t′ is the size of I∗
gt,t′ . We let, for g ∈

{−1, 0, 1}, P̂ (G∗
t = g, T = t) = n∗gt,t/n. We estimate wt and w10|t by

ŵt =
D̂ID∗

D(1, t)P̂ (G∗
t = 1, T = t)− D̂ID∗

D(−1, t)P̂ (G∗
t = −1, T = t)

∑t
t=1 D̂ID∗

D(1, t)P̂ (G∗
t = 1, T = t)− D̂ID∗

D(−1, t)P̂ (G∗
t = −1, T = t)

ŵ10|t =
D̂ID∗

D(1, t)P̂ (G∗
t = 1, T = t)

D̂ID∗
D(1, t)P̂ (G∗

t = 1, T = t)− D̂ID∗
D(−1, t)P̂ (G∗

t = −1, T = t)

We then estimate W ∗
DID(g, t) by Ŵ

∗
DID(g, t) = D̂ID∗

Y (g, t)/D̂ID∗
D(g, t), and we let

Ŵ ∗
DID =

∑

t∈T

ŵt

{
ŵ10|tŴ

∗
DID(1, t) + (1− ŵ10|t)Ŵ

∗
DID(−1, t)

}

3.3 Other extensions

We now briefly review some other extensions, for which more details can be found in
de Chaisemartin and D’Haultfœuille (2018b) and its supplement.

Special cases

When P (D00 = d) = P (D01 = d) = 0 for d ∈ {0, 1}, WTC, WCIC, and τCIC,q are
not defined, because δd and Qd are not defined, respectively. In such cases, we can
simply suppose that δ0 = δ1 and Q0 = Q1, respectively, and modify the estimators
accordingly. Then the Wald TC becomes equal to the Wald DID, while the modi-
fied CIC estimands identify ∆ and τq under the same assumptions as above and if
h0{h−1

0 (y, 1), 0} = h1{h−1
1 (y, 1), 0} for every y ∈ S(Y ).

No “stable” control group

In some applications (see, for example, Enikolopov, Petrova, and Zhuravskaya [2011]),
the treatment rate increases in all groups, thus violating assumption 2. Then, we can still
express the Wald DID as a linear combination of the LATEs of treatment and control
group switchers. Specifically, let S′ = {D(0) 6= D(1), G = 0} be the control group
switchers and ∆′ = E{Y (1)−Y (0)|S′, T = 1} be their LATE. Under assumptions 1, 3, 4,
and 5, we have

WDID = α∆+ (1− α)∆′

where α = {E(D11) − E(D10)}/[E(D11) − E(D10) − {E(D01) − E(D00)}]. Hence, the
Wald DID identifies a weighted sum of ∆ and ∆′. Note, however, that if the treatment
rate increases in the control group, E(D01) > E(D00) and α > 1, so ∆′ enters with a
negative weight. In this case, we may have ∆ > 0 and ∆′ > 0 and yet WDID < 0. We
will have only WDID = ∆ if ∆ = ∆′.
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We can also bound ∆ under assumption 4’ if assumption 2 fails. We refer to
de Chaisemartin and D’Haultfœuille (2018b) for such bounds and to de Chaisemartin
and D’Haultfœuille’s (2018b) supplement for their corresponding estimators.

Nonbinary treatment

TheWald DID, Wald TC, and Wald CIC still identify a causal parameter ifD is not binary
but is ordered and takes a finite number of values, as shown in de Chaisemartin and
D’Haultfœuille (2018b). When the treatment takes many values, its support may differ
in the treatment and control groups, and there may be values of D in the treatment
group for which δd or Qd are not defined because no unit in the control group has
that value of D. This situation particularly includes the special cases discussed above.
We can then slightly modify WTC and WCIC. Namely, let us consider a recategorized
treatment D̃ = h(D) grouping together some values of D, and let

δ̃d̃ = E
(
Y01|D̃ = d̃

)
− E

(
Y00|D̃ = d̃

)

We then replace δD01
by δ̃D̃01

in the definition of WTC. Then, WTC still identifies ∆
provided that d 7→ E{Y11(d) − Y10(d)|D(0) = d} depends only on h(d). The same

applies to WCIC by using D̃ instead of D in Qd(.). Using this recategorized treatment
also avoids estimating δd and Qd on a small number of units, thus often lowering the
standard errors of the estimators.

Finally, there may also be instances where the treatment has the same support in
the treatment and in the control groups but where bootstrap samples do not satisfy this
requirement. For such bootstrap samples, WTC andWCIC cannot be estimated, and the
fuzzydid command therefore sets them to 1015 or −1015 with probability 1/2. To avoid
distorting inference, these bootstrap samples are not discarded in the computation of the
percentile-bootstrap confidence intervals, thus enlarging these intervals.7 This situation
is likely to arise when the treatment takes many values. Here again, it may be useful to
recategorize the treatment to avoid this issue.

4 The fuzzydid command

The fuzzydid command is compatible with Stata 13.1 and later versions. It uses
the moremata command (Jann 2005) to compute estimators with covariates. If this
command is not already installed, one must type ssc install moremata in Stata’s
command line.

7. However, they are discarded when computing the bootstrap standard errors.
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4.1 Syntax

The syntax of fuzzydid is as follows:

fuzzydid Y G T D
[
if
] [

in
] [

, did tc cic lqte newcateg(numlist)

numerator partial nose cluster(varname) breps(#) eqtest tagobs

continuous(varlist) qualitative(varlist) modelx(reg1 reg2 reg3) sieves

sieveorder(#)
]

Y is the outcome variable.

G is the group variable or variables. When the data bear only two groups and two
periods, G merely corresponds to the variable G defined in section 2, an indicator
for units in the treatment group. Outside of this special case, G should list the
variables G∗

T and G∗
T+1 defined in section 3.2. Below are some lines of code that

users can follow to create these two variables:

sort G T

by G T: egen mean D = mean(D)

by G: generate lag mean D = mean D[ n-1] if G==G[ n-1]&T-1==T[ n-1]

generate G T = sign(mean D - lag mean D)

generate G Tplus1 = G T[ n+1] if G==G[ n+1]&T+1==T[ n+1]

Sometimes, there may not be groups where the treatment is perfectly stable between
consecutive periods, thus implying that the Wald DID, Wald TC, and Wald CIC

estimators cannot be computed with the G T and G Tplus1 variables defined above.
The user may then replace the fourth line of code above with

generate G T = (mean D - lag mean D> ε)-(mean D - lag mean D< −ε)
where ε is a positive number small enough to consider that the mean treatment
did not really change in groups where it changed by less than ε. See section 2.1 in
de Chaisemartin and D’Haultfœuille’s (2018b) supplement for one possible method
to choose ε.

T is the time-period variable with values in {0, . . . , t}.
D is the treatment variable. It can be any ordered variable.

4.2 Description

fuzzydid estimates ∆ or τq using one or several of the estimators defined in sections 2
and 3 above. It also computes their standard errors and confidence intervals.
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4.3 Options

General options

did computes ŴDID if no covariates are included in the estimation. If some covariates
are included, it computes ŴX

DID,NP, Ŵ
X
DID,OLS, or another estimator with covariates

depending on the options specified by the user.

tc computes ŴTC if no covariates are included in the estimation. If D is binary and
P (D00 = 0) = P (D01 = 0) ∈ {0, 1}, the command actually computes ŴDID, fol-
lowing the discussion in section 3.3. If some covariates are included, it computes
ŴX

TC,NP, Ŵ
X
TC,OLS, or another estimator with covariates depending on the options

specified by the user.

cic computes ŴCIC. If D is binary and P (D00 = 0) = P (D01 = 0) ∈ {0, 1}, the

command actually computes W̃CIC, following the discussion in section 3.3. This
option can be specified only when no covariates are included in the estimation.

lqte computes τ̂q, for q ∈ {0.05, 0.10, . . . , 0.95}. This option can be specified only when
D, G, and T are binary and no covariates are included in the estimation. When
P (D00 = 0) = P (D01 = 0) ∈ {0, 1}, the command computes τ̃q,CIC, following the
discussion in section 3.3.

At least one of the four options above is required. If several of these options are
specified, the command computes all the estimators requested by the user.

newcateg(numlist) groups some values of the treatment together when estimating δd
and Qd. This option may be useful when the treatment takes many values, as
explained in section 3.3. One must specify the upper bound of each set of values of the
treatment one wants to group. For instance, if D takes the values {0, 1, 2, 3, 4.5, 7, 8},
and one wants to group together units with D = {0, 1, 2}, {3, 4.5}, and {7, 8} when
estimating δd and Qd, one must write newcateg(2 4.5 8).

numerator computes only the numerators of the ŴDID, ŴTC, and ŴCIC estimators. As
explained in section 3.3.3 in de Chaisemartin and D’Haultfœuille (2018b), this op-
tion is useful to conduct placebo tests of the assumptions underlying each estimator.

partial computes the bounds of ∆ defined in section 3.3, ŴTC and ŴTC. This option
can be specified only when no covariates are included in the estimation.

nose computes only the estimators, not their standard errors.

cluster(varname) computes the standard errors of the estimators using a block boot-
strap at the varname level. Only one clustering variable is allowed.

breps(#) specifies the number of bootstrap replications. The default is breps(50).

eqtest performs an equality test between the estimands when the user specifies at least
two of the did, tc, and cic options.
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tagobs creates a new variable named tagobs, which identifies the observations used by
fuzzydid.

Options specific to estimators with covariates

continuous(varlist) specifies the names of all the continuous covariates that must be
included in the estimation.

qualitative(varlist) specifies the names of all the qualitative covariates that must be
included in the estimation. For each variable, indicator variables are created for each
value except one and included as controls in the estimation.

modelx(reg1 reg2 reg3) specifies which parametric method should be used to esti-
mate the conditional expectations in WX

DID or WX
TC. reg1 specifies which method

should be used to estimate E(Ygt|X) and E(Ydgt|X). reg2 specifies which method
should be used to estimate E(Dgt|X). When D is not binary, reg3 specifies which
method should be used to estimate {P (Dgt = d|X)}d∈{1,...,d}. The possible meth-

ods are ols, logit, and probit. For instance, if the user writes modelx(ols logit

logit), the command estimates E(Ygt|X) and E(Ydgt|X) by OLS and E(Dgt|X) and
{P (Dgt = d|X)}d∈{1,...,d} by a logistic regression. The logit and probit options

can be used only with binary variables.

sieves indicates that the conditional expectations in WX
DID and WX

TC should be esti-
mated nonparametrically (see section 3.1 above).

When covariates are included in the estimation, and neither modelx() nor sieves
is specified, the command estimates by default all conditional expectations by OLS.

sieveorder(#) specifies the order of the sieve basis when the option sieves is used.
It must be greater than or equal to 2. For a given order L, the number of basis
functions is given by

(
pc+L

L

)
, where pc is the number of continuous covariates. The

command does not allow for more than min(4800, n/5) basis functions, where n is
the number of observations. By default, the choice of the sieve order is done via
fivefold cross-validation with a mean squared error loss function.

4.4 Stored results

fuzzydid stores the following in e():

1. e(N), a scalar containing the number of observations used in the estimation.

2. If the user specifies at least one of the did, tc, and cic options, fuzzydid saves
e(b LATE), a k × 1 matrix, where k is equal to the number of options specified.
The lines of the matrix correspond to each of the requested estimators. If nose
is not specified, fuzzydid also saves e(se LATE) and e(ci LATE), which are a
k × 1 and a k × 2 matrix, respectively. The lines of e(se LATE) correspond to
the bootstrap standard error associated with each of the requested estimators.
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The columns of e(ci LATE) store the lower and upper bounds, respectively, of
the 95% confidence interval computed by percentile bootstrap for each requested
estimator.

3. If the user specifies the eqtest option and at least two of the did, tc, and cic

options, fuzzydid saves three matrices e(b LATE eqtest), e(se LATE eqtest),
and e(ci LATE eqtest). The first two matrices have dimension

(
k
2

)
× 1 while the

third has dimension
(
k
2

)
× 2, where k is equal to the number of the did, tc, and

cic options specified. The matrices e(b LATE eqtest) and e(se LATE eqtest)

store the value of the difference between each pair of estimators and the associated
bootstrap standard error, respectively. The columns of e(ci LATE eqtest) store
the lower and upper bounds, respectively, of the 95% confidence interval computed
by percentile bootstrap associated with each difference.

4. If the user specifies the lqte option, the command saves e(b LQTE), a 19 × 1
matrix. The lines of the matrix store the value of τ̂q for q ∈ {0.05, 0.10, . . . , 0.95}.
If nose is not specified, fuzzydid also saves e(se LQTE) and e(ci LQTE), a 19×1
and a 19 × 2 matrix, respectively. The lines of e(se LQTE) correspond to the
bootstrap standard error associated with τ̂q for q ∈ {0.05, 0.10, . . . , 0.95}. The
columns of e(ci LQTE) store the lower and upper bounds, respectively, of the
95% confidence interval computed by percentile bootstrap for each of the 19 LQTE

estimators.

5 Example

To illustrate the use of fuzzydid, we rely on the same dataset as Gentzkow, Shapiro,
and Sinkinson (2011) to study the effect of newspapers on electoral participation.

turnout dailies 1868-1928.dta is a county-level dataset. It contains two variables
of interest, pres turnout and numdailies, that represent the turnout (Y ) and the
number of newspapers available (D), respectively, in each U.S. county and at each
presidential election from 1868 to 1928. First, we load the dataset and present summary
statistics:

. use turnout_dailies_1868-1928

. summarize pres_turnout numdailies

Variable Obs Mean Std. Dev. Min Max

pres_turnout 16,872 .65014 .2210102 .0017981 2.518
numdailies 16,872 1.463134 2.210448 0 45

The average turnout in the 1868 to 1928 presidential elections across counties is 65.01%.
The number of newspapers ranges from 0 to 45 and is on average equal to 1.46.

Second, we use fuzzydid to compute Ŵ ∗
DID, Ŵ

∗
TC, and Ŵ ∗

CIC using the first two
time periods in the dataset, the 1868 and 1872 elections. We then define the G1872

variable, which is equal to 1 or 0 in counties whose number of newspapers increased or
remained stable, respectively, between the 1868 and 1872 elections. For now, counties
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where that number decreased are excluded from the analysis. numdailies takes many
values, so there are values taken by counties with G1872 = 1 that are not taken by any
county with G1872 = 0. Therefore, we use newcateg() to recategorize numdailies into
four categories: zero, one, two, and three or more newspapers.8 Finally, we cluster the
bootstrap at the county level to allow for county-level correlation over time.

. generate G1872=(fd_numdailies>0) if (year==1872)&fd_numdailies!=.
> &fd_numdailies>=0&sample==1
(16,160 missing values generated)

. sort cnty90 year

. replace G1872=G1872[_n+1] if cnty90==cnty90[_n+1]&year==1868
(712 real changes made)

. fuzzydid pres_turnout G1872 year numdailies, did tc cic newcateg(0 1 2 45)
> breps(200) cluster(cnty90)

(output omitted )

Estimator(s) of the local average treatment effect with bootstrapped standard
errors. Cluster variable: cnty90. Number of observations: 1424 .

LATE Std_Err t p_value lower_ic upper_ic

W_DID .0047699 .0160903 .2964428 .766892 -.0230387 .0377381
W_TC .0266618 .0164816 1.617671 .1057335 -.0021458 .0586236
W_CIC .0133223 .0132744 1.003613 .3155653 -.0116416 .0348834

The columns of the output table show, respectively, the value of each estimator, its
bootstrap standard error, its t statistic, its p-value, and the lower and upper bounds of
its 95% confidence interval. All point estimates are positive, but none are statistically
significant, presumably because this restricted sample with two time periods is too
small. In this simple example with two periods and no controls, the computation of
the estimators and of 200 bootstrap replications takes only about 3 seconds on a Dell
Optiplex 9020 with an Intel Core i7-4790 CPU 3.60 GHz processor and 16 GB of RAM,
using Stata/MP with 4 cores.

8. Only 17.8% of observations have 3 or more newspapers. Results do not change much if instead we
recategorize numdailies into five categories: zero, one, two, three, and four or more newspapers.
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Third, we compute estimators of the LQTEs, again using the 1868 and 1872 elections.
We use a binary treatment variable numdailies bin (0 newspaper, 1 or more) because
LQTEs can be estimated only with a binary treatment.

. generate numdailies_bin=(numdailies>0)

. fuzzydid pres_turnout G1872 year numdailies_bin, lqte breps(200)
> cluster(cnty90)

(output omitted )

Estimators of local quantile treatment effects with bootstrapped standard
errors. Cluster variable: cnty90. Number of observations: 1424 .

LQTE Std_Err t p_value lower_ic upper_ic

(output omitted )

q_20 .005 .063113 .0792229 .9368553 -.0825 .1655

(output omitted )

q_40 -.052 .0493409 -1.053894 .2919316 -.1244999 .0675

(output omitted )

q_60 .011 .0482445 .2280046 .8196427 -.0995 .08

(output omitted )

q_80 .02 .0355669 .5623207 .5738975 -.087 .077

(output omitted )

To preserve space, we report only τ̂0.2, τ̂0.4, τ̂0.6, and τ̂0.8, but the command computes τ̂q
for q ∈ {0.05, 0.10, . . . , 0.95}. τ̂0.4 is negative, while the other estimates are positive, thus
suggesting that numdailies bin may have heterogeneous effects along the distribution
of the outcome. However, none of the point estimates are statistically significant.

Fourth, we compute Ŵ ∗
DID, Ŵ

∗
TC, and Ŵ

∗
CIC on the full sample. For that purpose,

we define the G T and G Tplus1 variables described in section 4.2. G T is equal to 1, 0,
or −1 for county c × election-year t observations such that the number of newspapers
increased, remained stable, or decreased, respectively, between election-years t− 1 and
t in that county. G Tplus1 is the lead of G T. We add the eqtest option to test whether
the estimators are significantly different.

. sort cnty90 year

. by cnty90 year: egen mean_D = mean(numdailies)

. by cnty90: generate lag_mean_D = mean_D[_n-1] if cnty90==cnty90[_n-1]&year-4==
> year[_n-1]
(1,243 missing values generated)

. generate G_T = sign(mean_D - lag_mean_D) if sample==1
(1,245 missing values generated)

. generate G_Tplus1 = G_T[_n+1] if cnty90==cnty90[_n+1]&year+4==year[_n+1]
(1,245 missing values generated)
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. fuzzydid pres_turnout G_T G_Tplus1 year numdailies, did tc cic
> newcateg(0 1 2 45) breps(200) cluster(cnty90) eqtest

(output omitted )

Estimator(s) of the local average treatment effect with bootstrapped standard
errors. Cluster variable: cnty90. Number of observations: 16872 .

LATE Std_Err t p_value lower_ic upper_ic

W_DID .0037507 .0012813 2.927357 .0034186 .0009971 .0057828
W_TC .0053305 .0013276 4.015155 .0000594 .0023461 .0075914
W_CIC .004215 .001477 2.853841 .0043194 .0009549 .0067769

Estimators equality test

Delta Std_Err t p_value lower_ic upper_ic

DID_TC -.0015798 .0003504 -4.507975 6.54e-06 -.0023752 -.0009441
DID_CIC -.0004643 .0007151 -.6492892 .5161515 -.0018629 .0008515
TC_CIC .0011155 .0006505 1.71487 .086369 -.0002291 .0023088

The Wald DID is equal to 0.0038. According to that estimator, increasing the number
of newspapers available in a county by one increases voters’ turnout in presidential
elections by 0.38 percentage points. This estimator is significantly different from 0 at
the 5% level. The Wald TC is larger (0.0053) and significantly different from the Wald
DID (t statistic = −4.51). The Wald CIC lies in between (0.0042), and this estimator is
not significantly different from the other two. In this more complicated example with
16 periods and almost 17,000 observations, computing the estimators and 200 bootstrap
replications still takes only around two minutes.

Gentzkow, Shapiro, and Sinkinson (2011) allow for state-specific trends in their spec-

ification, so we compute Ŵ ∗
DID and Ŵ ∗

TC with state indicators as controls, which is
equivalent to allowing for state-specific trends.9

. fuzzydid pres_turnout G_T G_Tplus1 year numdailies, did tc newcateg(0 1 2 45)
> qualitative(st1-st48) breps(200) cluster(cnty90) eqtest

(output omitted )

Estimator(s) of the local average treatment effect with bootstrapped standard
errors. Cluster variable: cnty90. Number of observations: 16872 . Controls
included in the estimation: st1 st2 st3 st4 st5 st6 st7 st8 st9 st10 st11
st12 st13 st14 st15 st16 st17 st18 st19 st20 st21 st22 st23 st24 st25 st26
st27 st28 st29 st30 st31 st32 st33 st34 st35 st36 st37 st38 st39 st40 st41
st42 st43 st44 st45 st46 st47 st48 .

LATE Std_Err t p_value lower_ic upper_ic

W_DID .0026383 .0012213 2.160196 .0307575 .0002316 .0048236
W_TC .0043428 .0014116 3.076507 .0020944 .0015519 .0066772

Estimators equality test

Delta Std_Err t p_value lower_ic upper_ic

DID_TC -.0017046 .0009193 -1.85417 .0637149 -.0034308 .0000123

9. On the other hand, fuzzydid does not compute Ŵ ∗
CIC

with controls.



C. de Chaisemartin, X. D’Haultfœuille, and Y. Guyonvarch 455

With those controls, Ŵ ∗
DID = 0.0026 and Ŵ ∗

TC = 0.0043, and the two estimators are
significantly different at the 10% level (t statistic = −1.85). Adding the control variables
substantially increases the computation time to 79 minutes.

Finally, we compute a placebo Wald DID or Wald TC estimator to assess if assump-
tions 4 and 5 or assumption 4’, respectively, is plausible in this application. Instead of
using the turnout in county g and election-year t as the outcome variable, our placebo
estimators use the turnout in the same county in the previous election. Moreover, only
counties where the number of newspapers did not change between t − 2 and t − 1 are
included in the estimation. Therefore, our placebo estimators compare the evolution of
turnout from t−2 to t−1, between counties where the number of newspapers increased
or decreased between t− 1 and t and counties where that number remained stable, re-
stricting the sample to counties where the number of newspapers remained stable from
t− 2 to t− 1.

. xtset cnty90 year

(output omitted )

. generate fd_numdailies_l1=l4.fd_numdailies
(2,486 missing values generated)

. generate pres_turnout_l1=l4.pres_turnout
(1,243 missing values generated)

. sort cnty90 year

. generate G_T_placebo = sign(mean_D - lag_mean_D) if
> sample==1&fd_numdailies_l1==0
(6,761 missing values generated)

. generate G_Tplus1_placebo = G_T_placebo[_n+1] if
> cnty90==cnty90[_n+1]&year+4==year[_n+1]
(6,761 missing values generated)

. fuzzydid pres_turnout_l1 G_T_placebo G_Tplus1_placebo year numdailies, did tc
> newcateg(0 1 2 45) qualitative(st1-st48) breps(200) cluster(cnty90)
(running estim_wrapper on estimation sample)

(output omitted )

Estimator(s) of the local average treatment effect with bootstrapped standard
errors. Cluster variable: cnty90. Number of observations: 13221 . Controls
included in the estimation: st1 st2 st3 st4 st5 st6 st7 st8 st9 st10 st11
st12 st13 st14 st15 st16 st17 st18 st19 st20 st21 st22 st23 st24 st25 st26
st27 st28 st29 st30 st31 st32 st33 st34 st35 st36 st37 st38 st39 st40 st41
st42 st43 st44 st45 st46 st47 st48 .

LATE Std_Err t p_value lower_ic upper_ic

W_DID -.00183 .0016594 -1.102842 .270096 -.0051247 .0013008
W_TC -.0008691 .0018412 -.4720226 .6369106 -.0041261 .0025142

The placebo Wald DID is negative, indicating that the actual Wald DID may be down-
ward biased because of a violation of assumptions 4 and 5. However, this placebo
estimator is not statistically significant. The placebo Wald TC is also negative and not
statistically significant. It is twice smaller than the placebo Wald DID, thus indicating
that assumption 4’ may be more plausible than assumptions 4 and 5 in this application.
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6 Monte Carlo simulations

This section exhibits the finite sample performance of the estimators of WDID, WTC,
WCIC, and τCIC,q. For that purpose, we consider the following data-generating pro-
cess (DGP). Let (G,T ) be uniform on {0, 1}2. Let {U(0), U(1), V } ∼ N (0,Σ), with
Σii = 1 for i ∈ {1, 3}, Σ22 = 1.2, Σ12 = 0, Σ13 = 0.5, and Σ23 = −0.5 and with
{U(0), U(1), V }⊥⊥(G,T ). Then, we let

Y (d) = d+G+ T + U(d)

D(t) = 1{V ≥ 1−G× t}

In this DGP, all the assumptions in section 2 hold. Therefore, WDID, WTC, and WCIC

all identify ∆, while τCIC,q identifies τq. We focus on the bias, mean square error, and
coverage rate of estimators of ∆ and τq for q ∈ {0.25, 0.5, 0.75} and for sample sizes
equal to 400, 800, and 1,600. In this DGP, ∆ ≃ 0.540, τ0.25 ≃ 0.481, τ0.5 ≃ 0.536, and
τ0.75 ≃ 0.595.

The results are displayed in table 1. Even with small samples, the Wald DID and
Wald TC estimators do not exhibit any systematic bias. Their root mean squared errors
(RMSE) are also similar. The Wald CIC, conversely, is more biased and has an RMSE

that is 5 to 15% larger. This is probably due to the estimator of the nonlinear transform
Qd. This estimator is likely biased and imprecise in the tails, which may also explain
the bias and high RMSE of τ̂q for n = 400. Note, however, that the bias of ŴCIC,
τ̂0.25, τ̂0.5, and τ̂0.75 decreases quickly with the sample size. For n = 1600, the bias of
these estimators is already negligible compared with their RMSE. Finally, the percentile
bootstrap confidence intervals of all estimators are quite accurate, with all coverage
rates lying between 0.92 and 0.97 when the nominal level is 0.95. The levels are slightly
more distorted for the Wald CIC and the τ̂q, but again, they become closer to 95% as
the sample size increases.
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Table 1. Results of the Monte Carlo simulations

Estimators of ∆ Estimators of τq
n Statistic ŴDID ŴTC ŴCIC τ̂0.25 τ̂0.5 τ̂0.75

400 Bias 0.005 −0.002 0.174 0.002 −0.154 −0.497
RMSE 0.651 0.613 0.682 0.712 0.867 1.223
Cov. rate 0.948 0.948 0.921 0.971 0.967 0.917

800 Bias 0.015 0.01 0.088 −0.056 −0.029 −0.235
RMSE 0.422 0.414 0.472 0.539 0.555 0.922
Cov. rate 0.953 0.951 0.929 0.964 0.961 0.934

1600 Bias −0.005 −0.005 0.034 −0.054 −0.013 −0.077
RMSE 0.286 0.284 0.329 0.394 0.382 0.58
Cov. rate 0.948 0.946 0.943 0.964 0.966 0.955

notes: “Cov. rate” stands for coverage rates of (percentile bootstrap) confidence intervals,
with a nominal level of 95%. The results are based on 1,000 samples, and for each, 500
bootstrap samples are drawn to construct the confidence intervals. With our DGP, ∆ ≃
0.540, τ0.25 ≃ 0.481, τ0.5 ≃ 0.536, and τ0.75 ≃ 0.595.

7 Conclusion

We have discussed how to use fuzzydid to estimate LATE and LQTE in fuzzy DID designs,
following de Chaisemartin and D’Haultfœuille (2018b). In such designs, the popular
Wald DID estimand relies on a stable treatment-effect assumption, which may not be
plausible. Then, the Wald TC and Wald CIC estimands may be valuable alternatives
because they do not hinge upon this assumption. Similarly, when the data bear multiple
groups and periods, the Wald TC and Wald CIC estimands may be valuable alternatives
to commonly used two-way linear regressions. The fuzzydid command makes it easy
to estimate those estimands.
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