%‘““‘“\N Ag Econ sxes
/‘ RESEARCH IN AGRICUITURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

‘l) Check for updates

The Stata Journal (2019)
19, Number 1, pp. 4-60 DOI: 10.1177/1536867X19830877

Fast and wild: Bootstrap inference in Stata
using boottest

David Roodman James G. MacKinnon

Open Philanthropy Project Queen’s University

San Francisco, CA Kingston, Canada
david.roodman@openphilanthropy.org jem@econ.queensu.ca
Morten Orregaard Nielsen Matthew D. Webb
Queen’s University Carleton University

Kingston, Canada Ottawa, Canada

and CREATES, Aarhus University, Denmark matt.webb@carleton.ca
mon@econ.queensu.ca

Abstract. The wild bootstrap was originally developed for regression models
with heteroskedasticity of unknown form. Over the past 30 years, it has been
extended to models estimated by instrumental variables and maximum likelihood
and to ones where the error terms are (perhaps multiway) clustered. Like boot-
strap methods in general, the wild bootstrap is especially useful when conventional
inference methods are unreliable because large-sample assumptions do not hold.
For example, there may be few clusters, few treated clusters, or weak instruments.
The package boottest can perform a wide variety of wild bootstrap tests, often at
remarkable speed. It can also invert these tests to construct confidence sets. As a
postestimation command, boottest works after linear estimation commands, in-
cluding regress, cnsreg, ivregress, ivreg2, areg, and reghdfe, as well as many
estimation commands based on maximum likelihood. Although it is designed to
perform the wild cluster bootstrap, boottest can also perform the ordinary (non-
clustered) version. Wrappers offer classical Wald, score/Lagrange multiplier, and
Anderson—Rubin tests, optionally with (multiway) clustering. We review the main
ideas of the wild cluster bootstrap, offer tips for use, explain why it is particularly
amenable to computational optimization, state the syntax of boottest, artest,
scoretest, and waldtest, and present several empirical examples.

Keywords: st0549, boottest, artest, waldtest, scoretest, Anderson—Rubin test,
Wald test, wild bootstrap, wild cluster bootstrap, score bootstrap, multiway clus-
tering, few treated clusters

1 Introduction

It is common in social science research to assume that the error terms in regression mod-
els are correlated within clusters. These clusters might be, for example, jurisdictions,
villages, firm types, classrooms, schools, or time periods. This is why many Stata esti-
mation commands offer a cluster option to implement a cluster-robust variance matrix
estimator (CRVE) that is robust to both intracluster correlation and heteroskedasticity
of unknown form. Inference based on the standard errors produced by this option can

© 2019 StataCorp LLC st0549

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1536867X19830877&domain=pdf&date_stamp=2019-03-14

D. Roodman, J. G. MacKinnon, M. @. Nielsen, and M. D. Webb 5

work well when large-sample theory provides a good guide to the finite-sample prop-
erties of the CRVE. This will typically be the case if the number of clusters is large,
if the clusters are reasonably homogeneous in size and covariance structure, and—for
regressions estimating treatment effects—if the number of treated clusters is not too
small. But inference can sometimes be misleading when these conditions do not hold.

One way to improve inference when large-sample theory provides a poor guide is
to use the bootstrap. The idea is to generate many bootstrap samples that mimic the
distribution from which the actual sample was obtained. Each of them is then used
to compute a bootstrap test statistic, using the same test procedure as for the original
sample. The bootstrap p-value is then calculated as the proportion of the bootstrap
statistics that are more extreme than the actual one from the original sample. See,
among many others, Davison and Hinkley (1997) and MacKinnon (2009) for a general
introduction.

In general, bootstrap inference will be more reliable the more closely the boot-
strap data-generating process (DGP) matches the (unknown) true DGP; see Davidson
and MacKinnon (1999). For many regression models, the wild bootstrap (Wu 1986;
Liu 1988) frequently does a good job of matching the true DGP. It is implemented
by multiplying the residuals from the original linear model by certain random weights
to construct bootstrap samples with dependent variables that are related to the in-
dependent variables by the same linear model. Cameron, Gelbach, and Miller (2008),
hereafter CGM (2008), adapted this approach to models with clustered errors, holding
the random weights fixed within each cluster in each bootstrap replication. Simulation
evidence suggests that bootstrap tests based on the wild and wild cluster bootstraps
often perform well; see, among others, Davidson and MacKinnon (2010), MacKinnon
(2013), and MacKinnon and Webb (2017a).

A less well-known strength of the wild bootstrap is that, in many important cases,
its simple and linear mathematical form lends itself to extremely fast implementation.
As we will explain in section 5, the combined algorithm for generating many bootstrap
replications and computing a test statistic for each of them can often be condensed into
a few matrix formulas. For the linear regression model with clustered errors, viewing the
process in this way opens the door to fast implementation of the wild cluster bootstrap.

The postestimation command boottest, written and maintained by one of us (Rood-
man), implements several versions of the wild cluster bootstrap. These include the
ordinary (nonclustered) wild bootstrap as a special case. boottest supports

e inference after ordinary least-squares (OLS) estimation with regress;
e inference after restricted OLS estimation with cnsreg;

e inference using the wild restricted efficient (WRE) bootstrap of Davidson and
MacKinnon (2010) for two-stage least-squares (2SLS), limited-information max-
imum likelihood (LIML), and other instrumental variable (IV) methods, as with
ivregress and ivreg2 (Baum, Schaffer, and Stillman 2007);

6 Wild bootstrap inference with boottest

e inference after maximum likelihood (ML) estimation via the “score bootstrap”
(Kline and Santos 2012) with such ML-based commands as probit, logit, glm,
sem, gsem, and the community-contributed command cmp (Roodman 2011);

e multiway clustering, even after estimation commands that do not support it;

e models with one-way fixed effects (FEs), estimated with areg, reghdfe (Correia
2014), xtreg, xtivreg, or xtivreg2 with the fe option;

e inversion of tests of one-dimensional hypotheses to derive confidence sets; and

e plotting of the corresponding confidence functions.

Section 2 of this article describes the linear regression model with one-way clustering
and explains how to compute cluster-robust variance matrices. Section 3 describes
the key ideas of the wild cluster bootstrap and then introduces several variations and
extensions. Section 4 discusses multiway clustering and associated bootstrap methods.
Section 5 explains the techniques implemented in boottest to speed up execution of
the wild cluster bootstrap, especially when the number of clusters is small relative to
the number of observations. Section 6 discusses extensions to IV estimation and to ML
estimation. Section 7 describes the syntax of the boottest package. Finally, section 8
illustrates how to use the program in the context of some empirical examples.

2 Regression models with one-way clustering

Consider the linear regression model
y=XB8+u (1)

where y and u are N x 1 vectors of observations and error terms, respectively, X is an
N x k matrix of covariates, and 3 is a k x 1 parameter vector. The observations are
grouped into G clusters, within each of which the error terms may be correlated. Model
(1) can be rewritten as

Yo =XgB+uy, g=1,....G (2)

where the vectors y, and u, and the matrix X, contain the rows of y, u, and X that
correspond to the gth cluster. Each of these objects has IN; rows, where N, is the
number of observations in cluster g.

Conditional on X, the vector of error terms u has mean zero and variance matrix
Q = E(uu’ | X), which is subject to the key assumption of no cross-cluster correlation:

E(uguy, |X)=0 if g#h

Thus, € is block-diagonal with blocks €, = F(uguy|X). We make no assumptions
about the entries in these blocks, except that each of the €2, is a valid variance matrix
(positive definite and finite).

D. Roodman, J. G. MacKinnon, M. @. Nielsen, and M. D. Webb 7

The OLS estimator of 3 is R
B=(X'X)"'X'y (3)

and the vector of estimation residuals is
i=y-X3 (4)
The conditional variance matrix of the estimator ,@ is
Var (8] X) = (X'X) "' X'QX(X'X) ! (5)

This expression cannot be computed, because it depends on €2, which by assumption
is not known. The feasible analog of (5) is the CRVE of Liang and Zeger (1986). It
replaces €2 by the estimator ﬁ, which has the same block-diagonal form as €, but with
Q, =u,u; for g=1,...,G. This leads to the CRVE

V=m(X'X)"'X'QX(X'X)"!, Q= blockdiag(Q, ..., Q) (6)

where the scalar finite-sample adjustment factor, m, will be defined below. The center
factor in (6) is often more conveniently computed as

G
X'OX =) X! ,l,X, (7)

g=1

It should be clear that € is in no sense a consistent estimator of £2, because both are
N x N matrices. However, the “sandwich” estimator V defined in (6) is consistent, in
the sense that the inverse of the true variance matrix defined in (5) times \' converges
to an identity matrix as G — oo. A proof of the consistency of the CRVE for general
one-way clustering under weak distributional assumptions that allow both G and the
N, to increase with N is provided in Djogbenou, MacKinnon, and Nielsen (2018).!

When the error terms in the regression model (1) are potentially heteroskedastic, but
uncorrelated, we have the “robust” case in informal Stata parlance. This is a special
case of the clustered model (2) in which each cluster contains just one observation.
For this model, the CRVE is simply the heteroskedasticity-robust variance estimator of
Eicker (1963) and White (1980).

We now write € in a way that will facilitate our discussion of fast computation in
section 5. We define S as the G x N matrix that by left-multiplication sums the columns
of a data matrix clusterwise. For example, SX is the G X k matrix of clusterwise sums
of the columns of X. Note that S’S is the N x N indicator matrix whose (i, j)th
entry is 1 or 0 according to whether observations ¢ and j are in the same cluster. Left-
multiplying by S’ expands a matrix with one row per cluster to a matrix with one row
per observation by duplicating entries within each cluster.

1. The first consistency result for a CRVE, which required that the Ny and €4 be the same for all
clusters, appeared in White (1984). These assumptions were weakened in Hansen (2007) to allow
the Qg4 to vary across clusters and further weakened in Carter, Schnepel, and Steigerwald (2017),
which, however, effectively assumed that the error terms are very nearly normally distributed.

8 Wild bootstrap inference with boottest

We also adopt notation used for the family of colon-prefixed “broadcasting” oper-
ators in Stata’s matrix programming language, Mata. For example, if A and B have
the same dimensions, then A :x B is the Hadamard (elementwise) product. But if v is a
column vector while B is a matrix, and if the two have the same number of rows, then
v :x B is the columnwise Hadamard product of v with the columns of B. As in Mata,
we give :x lower precedence than ordinary matrix multiplication. For later use, we note
that, if v is a column vector, then the :x operator obeys the identities

(vixA) = A" xv =v x A ()
vixAB = (v:xA)B 9)
AB:v = AB V') (10)
A(v:xB)=(A:=xVv)B (11)
In terms of these constructs, the CRVE in (6) is
V=mnXX)'X'OX(X'X)"!, Q=ux+SSxt (12)
By Stata convention, the small-sample correction m in (6) and (12) is
G N-1
m= a1 X Nk (13)

This choice has the intuitive property that, in the limiting case of G = N, that is, the
“robust” case, the expression reduces to the classical N/(N — k) correction factor.

The CRVE in (12) allows for the possibility that individual observations within each
cluster are not independent of each other. In other words, for purposes of estimation,
the effective sample size may be less than the formal sample size N. In the extreme
case of complete within-group dependence, the cluster becomes the effective unit of
observation, and the effective sample size becomes G.

The large-sample theory of the CRVE (Carter, Schnepel, and Steigerwald 2017; Djog-
benou, MacKinnon, and Nielsen 2018) is based on the assumption that G — oo rather
than N — oo.?2 This appears to be why Stata has long used the ¢(G — 1) distri-
bution to obtain p-values for cluster-robust ¢ statistics, a practice supported by the
theory in Bester, Conley, and Hansen (2011). However, this theory can be mislead-
ing when G is small or when the clusters differ greatly in size or in the structure of
their variance matrices or (in the treatment case) when there are few treated clusters.
In some cases, it can result in severe overrejection. Simulation results that show the
severity of this overrejection may be found in MacKinnon and Webb (2017b, 2018) and
Djogbenou, MacKinnon, and Nielsen (2018), among others. In extreme cases, tests at
the 0.05 level can reject well over 60% of the time.

The “effective number of clusters” developed in Carter, Schnepel, and Steigerwald
(2017) often provides a useful diagnostic, which can be computed using the package

2. An alternative large-sample framework assumes that G is small (or fixed) and Ny — oo for all g and
combines this with restrictions on the intracluster dependence; see, for example, Hansen (2007).

D. Roodman, J. G. MacKinnon, M. @. Nielsen, and M. D. Webb 9

clusteff; see Lee and Steigerwald (2018). Inference based on the t(G—1) distribution is
likely to be unreliable when G*, the effective number of clusters, is much smaller than G,
especially when G* is less than about 20. In such cases, the wild cluster bootstrap and
the (G — 1) distribution may yield inferences that differ sharply. However, there is no
reason to restrict the use of the wild cluster bootstrap to such cases. Because boottest
is so fast, we recommend using it all the time, at least for final results.

3 The wild cluster bootstrap

Bootstrap methods for hypothesis testing involve generating many bootstrap samples
that resemble the actual one, computing the test statistic for each of them, and then
deciding how extreme the original test statistic is by comparing it with the distribution
of the bootstrap test statistics. This sort of bootstrapping often works well. In some
cases, it provides an asymptotic refinement, which means that, as the sample size in-
creases, the bootstrap distribution approaches the actual distribution faster than does
the asymptotic distribution that is normally relied upon (such as the ¢ or chi-squared).
This type of theoretical result holds for test statistics that are asymptotically pivotal,
such as most ¢ statistics.

In this section, we discuss the wild cluster bootstrap, which was proposed in CGM
(2008) and the validity of which was proved in Djogbenou, MacKinnon, and Nielsen
(2018). It is a generalization of the ordinary wild bootstrap, which was developed
in Liu (1988) for the nonclustered, heteroskedastic case, following a suggestion in Wu
(1986) and commentary thereon by Beran (1986). Hérdle and Mammen (1993) appear
to have been the first to call the method “wild”, observing that it “...can be thought
of as attempting to reconstruct the distribution of each residual through the use of one
single observation.”

3.1 The algorithm

The bootstrap method most deeply embedded in Stata—via the bootstrap prefix
command—is a nonparametric bootstrap that, when applied to regression models, is
often called the “pairs bootstrap”. In the estimation context set out in the previ-
ous section, this bootstrap would typically operate by resampling (y,, X,) pairs at
the cluster level (Field and Welsh 2007). This is asymptotically valid, but some of
the bootstrap samples may not resemble the actual sample, especially if the cluster
sizes vary a lot. In a difference-in-differences context with few treated clusters, the
treatment dummy could even equal zero for all observations in some bootstrap sam-
ples. For these reasons, the pairs cluster bootstrap can work poorly in some cases; see
Bertrand, Duflo, and Mullainathan (2004) and MacKinnon and Webb (2017a).

In the wild cluster bootstrap, all the bootstrap samples have the same covariates
X. If the bootstrap samples are denoted by an asterisk and indexed by b, only the
bootstrap error vector u*?, and hence also the bootstrap dependent variable y*?, differs
across them. In particular, the vectors y*® are generated, cluster by cluster, as

10 Wild bootstrap inference with boottest

vl =XB+u, w =vlti, (14)

where ,6’ is an estimate of B8 and U, is the vector of residuals for cluster g computed
using B. The scalar v;b is an auxiliary random variable with mean 0 and variance 1,
sometimes referred to as a “wild weight”. It is often drawn from the Rademacher
distribution, meaning that it takes the values —1 and +1 with equal probability. The
choice of B, and hence also iy, will be discussed just below. Using the matrix S defined

above, we can rewrite the wild bootstrap DGP as

y'=XB+u? u?=i:xSv? (15)

*b

where v*° is a G x 1 vector with gth element v;b

Because the v;b are independent of X and the ii; and have mean 0 and variance 1,
multiplying the i, by v;b as in (14) preserves the first and second moments of the .
Specifically, let E* denote expectation conditional on the data, y and X, so that only

the U;b are treated as random. Then it is not difficult to see that

E*(*b) =0
E* (u*bu;‘f’) =0 when g # h, and

Er(utui?) = i)

Up to this point, we have used ﬁ and U to denote vectors of parameter estimates
and residuals, without specifying precisely how they are computed. One possibility is
that ﬁ ,6 and 11 = U, where ﬁ is the vector of OLS estimates for the model (1) and u is
the associated vector of residuals. Another possibility is that B = ,8 and 1 = u, where
ﬁ denotes least-squares estimates of (1) subject to whatever restriction or restrictions
are to be tested and u denotes the associated vector of residuals. For example, if we
wish to test whether 8; = 0, where §; is the jth element of 3, we would set 8; = 0 and
obtain the remaining elements of E by regressing y on every column of X except the
jth

These two choices lead to two variants of the wild cluster bootstrap, which we call
wild cluster unrestricted (WCU) and wild cluster restricted (WCR). CGM (2008) referred
to WCR as the wild cluster bootstrap with the null imposed. Section 3.2 discusses why
it is generally better to use the WCR variant. To explain how both work, we continue
to use the generic notation ,6' and 1.

D. Roodman, J. G. MacKinnon, M. @. Nielsen, and M. D. Webb 11

For concreteness, we suppose that our objective is to test the hypothesis that 3; = 0.
Then the WCU and WCR algorithms are as follows:

1. Regress y on X to obtain 3, G, and V as given in (3), (4), and (12).

2. Calculate the usual cluster-robust ¢ statistic for the hypothesis that 3; = 0,
Bi

Vii

;= (16)

where I7jj is the jth diagonal element of V.

3. For the WCU bootstrap, set 8 = ,8 and i = u. For the WCR bootstrap, regress y
on X bubJect to the restriction that 5; = 0 to obtain ﬁ and U, and set 3 = 3 and
u=nu

4. For each of B bootstrap replications:
a. Using (15), generate a new set of bootstrap error terms u*® and dependent

variables y*®

b. By analogy with step 1, regress y** on X to obtain ,B*b and U*?, and use the
latter in (12) to compute the bootstrap CRVE Vb,

c. Calculate the bootstrap ¢ statistic for the null hypothesis that ﬂ;b = 6] as

kb
t5b = b f ! (17)
*
Vi
where ‘Z’;b is the jth diagonal element of V**. For the WCR bootstrap, the

numerator of (17) can also be written as B;‘b because ﬂj =0.

5. For a one-tailed test, use the distribution of all the t;b to compute the lower-tail
or upper-tail p-value,

B B
1 . S 1 \
== Y It <t;) or Py= 5 > It > t) (18)
b=1

b=1

where I(+) is the indicator function. For a two-tailed test, compute either the
symmetric or the equal-tail p-value,

B
Z |t*b\ > [t;]) or I?’ET = 2min(]3€,13{}) (19)
b:
The former is appropriate if the distribution of ¢; is symmetric around a mean
of zero. In that case, if B is not very small, P§ and Pg will be similar. If the

12 Wild bootstrap inference with boottest

symmetry assumption is violated, which it will be when Bj is biased, it is better to
use ﬁET Asymmetry becomes a greater concern when we extend the wild cluster
bootstrap to IV estimation in section 6.1 because IV estimators are biased toward
the corresponding OLS estimators.

We make a few observations on this algorithm. First, whether the WCR or wcCuU
bootstrap is used in step 3, the ¢ statistic calculated in step 4c tests a hypothesis, 8; =
Bj, that is true by construction in the bootstrap samples because ,8 is used to construct
the samples in step 4a. Because the bootstrap distribution is generated by testing a null
hypothesis on samples from a DGP for which the null is correct, the resulting bootstrap
distribution should mimic the distribution of the sample test statistic, ¢;, when the null
hypothesis of interest, 3; = 0, is also correct.

Second, because the small-sample correction factor m defined in (13) and used in
the CRVE (12) affects both ¢; and the tjb proportionally, the choice of m does not affect
any of the bootstrap p-values.

Third, the algorithm does not produce standard errors (which is why boottest does
not attempt to compute them). Instead, inference is based on p-values and confidence
sets; the latter are discussed below in section 3.5. Ome could compute the standard
deviation of the bootstrap distribution of 3** and then use it for inference in several
ways. However, this approach relies heavily on the asymptotic normality of 3 in a
case where large-sample theory may not apply. Higher-order asymptotic theory for the
bootstrap (Davison and Hinkley 1997, chap. 5) predicts that this approach should not
perform as well as the algorithm discussed above, and Monte Carlo simulations in CGM
(2008) confirm this prediction.

The last observation relates to the number of bootstrap samples, B. Given a sig-
nificance level «, it is usually desirable to choose B such that a(B + 1) is an integer
(Davidson and MacKinnon 2004, 163-164). To see why, suppose that we violate this
condition by setting B = 20 and a = 0.05 when we are performing a one-sided test
using P in (18). We could form a sorted list containing the actual test statistic t; and
the bootstrap statistics t;b; this list would have 21 members. If ¢; and the t;b obey
the same distribution (which is true asymptotically under the null, and we assume is
approximately true in finite samples), then t; is equally likely to take any rank in the
sorted list. As a result,]36 can take on just 21 possible values, with equal probability:
0.0, 0.05, 0.10, ..., 1.0. Only the first of these would result in ﬁfj < 0.05. Thus, the
probability of rejecting the null would be 1/21, and not the desired 1/20. But if instead
we set B = 19, P could take on 20 values, and the probability of rejecting the null
would be exactly 1/20. For nearly the same reason, if we are using the equal-tail p-value
defined in (19), we should choose a(B + 1)/2 to be an integer.

The argument in the previous paragraph hides one complication: it implicitly as-
sumes that ¢; equals any of the t;‘-b with probability zero. However, there are only 2¢
unique sets of draws for the Rademacher distribution. One of these has v;‘b =1 for
all g, so that the corresponding bootstrap sample is the same as the actual sample.

D. Roodman, J. G. MacKinnon, M. @. Nielsen, and M. D. Webb 13

Therefore, each of the t;fb equals t; with probability 2-¢3 When this happens, it is
not entirely clear how to compute a bootstrap p-value; see Davison and Hinkley (1997,
chap. 4) for a discussion of this issue. The most conservative approach is to change the
strict inequalities in (18) and (19) into nonstrict ones, which would cause the p-value
to be larger whenever ¢; equaled any of the t;fb . boottest does not currently do so.
To avoid the problem of having ¢; equal any of the t;b with nontrivial probability, one
should use another auxiliary distribution instead of the Rademacher when G is small;
see section 3.4.

3.2 Imposing the null on the bootstrap DGP

The bootstrap algorithm defined above lets the wild bootstrap DGP (15) either im-
pose the restriction being tested (WCR) or not (WCU). Usually, it is better to impose
the restriction. For any bootstrap DGP like (15) that depends on estimated parame-
ters, those parameters are estimated more efficiently when restricted estimates are used
(Davidson and MacKinnon 1999). Intuitively, because inference involves estimating the
probabilities of obtaining certain results under the assumption that the null is true, infer-
ence is improved by using bootstrap datasets in which the null in fact holds. Simulation
evidence on this issue is presented in, among many others, Davidson and MacKinnon
(1999) and Djogbenou, MacKinnon, and Nielsen (2018).

For this reason, boottest uses the restricted estimates E and restricted residu-
als U by default.* Nevertheless, boottest does allow the use of unrestricted esti-
mates. This can be useful because WCU makes it possible to invert a hypothesis test
to calculate confidence intervals for all parameters using just one set of bootstrap sam-
ples, whereas WCR requires constructing many sets of bootstrap samples to do so; see
Davidson and MacKinnon (2004, sec. 5.3) and section 3.5. Thus, if the computational
cost of WCR is prohibitive (although it rarely is with boottest), WCU is a practical
alternative.

3.3 General and multiple linear restrictions

The algorithm given above for wild cluster bootstrap inference is readily generalized to
hypotheses involving any number of linear restrictions on 3. We can express a set of ¢
such restrictions as

H() : Rﬁ =r (20)
where R and r are fixed matrices of dimensions ¢ X k and ¢ x 1, respectively.

When ¢ = 1, the ¢ statistic in (16) is replaced by
RB-r
. 1)
RVR/
3. For symmetric tests, one of the unique sets of Rademacher draws has v;b =
to t;b = —t;. Therefore, each of the \t;b\ equals |¢;| with probability 28 —C.
4. For the mechanics of restricted OLS in Stata, see [P] makecns and [R] cnsreg.

—1 for all g, leading

14 Wild bootstrap inference with boottest

with r a scalar, and the bootstrap ¢ statistic in (17) is replaced by

t*b _ R(B*b _ 16)
VRV*R/

For the WCR bootstrap, the numerator of (22) reduces to Rﬁ*b —r because RB = RB =

r. For the WCU bootstrap, it reduces to R(,@*b f,@) In both cases, the hypothesis being
tested on the bootstrap samples is true in the bootstrap DGP.

(22)

When ¢ > 1 in (20), the ¢ statistic (21) is replaced by the Wald statistic
W =(RB-r)RVR) '(RB-r)
and the bootstrap ¢ statistic (22) is replaced by the bootstrap Wald statistic

W = {R(B* - B)} (RV*R){R(B" -)} (23)

The vector that appears twice in the quadratic form (23) is the numerator of (22), and
the discussion that follows that equation applies here too. We will sometimes, by a
slight abuse of terminology, call this vector the Wald numerator and the matrix that
is inverted in (23) the Wald denominator. Because W > 0, only one type of bootstrap

p-value, namely, Fj, is relevant when ¢ > 1. Thus, the p-value for the bootstrap Wald
test is simply the fraction of the W* that exceed W.

3.4 The distribution of the auxiliary random variable

After (14), we noted that the auxiliary random variable v;b that multiplies the resid-
ual vectors i, in the bootstrap DGP—the “wild weight”—is usually drawn from the
Rademacher distribution, taking the values —1 and 41 with equal probability. Under
this distribution, E*(v3?) = 0 and E*{(v;")*} = E{(v;")*} = 1, so multiplying the
residuals by v;b ensures that the first, second, and fourth moments of the residuals are
preserved by the errors in the bootstrap samples. In fact, the Rademacher distribution
is the only distribution that preserves first, second, and fourth moments. However, be-
cause its third moment is 0, it imposes symmetry on the distribution of the bootstrap
error terms. Even if the elements of i, are skewed, the elements of u;b will not be. To
that extent, the bootstrap errors become unrepresentative of the original sample errors.
Unfortunately, there does not exist any auxiliary distribution that preserves all the first
four moments (MacKinnon 2015, 24-25).

D. Roodman, J. G. MacKinnon, M. @. Nielsen, and M. D. Webb 15

Other distributions that have been proposed include the following:

1. The Mammen (1993) two-point distribution, which takes the value 1—¢ with prob-
ability ¢/+/5 and the value ¢ otherwise, where ¢ = (14 +/5)/2 is the golden ratio.
One can confirm that, under this distribution, E*(v;?) = 0 and E*{(v;")*} =
E*{(v;?)®} = 1. This means that the Mammen distribution preserves the first
three moments of the residuals. Because its fourth moment is 2, it magnifies
the kurtosis of the bootstrap errors. However, it does have the smallest kurtosis
among all distributions with the same first three moments.

2. The Webb (2014) six-point distribution. As noted at the end of section 3.1, the
Rademacher distribution can yield only 2¢ distinct bootstrap samples. This is true
for all two-point distributions. The six-point distribution reduces, but does not
totally eliminate, this problem by assigning probability 1/6 to each of 6 points,
namely, ++/1/2, £4/2/2 = £1, and £+/3/2. Its first three moments are 0, 1,
and 0, like the Rademacher, so that it preserves first and second moments and
also imposes symmetry on the bootstrap errors. Its fourth moment is 7/6, which
enlarges kurtosis only slightly.

3. The standard normal distribution, for which the first four moments are 0, 1, 0,
and 3. This choice allows for an infinite number of possible bootstrap samples. It
preserves the first two moments, but it imposes symmetry, and the large fourth
moment greatly magnifies kurtosis.

4. The gamma distribution with shape parameter 4 and scale parameter 1/2, as sug-
gested by Liu (1988). Like the Mammen distribution, this has the third moment
equal to 1. However, its fourth moment of 9/2 greatly enlarges kurtosis.

Simulation studies suggest that wild bootstrap tests based on the Rademacher dis-
tribution perform better than ones based on other auxiliary distributions; see Davidson,
Monticini, and Peel (2007), Davidson and Flachaire (2008), and Finlay and Magnusson
(2014), among others. However, the Webb six-point distribution is preferred to the
Rademacher when G is less than 10 or perhaps 12. boottest offers all of these distri-
butions and defaults to the Rademacher; see the weighttype () option in section 7.

3.5 Inverting a test to construct a confidence set

Any test of a hypothesis of the form R3 = r implies a confidence set, which at level
1 — « consists of all values of r for which P (the p-value for the test) is no less than .
It is easiest to see this in the case of a single linear restriction of the form 8; = f;o,
where 3; is the jth element of 8. The confidence set then consists of all values of ;o
for which the p-value for the test of 3; = B, is equal to or greater than c.

Viewing a test as a mapping from values of 3¢ to p-values, we see that the confidence
set is the inverse image of the interval [, 1]. For bootstrap tests based on the algorithm
of section 3.1, this mapping is given by one of the bootstrap p-values in step 5. When

16 Wild bootstrap inference with boottest

the bootstrap test that is inverted is based on a t statistic, as all the tests we discuss
are, the resulting interval is often called a studentized bootstrap confidence interval.
These intervals may be equal tailed, symmetric, or one sided, according to what type
of bootstrap p-value is used to construct them.

As discussed in section 3.2, it is generally preferable to impose the null hypothesis
when performing a bootstrap test. This is equally true when constructing a confidence
interval. However, WCU does have a computational advantage over WCR in the latter
case. For hypotheses of the form B8; = f;0, inverting a bootstrap test means finding
values of 3o such that the associated bootstrap p-values are equal to o. With wWcU, find-
ing these values is straightforward because, by definition, the WCU bootstrap DGP does
not depend on the null hypothesis. Therefore, as we vary §;o, the bootstrap samples
do not change, and hence, only one set of bootstrap samples needs to be constructed.
Determining the bounds of the confidence set merely requires solving (16) for 3;o and
plugging in the values for ¢; that correspond to appropriate quantiles of the bootstrap
distribution. For example, an equal-tailed studentized WCU bootstrap confidence in-
terval is obtained by plugging in the «/2 and 1 — «/2 quantiles of the distribution of
the t;b, while a symmetric interval is obtained by plugging in the 1 — o quantile of the
distribution of the [¢3°].

For the WCR bootstrap, by contrast, the bootstrap samples depend on the null, so
they must be recomputed for each trial value of 3;o. In this case, it is essential for the
convergence of the algorithm that the same set of v;b values be used in each iteration.
An iterative search in which each step requires a simulation could be computationally
impractical. Fortunately, as we discuss in section 5, the WCR bootstrap can be made
to run extremely fast in many applications. Moreover, the search for bounds can be
implemented to minimize recomputation by precomputing all quantities in the WCR
algorithm that do not depend on ;. Because boottest embodies this strategy, it can
typically invert WCR bootstrap tests quickly.

By default, boottest begins the search for confidence interval bounds by picking
two trial values for 3,9, low and high, at which P < a. boottest then calculates the p-
value at 25 evenly spaced points between these extreme bounds. From these 25 results,
it selects those adjacent pairs of points between which the p-value crosses a and then
finds the crossover points via an iterative search. In IV applications (section 6.1), when
identification is weak, the confidence set constructed in this way may consist of more
than one disjoint segment, and these segments may be unbounded; see section 8.4.

‘We have focused on the most common case, in which just one coefficient is restricted.
However, boottest can invert any linear restriction of the form R3 = r, in which R is
now a 1 x k vector and r is a scalar. For example, if the restriction is that 8o = 83, R
is a row vector with 1 as its second element, —1 as its third element, and every other
element equal to 0. Under the null hypothesis, 7 = 0. In this case, the confidence set
contains all values of r for which the bootstrap p-values are equal to or greater than «.

D. Roodman, J. G. MacKinnon, M. @. Nielsen, and M. D. Webb 17

4 Multiway clustering

In section 2, we assumed that error terms for observations in different clusters are un-
correlated. In some settings, this assumption is unrealistic. In modeling panel data at
the firm level, for example, one might expect correlations both within firms over time
and across firms at a given time. The variance and covariance patterns are typically
unknown in both dimensions. Cameron, Gelbach, and Miller (2011), hereafter CGM
(2011), and Thompson (2011) separately proposed a method for constructing cluster—
robust variance matrices for the coefficients of linear regression models when the error
terms are clustered in two or more dimensions.> The theoretical properties of the mul-
tiway CRVE were analyzed by MacKinnon, Nielsen, and Webb (2017), Menzel (2017),
and Davezies, D’Haultfoeuille, and Guyonvarch (2018). These articles also proposed and
studied bootstrap methods for multiway clustered data.

In the next subsection, we define the multiway CRVE and discuss some practical con-
siderations in computing it. Then, in section 4.2, we discuss how to combine multiway
clustering with the wild bootstrap.

4.1 Computing the multiway CRVE

boottest allows multiway clustering along an arbitrary number of dimensions. For
ease of exposition, however, we consider the two-way case. We index the G clusters in
the first dimension by g and the H clusters in the second dimension by h. We attach
subscripts G and H to objects previously defined for one-way clustering, such as S
and €2, to indicate which clustering dimension they are associated with. Similarly, the
subscript “GH” indicates clustering by the intersection of the two primary clustering
dimensions. The compound subscript “G, H” refers to the two-way clustered matrices
proposed in CGM (2011) and Thompson (2011) and defined below.

The two-way CRVE extends the one-way CRVE intuitively. Recall from (6) that
the one-way CRVE is built around the matrix ﬁ, which has 4, j entry equal to @;u; if
observations i and j are in the same cluster and 0 otherwise. The two-way CRVE is
obtained by augmenting that definition: Q¢ g is the matrix with ¢, j entry equal to
u;u; if observations ¢ and j are in the same G-cluster or the same H-cluster and 0
otherwise.

As a practical matter, we might try to compute ﬁgﬂ as ﬁc + fAZH. But if obser-
vations i and j were in the same G-cluster and the same H-cluster, this would double
count: entry ¢,j would be 2u;u;. To eliminate this double counting, we instead compute

ﬁG,H = ﬁc + ﬁH — ﬁGH (24)
Replacing Qin (6) by fAZQ g gives us the two-way CRVE,

\A’G,H =V +Vu — Vou (25)
where we have used (24) and the linearity of (6) in Q.

5. CGM (2011) provided the ado-package cgmreg to implement this method in Stata; see
http: // faculty.econ.ucdavis.edu / faculty / dlmiller / statafiles /.

http://faculty.econ.ucdavis.edu/faculty/dlmiller/statafiles/

18 Wild bootstrap inference with boottest

By analogy with the standard Stata small-sample correction for the one-way case
given in (13), CGM (2011) suggested redefining Vg g as follows,

‘A/G,H = mG\AfG + mH\AfH - mcH\AfaH (26)

where the three scalar m factors are computed as in (13). The number of clusters
used in computing mgy is the number of nonempty intersections between G and H
clusters, which may be less than the product G x H. CGM’s (2011) cgmreg pro-
gram uses these factors, as does cgmwildboot (Caskey 2010), which is derived from
cgmreg. However, another popular implementation of multiway clustering, ivreg?2
(Baum, Schaffer, and Stillman 2007), takes the largest of m¢, mpy, and mgy and uses
it in place of all three. (The largest is always mg or my.) This choice carries over to
programs that work as wrappers around ivreg2, including weakiv (Finlay, Magnusson,
and Schaffer 2014), xtivreg2 (Schaffer 2005), and reghdfe (Correia 2014).

boottest uses CGM’s (2011) choices for the m factors in (26). One reason is that
this helps to address a practical issue that arises in computing the multiway CRVE.
Computing the matrix Vg g in (26) involves subtraction, so in finite samples the result
is not guaranteed to be positive definite. When it is not, the Wald statistic can be
negative, or the denominator of the ¢ statistic can be the square root of a negative
number. Multiplying the negative term in (26) by a smaller factor, that is, by magy
instead of the larger of mg and my, increases the chance that \Afa g is positive definite.

Nevertheless, the possibility that ‘7& g is not positive definite still needs to be con-
fronted. A fuller solution proposed in CGM (2011) starts by taking the eigendecomposi-
tion \Afg 7 = UAU’. Then, it censors any negative eigenvalues in A to zero, giving AT,
and builds a positive semidefinite variance matrix estimate

Vi g = UATU (27)

This solution, however, has some disadvantages. First, there appears to be no strong
theoretical justification for (27). Second, because VG y is only positive semidefinite,
not positive definite, it does not guarantee that Wald and ¢ statistics will have the
right properties.® Third, replacing VG g by VG may often be unnecessary, because
the relevant quantity RVG gR/ in the denommator of the test statistic can be positive
definite—which is what is needed—even when VG7 g is not. Modifying VG7 g in that case
may unnecessarily change the finite-sample distribution of the test statistics. Fourth,
as a by-product of computational choices that dramatically increase speed, boottest
never actually computes Vg g; see section 5. It would have to do that to compute
the eigendecomposition; consequently, the computational burden of doing so would be
substantial.

For these reasons, boottest does not modify \A/G’H in the manner of CGM (2011).
If this results in a test statistic that is invalid, the package simply reports the test to
be infeasible.

6. One could ensure positive-definiteness by taking absolute values of eigenvalues instead of censoring
negative ones to 0, as Stock and Watson (2008, Remark 8) suggest in a different context. But this
would not address the other concerns listed above.

D. Roodman, J. G. MacKinnon, M. @. Nielsen, and M. D. Webb 19

Asymptotic properties of the multiway CRVE are analyzed in MacKinnon, Nielsen,
and Webb (2017). That article also presents simulations that suggest that CRVE-based
inference is unreliable in certain cases, including when the number of clusters in any
dimension is small or the cluster sizes are very heterogeneous or both. It also discusses
several methods for combining the wild and wild cluster bootstraps with the multiway
CRVE, proves their asymptotic validity, and shows by simulation that they can lead to
greatly improved inferences.

4.2 Wild-bootstrapping the multiway CRVE

The wild bootstrap and the multiway CRVE appear to have been combined first in the
package cgmwildboot (Caskey 2010). Bringing them together raises several practical
issues, in addition to those discussed in the context of the one-way wild cluster bootstrap.

The first practical issue that arises in wild-bootstrapping the multiway CRVE is what
to do when some of the bootstrap variance matrices, V*?, are not positive definite. In
their simulations, MacKinnon, Nielsen, and Webb (2017) apply the cGM (2011) cor-
rection (27) to these, too. In contrast, boottest merely omits instances where the
test statistic is degenerate from the bootstrap distribution and decrements the value
of B accordingly.” Like the CGM (2011) approach, deleting infeasible statistics from
the bootstrap distribution is atheoretical. However, reassuringly, rerunning the Monte
Carlo experiments of MacKinnon, Nielsen, and Webb (2017) with the CGM (2011) cor-
rection disabled suggests that the change has little effect in the cases examined in those
experiments.®

The second practical issue is that, in contrast with the one-way case, the choice
of small-sample correction factors now affects results. boottest applies CGM’s (2011)
proposed values for mg, mpy, and mgy in (26) also to each bootstrap sample for the
reasons discussed above. Because each component of (26) is scaled by a different factor,
the scaling affects the actual and bootstrap CRVEs differently. Although the impact is
likely minor in most cases, it might not be when at least one of G and H is very small.
An alternative would be to set all three factors to max(mg,mpy), as ivreg2 does (or
would, if it were bootstrapped). If this were done for both the actual and bootstrap
CRVES, it would be equivalent to using no small-sample correction at all.

The third issue is that the elegant symmetry of the multiway CRVE formula does
not carry over naturally to the wild bootstrap. The wild cluster bootstrap is designed
to preserve the pattern of correlations within each cluster for one-way clustering, but it
cannot preserve the correlations in two or more dimensions at once. Therefore, we must
now distinguish between the error clusterings and the bootstrap clustering. In boot-
strapping, should we draw and apply one “wild weight” for each G-cluster, or for each
H-cluster, or perhaps for each GH-cluster? The implementation in boottest supports

7. For computational reasons, it is easier simply to omit these “degenerate” bootstrap samples than
to replace them with new ones. However, it means that a(B + 1) will probably not be an integer
whenever any bootstrap samples have to be omitted.

8. Code and results for the modified simulations are posted at http: //davidroodman.com /david /
MNW2017.zip.

http://davidroodman.com/david/MNW2017.zip
http://davidroodman.com/david/MNW2017.zip

20 Wild bootstrap inference with boottest

all of these choices and defaults to the last of them; see the bootcluster () option in
section 7. Monte Carlo experiments in MacKinnon, Nielsen, and Webb (2017) suggest
that wild bootstrap tests typically perform best when the bootstrap applies clustering
in the dimension with fewest clusters.

However, even this strategy fails in at least one case, namely, in treatment models
where treatment occurs in only a few clusters, with or without a difference-in-differences
structure. Here the WCR bootstrap can dramatically underreject and the WCU bootstrap
dramatically overreject. In this context, MacKinnon and Webb (2018) proposed turning
to a subcluster bootstrap, in which the bootstrap error terms are clustered more finely
than the CRVE. The subcluster bootstrap of course includes the ordinary wild bootstrap
as a limiting case. We demonstrate the potential of this approach in section 8.3.

5 Fast execution of the wild cluster bootstrap for OLS

It is easy to implement the one-way wild cluster bootstrap in Stata’s ado-programming
language. However, this is computationally extremely inefficient. This section explains
how to speed up the wild cluster bootstrap in the Stata environment. The efficiency
gains make the wild cluster bootstrap feasible for datasets with millions of observations,
even with a million bootstrap replications, and even when running the bootstrap test
repeatedly to invert it and construct confidence sets. The main proviso is that the
number of clusters for the bootstrap DGP should not be too large.

Moving from Stata’s ado-programming language to its compiled Mata language ac-
counts for some of the gain in speed. However, when the number of clusters G is small
relative to N, a much more substantial gain arises by taking advantage of linearity and
the associativity of matrix multiplication to reorder operations. The wild cluster boot-
strap turns out to be especially amenable to such tricks, which are explained in detail
below and could be used with any programming language. The asymptotic computa-
tional complexity of using B bootstrap samples decreases from O(NB) to O(G?B).

To illustrate the computational methods employed by boottest, we use Stata’s
nlsw88.dta, which is an extract from the National Longitudinal Surveys of Young
Women and Mature Women. We fit a linear regression model to wage (hourly wage) with
covariates tenure (years in current job), tt1l_exp (total work experience), collgrad (a
dummy for college graduates), and a constant. There are 2,217 observations, clustered
into 12 industries. We test the null hypothesis that Bienure, the coefficient on tenure,
is equal to 0 against the alternative SBienure 7 O-

9. The default of bootstrap clustering at the GH level was chosen for symmetry and because it works
even when G or H is extremely small, not because it is generally the best choice.

D. Roodman, J. G. MacKinnon, M. @. Nielsen, and M. D. Webb 21

We first implement the WCR bootstrap test of this hypothesis in the ado-language,
as in CGM’s (2008) bs_example.do!? and cgmwildboot. To prepare the ground, the
following code sets the random-number seed (to ensure exact replicability) and loads
the dataset. It then takes two steps to simplify subsequent programming: recoding the
industry identifier to run sequentially from 1 to 12 in the new variable clustid and
then sorting the data by this variable:

set seed 293867483

webuse nlsw88, clear

drop if industry==. | tenure==.
egen clustid = group(industry)
sort clustid, stable

The next code block applies the WCR to test Sienure = 0. The code imposes the
null on the bootstrap DGP, takes Rademacher draws, runs B = 999 replications, and
computes the symmetric, two-tailed p-value, F§:

program define wildl
syntax, b(integer) // get passed parameter, number of bootstrap replications

quietly {
regress wage tenure ttl_exp collgrad, cluster(industry) // unconstrained model
scalar t = abs(_b[tenure] / _se[tenure]) // test statistic
local G = e(N_clust) // number of clusters
regress wage ttl_exp collgrad // base for DGP: model with null imposed
predict XB // restricted fit
predict u, resid // restricted-fit residuals

local exceedances 0
forvalues i=1/"b~ { // for each bootstrap replication...
// Rademacher draws -> first G rows of v
generate byte v = cond(runiform()<.5,1,-1) in 1/°G~
// bootstrap outcome
generate ystar = XB + u * v[clustid]
// bootstrap regression
regress ystar tenure ttl_exp collgrad, cluster(clustid)
drop v ystar

if abs(_b[tenure] / _se[tenure]) > t {
// count replication t statistics exceeding full-sample t
local "~++exceedances”

}
}
}
// symmetric, two-tailed p-value
display _n "p-value for _b[tenure]=0: " ~exceedances”/’b~
end

One subtlety in the code warrants explanation. In the line that generates ystar, the
expression “v[clustid]” exploits the ado-language’s ability to treat a variable as a
vector. For each observation, the expression obtains the value of clustid, between
1 and 12, and looks up the corresponding entry in v, whose first 12 rows hold the
Rademacher draws for a given replication, one for each industry cluster.

10. Available at http: //faculty.econ.ucdavis.edu / faculty / dlmiller / statafiles.

http://faculty.econ.ucdavis.edu/faculty/dlmiller/statafiles

22 Wild bootstrap inference with boottest

Having prepared the data and code, we run the latter on the former:

. wildl, b(999)
p-value for _b[tenure]=0: .2952953

When we run Stata 15.1 in Windows on a single core of an Intel i7-8650 in a Lenovo
laptop, this bootstrap test takes 7.19 seconds.

Next, we translate the algorithm rather literally into Mata. In contrast to the ado-
version, the Mata version must perform OLS and compute the CRVE itself, according to
(3), (7), and (12). We will not explain every line; readers can consult the relevant Mata
documentation:

mata set matastrict off
mata set matalnum off
mata set mataoptimize on

void wild2(real scalar B) { // takes one argument, the number of replications

Y = st_data(., "wage ")
X = st_data(., " tenure ttl_exp collgrad ")
// X for restricted model

Xr = st_data(., " ttl_exp collgrad ")
clustid = st_data(., " clustid")

cons = J(rows(X),1,1); X = X, cons; Xr = Xr, cons

// Records start and stop obs numbers for each cluster
info = panelsetup(clustid, 1)

k = cols(X); G = rows(info)

RO = 1,0,0,0 // R * beta = coefficient on tenure

betatilde = invsym(cross(Xr,Xr)) * cross(Xr,Y) // restricted OLS
XB = Xr * betatilde // restricted fit
utilde = Y - XB // restricted fit residuals

// first entry will be real t statistic; remaining will be replication
// t statistics
t = J(B+1,1,.)
for (i=1; i<=B+1; i++) {
if (i>1) { // except for first iteration, construct a bootstrap Y
v = 2%(runiform(G,1) :< .5) :- 1 // Rademacher draws

Y = XB + utilde :* v[clustid] // bootstrap dependent variable
}
invXX = invsym(cross(X,X))
betastarhat = invXX * cross(X,Y) // bootstrap regression fit
ustarhat = Y - X * betastarhat // bootstrap regression residuals
Gammahat = J(k,k,0) // will accumulate CRVE
for (g=1; g<=G; g++) { // loop over clusters to compute CRVE
u_g = panelsubmatrix(ustarhat, g, info)
X_g = panelsubmatrix(X , g, info)

uX = cross(u_g,X_g)
Gammahat = Gammahat + cross(uX,uX)
}
// t statistic
t[i] = abs(RO * betastarhat) / sqrt(RO * invXX * Gammahat * invXX * RO")
}
printf ("p-value for _b[tenure]l=0: %f", mean(t[1] :< t[I2\.]]))

D. Roodman, J. G. MacKinnon, M. @. Nielsen, and M. D. Webb 23

A trick introduced here is to run the replication loop B+ 1 times to compute the actual
and bootstrap test statistics with the same code. In the first (extra) iteration, we set
every element of v* to 1, which forces y*! =y.

We run this Mata version of the code with B = 9999 replications:

. mata wild2(9999)
p-value for _b[tenure]l=0: .290929093

Despite the tenfold increase in the number of replications, the run time falls by more than
half, to 3.0 seconds. This shows how much more efficient it can be to use Mata compared
with ado-based bootstrapping. To be fair, the slowness of the ado-implementation is
not pure inefficiency. For example, regress computes the matrix (X’X)~! to estimate
the parameter covariance matrix, but it does not estimate the parameters themselves
via B = (X'X)" !X’y as in the Mata code. Rather, it solves X'X3 = X'y, which is
slower but more numerically stable when X is ill conditioned (Gould 2010). However,
much of the work that regress does in our context is redundant, including a check for
collinearity of the regressors in every bootstrap replication.

The code above is not fully optimized for Mata. We will gain further efficiency
through careful analysis of the mathematical recipe. Our strategy includes these steps:

1. Consolidate the algorithm into a series of equations expressing the computations.
2. Combine steps by substituting earlier equations into later ones.

3. Use the linearity and associativity of matrix multiplication to reorder calculations.
Two main techniques fall under the heading of item 3:

a. Multiplying by thin, dimension-reducing matrices first. For example, if A is 1x100
and B and C are 100 x 100, computing (AB)C takes 20,000 scalar multiplications
(and nearly as many additions) while A(BC) takes 1,010,000. More generally,
because the final output of each replication is a scalar test statistic, constructing
large, for example, N x N or N x B, matrices during the calculations is typically
inefficient, because these matrices will eventually be multiplied by thin matrices
to produce smaller ones. Reordering calculations can allow dimension-reducing
multiplications to occur early enough so that the large matrices are never needed.

b. “Vectorizing” loops via built-in matrix operations. Mata programs are precom-
piled into universal byte code and then, at run time, translated into environment-
specific machine language. The two-step process produces code that runs more
slowly than code produced in a single step by an environment-specific C or For-
tran compiler. But Mata’s built-in operators, such as matrix multiplication, and
some of its functions, are implemented in C or Fortran and are fully precompiled,
making them very fast. In Mata, for example, matrix multiplication is hundreds
of times faster when using the built-in implementation than when running explicit

24 Wild bootstrap inference with boottest

for loops of scalar mathematical operations. Similarly, left-multiplication by S,
defined in section 2, can be performed with the fast panelsum() function added
in Stata version 13.0.!!

We next demonstrate how to perform the above steps in the context of the wild
cluster bootstrap. First, we show that when ¢ = 1 (leaving treatment of the case with
q > 1 to appendix A), each wild-bootstrap Wald statistic can be written as

/ ' _
V*b a(mv*b BBIV*b) 1alv*b

where v*? is the G-vector of wild weights, a is also G x 1, and B is G’ x G. The small
matrices a and B are fixed across replications and so only need to be computed once.
With care, they can be built without creating large intermediate matrices. It is then
convenient to compute all the bootstrap Wald numerators and denominators at once
via a’v* and B'v* where v* is the G x B matrix with bth column equal to v*°.

The following equations consolidate the computations required to perform the bth
bootstrap replication (all of which were presented earlier). The equations start after
the OLS regression of (1), which yields the residuals i and estimates 3:

u?® = i:x S'v*? (bootstrap errors) (28)
y* =XB+u® (bootstrap sample) (29)
B = (X'X)"'X'y* (bootstrap OLS fit) (30)
4 =y - xXg*t (bootstrap residuals) (31)
V= m(X'X) T IX {0 878 () X (X' X) 7 (bootstrap CRVE) (32)
Wb = (,@*b — B)’R’(R\Af*bR’)*lR(,é*b -B) (bootstrap Wald statistic) (33)

Focusing first on the Wald numerator in (33), R(B*b — B), observe that
B*b — (X/X)—lxly*b — (XIX)_IXI(X,G + u*b) — B + (Xlx)—lxlu*b (34)
Thus, the numerator can be computed as
R(B* — B) = R(X'X) " 'X'u* by (34
= R(X'X)"1X/(ii:x S'v*?) [by (28
= {R(X'X)"'X/ il }S'v* [by (11
= {S(i:* X(X'X)"'R)} v+ [by (8 (35)

These rearrangements flip the role of S in a way that reduces computation. The second
and third lines left-multiply the vector v** by S’ to expand it from height G to height

11. This approach, which boottest currently takes, has the disadvantage that it requires the data to
be sorted by cluster, which can be a costly operation in very large datasets. One could instead
compute groupwise column sums without sorting, via a hash table.

D. Roodman, J. G. MacKinnon, M. @. Nielsen, and M. D. Webb 25

N, then multiply the result by another large matrix. In contrast, the last line left-
multiplies the tall matrix i :x X(X'X)~!R/ by S to collapse it from length N to length
G; it does so before involving the G-vector v**, the entries of which therefore need not
be duplicated across observations within clusters.

Next, we vectorize (35) to compute all the bootstrap Wald numerators at once:
R(B*:0) = {S(i:+X(X'X)"'R/)}'v* (36)

where ﬁ* is the k x B matrix whose columns are formed by the B*b vectors and v* is
as defined earlier. Within the factor i1 :x X(X'X) 'R/, multiplication should proceed
from right to left because R/ is thin (it is k x ¢, where here ¢ = 1). Left-multiplication
by the sparse matrix S is performed with the Mata panelsum() function.

Equation (36) illustrates why the computational complexity (run time) of the wild
cluster bootstrap need not be O(NB). The calculations within the outer parentheses,
which produce a G-vector, have to be performed only once, and their computational
cost depends on N, but not B. The situation is reversed in the next step: the cost
of multiplying this precomputed G-vector by the G x B matrix v* is O(GB), which of
course depends on B, but not on N. Thus, provided G is not too large, it can be feasible
to make B as high as 99,999 or even 999,999, regardless of sample size.

We turn now to the Wald denominator in (33). Using the identity (11) and substi-
tuting the formula for V** in (32) into the Wald denominator in (33), we obtain
RV*R’ = mR(X'X) X' {@"? : §'S =% (@) } X (X'X) 'R’
= m{R(X'X) 71X/ (W) }8'S{@? « X (X'X) 'R’}

_ mJ*b/J*b
where the G x ¢ matrix J*? is
I =s{u? =« X(X'X) 'R’} (37)

Again, matrix multiplications should be done from right to left.

When g = 1, the X(X’X) 'R/ term in (37) is a column vector, and we can vectorize
(37) over all replications as

J* = S{X(X'X)" 'R/« u*} (38)
(RVR/)* = m x colsum(J*:xJ*) (39)
in which G* is the N x B matrix with typical column G*?, J* is the G x B matrix with

typical column J*°, and, with some abuse of notation, (R\AfR’)* is the 1 x B vector of
all the bootstrap Wald denominators.

However, this formulation is still not computationally efficient. In an intermediate
step, it constructs the N x B matrix u*, which can be impractical in large datasets. We

26 Wild bootstrap inference with boottest

therefore substitute the formula for u* into (38) and reorder certain operations. Note
first, using (31), (34), and (29), that

ﬁ*b _ y*b . X{ﬁ + (Xlx)flxlu*b} _ u*b o X(x/x)flxlu*b — qu*b (40)

where the orthogonal projection matrix Mx = I — X(X’X) !X’ yields residuals from
a regression on X. Vectorizing over replications, (40) is u* = Mxu*. Substituting this
into (38), we find that

J* =S{X(X'X)" 'R/« Mxu*}

= S{X(X'X) 'R/ Mx (i1:xS'v*)} [by (28)]
= S{X(X'X)""R/:* Mx } (i1:x S'v") [by (9)]
= [S{X(X'X)" 'R/ Mx =+ i'}S']v* [by (11)] (41)

The last line, like (36) for the numerator, postpones multiplication by the G x B matrix
v* until everything else has been calculated.

As it stands, however, (41) is still computationally expensive because Mx is an
N x N matrix. However, this problem is surmounted in the same way. We replace Mx
by I — X(X’X)~1X’ and rearrange one last time to find that

I = (s [X(X/X) 'R/ {T — X(X'X) "X} '] s’)v*
= [S{X(X’X)*IR’:*I:*ﬁ’}S’ - S{X(X'X)*R’:*X(X’X)*IX’:*ﬁ’}S’}v* (42)

We can simplify the first term through the identities S(a:xI:xb’)S’ = Sdiag(a:xb)S’ =
diag{S(a:xb)} for a and b suitably conformable column vectors. The second term can
be rearranged using the identities (9) and (10). We finally obtain

J* = (diag[S{X(X'X)—lR’:* u}] - S{X(X'X)—lR’:*X}(X’X)—l{S(ﬁ:*X)}’)v*
(43)

This formulation avoids the construction of large intermediate matrices and postpones
multiplication by the G x B matrix v* until the final step.'?> Because the factor in the
outer parentheses is G x G, the computational cost of multiplying it by v* is O(G?B),
whereas that for a more direct application of (38) is O(NB).

The analysis so far in this section shows that the overall computational cost of the
bootstrap is O(N) + O(G2B), where the first term is the cost of the initial calculations
that are not repeated for each bootstrap sample. When G is not too large, equations
(43), (39), and (36) therefore constitute an efficient algorithm for simultaneously com-
puting the numerators and denominators for all the bootstrap test statistics.

12. In fact, boottest, unlike the sample Mata code presented in this section, does not construct the
diagonal matrix indicated in (43), because that becomes inefficient as G increases. Rather, it
computes the vector that forms the diagonal of that matrix and then subtracts it from the diagonal
of the next term in (43), using an explicit for loop.

D. Roodman, J. G. MacKinnon, M. @. Nielsen, and M. D. Webb 27

The following Mata function applies these equations to the earlier example:

void wild3(real scalar B) {

Y = st_data(., "wage ")
X = st_data(., " tenure ttl_exp collgrad ")
Xr = st_data(., " ttl_exp collgrad ")
clustid = st_data(., " clustid")

cons = J(rows(X),1,1); X = X, cons; Xr = Xr, cons
info = panelsetup(clustid, 1)
N_G = rows(info) // number of clusters

// RO * beta picks out coefficient on tenure
RO = 1,0,0,0

// residuals from restricted model
utilde = Y - Xr * invsym(cross(Xr,Xr)) * cross(Xr,Y)

invXX = invsym(cross(X,X))

// Rademacher weights for *all* replications

v = 2*%(runiform(N_G,B+1) :< .5) :- 1

// insert 1s in first column to reproduce full-sample regression
v[,1] = J(N_G,1,1)

XinvXXR = X * (invXX * RO")

SXinvXXRu = panelsum(XinvXXR, utilde, info)

numer = cross(SXinvXXRu, v) // all numerators

J = (diag(SXinvXXRu) - panelsum(X, XinvXXR, info) * invXX * ///
panelsum(X, utilde, info)") * v

t = abs(numer) :/ sqrt(colsum(J :* J)) // all t statistics

printf("p-value for _b[tenure]l=0: %f", rowsum(t[1] :< t) / B)
}

This code calls panelsum() to left-multiply by S. In doing so, it takes advantage of the
function’s optional middle argument, which is a weight vector. Thus, S(ii:xX) in (43)
becomes not panelsum(X:*utilde, info) but panelsum(X, utilde, info), which is
equivalent but slightly faster.

Returning to our example, we run the new function:

. mata wild3(999999)
p-value for _b[tenure]=0: .290672291

The number of replications has gone up by an additional factor of 100, but the run time
has dropped from 3.0 to 0.69 seconds. Compared with the original (ado) implementa-
tion, the final implementation is 10,000 times faster per replication.

Appendix A generalizes this discussion to include observation weights, one-way FEs,
multiway clustering, subcluster bootstrapping, inversion of the test to form confidence
sets, and higher-dimensional hypotheses (¢ > 1). It shows, for example, how to avoid
construction of large matrices even when the model contains FEs for a grouping that is
not congruent with the error clustering.

Having demonstrated how to dramatically speed up the wild cluster bootstrap, we
end with a word of caution. The method can backfire when a key assumption—that

28 Wild bootstrap inference with boottest

there are relatively few clusters in the bootstrap DGP—is violated. For example, the
G x B wild weight matrix v* can become untenably large if G is of the same order of
magnitude as N. In many contexts, if G is large, the bootstrap will be unnecessary,
because large-sample theory will apply and tests based on standard distributions such
as the t distribution will be reliable. However, that is not always the case. For example,
in multiway clustering, the last term on the right-hand side of (25) can contain a large
number of clusters. Another possibility is that the number of bootstrapping clusters may
greatly exceed the number of error clusters, as in the subcluster bootstrap introduced
at the end of section 4.2.

boottest is also written to minimize, or at least mitigate, the computational burden
when G is large. It uses specially optimized code for the extreme “robust” case, in which
G = N. If the number of clusters is large yet smaller than [V, it switches to a more direct
implementation of (38). In either case, an issue distinct from computational burden
may arise: the storage needed for the G x B matrix v* may exceed available RAM.
Performance will then degrade sharply as virtual memory is cached to disk. To forestall
such a slowdown, the user can invoke boottest’s matsizegb() option, which partitions
v* horizontally into chunks, creating and destroying each in turn; see section 7.

6 Extensions to IV, GMM, and ML

The tests that boottest implements are not limited to models estimated by OLS. In
this section, we briefly discuss boottest implementations of the wild bootstrap in the
context of other estimation methods.

6.1 The WRE bootstrap for IV estimation

Davidson and MacKinnon (2010) proposed an extension of the wild bootstrap to linear
regression models estimated with Iv. We consider the model

y1=Yoy + X108+ uw (44)
Y, = X 1T + XoIIs + Uy (45)

where y1, Yo, Xy, and Xy are the observation vectors or matrices for the dependent
variable, the endogenous (or instrumented) variables, the included exogenous variables,
and the excluded exogenous variables (instruments), respectively. Equation (44) is the
structural equation for y;, and (45) is the reduced-form equation for Y. The matrices
Y, IT;, I1,, and Us all have one column for each endogenous variable on the right-hand
side of (44).

Davidson and MacKinnon (2010) allowed for correlation between corresponding el-
ements of u; and Us, and for heteroskedasticity, but not for within-cluster dependence.
We will instead consider the clustered case, to which Davidson and MacKinnon’s (2010)
WRE bootstrap naturally extends (Finlay and Magnusson 2014). Once again, we make
no assumption about the within-cluster error variances and covariances. We merely
assume that, if observations ¢ and j are in different clusters, then E(uq;u1;), E(uisu;),

D. Roodman, J. G. MacKinnon, M. @. Nielsen, and M. D. Webb 29

and E(uziu’zj) are identically zero, where uy; is the ith element of u; and up; is the
column vector made from the jth row of Us.

Like the WCR bootstrap, the WRE bootstrap begins by fitting the model subject to
the null hypothesis, which in Davidson and MacKinnon (2010) is that v = 0. Imposing
this restriction on (44) makes OLS estimation appropriate. Davidson and MacKinnon
(2010) suggested a technique for estimating the reduced form (45) that yields more
efficient estimates than simply regressing Y5 on X; and X3. The residual vector from
the OLS fit of (44) is added as an extra regressor in (45). This explains the word
“efficient” in the name of the procedure.

As implemented in boottest, the WRE bootstrap admits null restrictions other than
~ = 0. It can test any linear hypothesis involving any elements of v and 3. To achieve
this generalization, boottest fits the entire system using ML, subject to Rd = r, where
8§ = [v' B').13 Because there is only one structural equation, the ML estimates of &
are actually LIML estimates. Appendix B derives the restricted LIML estimator used by
boottest. Like classical LIML, this estimator can be computed analytically, without
iterative searching. Because the estimates of IT; and Il are also ML estimates, they
are asymptotically equivalent to the efficient ones used in Davidson and MacKinnon’s
(2010) procedure.

_ Having obtained estimates of all coefficients under the null hypothesis—that is, -,
B, II;, and II,—the WRE bootstrap works in the same way as the WCR bootstrap. It
next computes the restricted-fit residuals,

U =y — (Y29 +X,8)
Uy = Yy — (X, 10, + X,IIy)

To generate each WRE bootstrap sample, these residuals are then multiplied by the wild
weight vector v*?, which, in the standard one-way-clustered case, has one element per
cluster. This preserves the conditional variances of the error terms, their correlations
within clusters, and their correlations across equations. For the bth bootstrap sample,
the simulated values for all endogenous variables are then constructed as follows,

yir=Y3+XiB+u’ ui’ =S (46)
Y;b = X T, + XoIIy + U’éb, U’éb =U,:+S'v* (47)
where it should be noted that Y;b is actually generated before y}‘b.

After the bootstrap datasets have been constructed, various estimators can be ap-
plied. boottest currently supports 2SLS, LIML, k-class, Fuller LIML, and generalized
method of moments (GMM) estimators. Wald tests may then be performed for hypothe-
ses about the parameters. The WRE also extends naturally to multiway clustering and
the subcluster bootstrap. boottest supports all of these possibilities, except that, for
GMM estimation, it does not recompute the moment-weighting matrix for each bootstrap
replication.

13. boottest can also use the unrestricted fit, as in the WCU bootstrap DGP after OLS, but simulation
results in Davidson and MacKinnon (2010) suggest that this is a very bad idea.

30 Wild bootstrap inference with boottest

Unfortunately, some of the techniques introduced in section 5 to speed up execution
do not work for IV estimators. The problem is that the bootstrap estimators are non-
linear in v**. For example, if Z** = [Y3® X;] is the full collection of right-hand-side
bootstrap data in the y;® equation and X = [X; Xj] is the same for the Y5 equation,
then the 2SLS estimator is given by

ok * xb1 1 * *
6 b — {(Z b)/PXZ b} (Z b)/PXylb

where Px = X(X’X)~!X’. This estimator is nonlinear in Z**, which contains Y3?,
which is linear in v**. The resulting overall nonlinearity prevents much of the reordering
of operations that is possible for OLS.

This computational limitation does not apply to the Anderson-Rubin (AR) test,
which is also available in boottest. To perform an AR test of the hypothesis that
Y = 0, we subtract Ya7 from both sides of (44) and substitute for Yo from (45):

yi— Yoy = Yo(v —v) + XuB8 + wy
= (XTI 4 XoITo 4+ Us) (v — 70) + X184+ wy

= X {1 (v — 70) + B} + XaIla(y — %) + Ua(v — %) + w (48)

If the instruments X5 are valid, it must be valid to apply OLS to (48), that is, to regress
Y1 — Y20 on Xs while controlling for X;. If the hypothesis v = g is correct and the
X, are valid instruments, then the coefficient on X5 in this regression model is zero.
The AR test is computed as the Wald test that the coefficient on X5 equals zero. It
is then interpreted as a joint test of the hypothesis v = =y and of the overidentifying
restrictions that the instruments are valid. Because the test does not involve esti-
mating any coefficients on instrumented variables and hence does not require that the
rank condition (that Ils has full rank) is satisfied, it is robust to instrument weakness
(Baum, Schaffer, and Stillman 2007).

Note that the AR test is exact under classical assumptions because it tests rather
than assumes the key condition of instrument validity. Thus, it may seem odd to
bootstrap the AR test. However, we have allowed equations (44) and (45) to have error
terms that may be heteroskedastic or correlated within clusters, or both. Because the
AR test is not exact under these conditions, bootstrapping it should generally improve
its finite-sample properties.

When the WRE bootstrap is used to estimate the distribution of an AR test statistic,
it varies only the left-hand side of (48) as it constructs bootstrap samples. In particular,
using (46) and (47), the bootstrap values of the left-hand side of (48) for cluster g are

Vb = Yibyo = F1 — Yoo + (g — Uzgyo)v)?

Therefore, the WRE bootstrap of an AR test can be implemented as a WCR bootstrap
test of the hypothesis that the coefficients on Xo are all zero in regression (48).

We stress that the AR test has a different null hypothesis than the other tests we
consider. It tests not only that the coefficients on Yy take certain values but also

D. Roodman, J. G. MacKinnon, M. @. Nielsen, and M. D. Webb 31

that the instruments are valid, in the sense that the overidentifying restrictions are
satisfied. In consequence, its results need to be interpreted with great care, especially
if the test is inverted to construct a confidence set for ~. If the test tends to reject the
null for most trial values of =, this may simply indicate that the instrument validity
assumption should be rejected rather than that « is being estimated with high precision;
see Davidson and MacKinnon (2014).

6.2 The score bootstrap

The “score bootstrap” adapts the wild bootstrap to the class of extremum estimators,
which includes ML and GMM. The notion of a residual, which is central to the wild
bootstrap, does not carry over directly to extremum estimators in general. Instead
of working with residuals, the score bootstrap works with the observation-level contri-
butions to the scores, which are the derivatives of the objective function with respect
to the parameters. Hu and Zidek (1995) and Hu and Kalbfleisch (2000) showed how to
apply the pairs bootstrap to scores. Kline and Santos (2012) applied the wild bootstrap
instead, producing what they dub the score bootstrap.

Consider the probit model for binary data, y; = H(q)(xiﬁ) > 0), where ®(-) is the
cumulative standard normal distribution function. It would make no sense to apply the
wild bootstrap to such a model, because the “residuals” would equal either —®(x;3) or

1-— @(xi,@), depending on whether the dependent variable equaled 0 or 1.

Although there is no reason to use the score bootstrap in the context of the lin-
ear regression model in section 2, it is illuminating to see how it would work. If, for
estimation purposes, the error terms are assumed to be normally and independently
distributed with variance o2, then the log-likelihood contribution of observation 4 is

6(8,0) = 3 log(2m0%) — = (i — xiB)’ (49)

The vector of derivatives of (49) with respect to 3 is (y; — x;8)x;/0?. Evaluating this
at B and summing over all observations yields the score vector

G
1X'" 1X/"
s=— u:E Sy, Sg= =X 1
o2 197 9 o299
g:

where s, is the score subvector corresponding to the gth cluster. Similarly, the negative
of the Hessian matrix, the matrix of second derivatives of the log likelihood for the
entire sample, is —H = X'X /o2

Now consider the wild bootstrap Wald statistic (23), which can also be written as

W = (B — BYR'(RV*'R')'R(B" ~ §) (50)

32 Wild bootstrap inference with boottest

As noted in (35), the numerator of this statistic can be rewritten as R(X'X) 1 X'u*.
Therefore,

G
R(B*b _ ﬁ) — X/X —1 Z X/ u*b
g=1
G G
-1 Z (Xiig)vy” = —RH™ Z sqvs’ (51)
g=1 g=1

From the rightmost expression here, we see that the v;b are generating the bootstrap
variation in the Wald numerator by perturbing the score contributions, s,. Because
of the perturbations, the full set of bootstrapped score contributions, s** = X'u*?, is
not itself a score matrix; that is, it is not a set of observation-level derivatives of any
log likelihood. Nonetheless, the premise of the score bootstrap is that this randomness
generates information about the distribution of the score vector from the actual sample

and hence of test statistics based upon it.

In the OLS case, the score bootstrap combines the Wald numerator (51), which is
the same as in the wild bootstrap, with a somewhat different estimate of its variance
that avoids reference to residuals and takes scores as primary quantities. This variance
estimate enters the denominator of the bootstrap Wald or score/Lagrange multiplier
statistic. To show the difference, we write the wild bootstrap CRVE as

G
V= m(X'X)™! {Z X;a;b(a;b)/xg} (X'X)~

g=1

see (7) and (32). The score bootstrap instead uses

G
Vb — {ZX }(X'X) =mH™! {Z s;b(szb)’}H1

Thus the bootstrap residuals from reestimation on each bootstrap sample are dropped in
favor of the bootstrap errors. The latter, when multiplied by X in the formula, constitute
the bootstrap scores. In Kline and Santos (2012), s** is demeaned columnwise before
entering this variance estimate; see appendix A.3.

As Kline and Santos (2012) showed, this formulation generalizes straightforwardly
to tests based on any extremum estimator for which cluster-level contributions to the
score and the Hessian are computable. This allows us to use the computational tricks of
section 5 to calculate many score bootstrap statistics quickly. When the null hypothesis
is imposed, the actual test statistic that corresponds to (50) is a score or Lagrange
multiplier statistic; see Wooldridge (2010, (12.68)).

The score bootstrap is computationally attractive, but it does not always provide
a good approximation, for two reasons. First, as mentioned just above, in the OLS
case, the denominator of the score bootstrap test statistic uses bootstrap errors instead

D. Roodman, J. G. MacKinnon, M. @. Nielsen, and M. D. Webb 33

of bootstrap residuals to calculate the variance estimate, but the test statistic that
is calculated on the original data uses residuals. Hence, the distribution of the score
bootstrap test statistics cannot account for the use of residuals instead of errors in the
variance estimate. Second, in nonlinear models, because the scores and the Hessian
for all the bootstrap samples are evaluated at @ rather than at estimates that vary
across bootstrap samples, the score bootstrap cannot fully capture the nonlinearity of
the estimator.

A dramatic example of the second issue can be found in Roodman and Morduch
(2014), which replicated the Pitt and Khandker (1998) evaluation of microcredit pro-
grams in Bangladesh. The latter relied on a nonlinear, multiequation ML estimator, and
Roodman and Morduch (2014) showed that the ML estimator was bimodal. The pre-
viously unreported second mode corresponded to negative rather than positive impact,
and Wald tests performed at either mode returned large and mutually contradictory ¢
statistics. In a pairs bootstrap, the second mode was favored in a third of the replica-
tions. Because the score bootstrap estimates test statistic distributions from the scores
and Hessian computed at a single estimate, B, it is incapable in this context of accu-
rately representing the distribution of the parameter estimates of primary concern. We
suggest that the score bootstrap not be relied upon without evidence that it works well
in the case of interest.

7 The boottest package

The boottest package performs wild bootstrap tests of linear hypotheses. It is com-
patible with Stata versions back to 11.0, but it runs faster in Stata versions 13.0 and
later because they include the Mata panelsum() function. The syntax is modeled on
that of Stata’s built-in command for Wald testing, test. Like test, but unlike other
Stata implementations of the wild bootstrap, boottest is a postestimation command.
It determines the context for inference from the current estimation results.

The following three commands implement the extended example in section 5:

webuse nlsw88, clear
regress wage tenure ttl_exp collgrad, cluster(industry)
boottest tenure

Here, by default, boottest generates 999 wild cluster bootstrap samples using the
Rademacher distribution, with the null hypothesis imposed. It reports the t statistic
from the Wald test and its bootstrapped p-value (by default, symmetric). It then
automatically inverts the test, as described in section 3.5, and reports the bounds of
the confidence set for the default level of confidence, which is normally 95%. Finally, it
plots the “confidence curve” underlying this calculation, that is, the bootstrap p-value
for the hypothesis Bienure = ¢ as a function of ¢. It marks the points where the curve
crosses 0.05, which are the limits of the confidence set.

In general, boottest accepts any hypothesis statement conforming to the syntax of
Stata’s constraint define. The hypothesis is stated before the comma in a boottest

34 Wild bootstrap inference with boottest

command line, and options come after. In the hypothesis definitions, a simple reference
to a regressor implies “= 0”. Similarly, the joint hypothesis Bienure = Btt1exp = 0 is
tested by

boottest tenure ttl_exp

Because the null hypothesis is now two dimensional, boottest also depicts the confi-
dence surface using Stata’s twoway contour command; see figure 1. But it does not
numerically describe the boundary of the confidence set that would result from inter-
secting this surface with the plane defined by, say, P = 0.05.

p

ttl_ex|

anjead

tenure

Figure 1. p-value surface for joint hypothesis that Bienure = Brt1exp = 0

Expressing more complex linear hypotheses requires the equals sign:
boottest 2*tenure + 3*ttl_exp = 4

To jointly test several complex hypotheses, we must enclose each in parentheses:

boottest (tenure) (ttl_exp = 2)

D. Roodman, J. G. MacKinnon, M. @. Nielsen, and M. D. Webb 35

More idiosyncratically, boottest allows the user to test hypotheses independently
rather than jointly, using curly braces. The following example has the same effect as
running “boottest tenure” and “boottest ttl_exp = 2”7 separately, except that it
exploits the availability of the Bonferroni adjustment for multiple hypothesis testing (on
which, see [R] test):

boottest {tenure} {ttl_exp = 2}, madjust(bonferroni)

Parentheses may be nested within curly braces to test several joint hypotheses sepa-
rately:

boottest {(tenure) (ttl_exp=1)} {(tenure) (ttl_exp=2)}, madjust(sidak)

The boottest command can be run after application of the following estimators:

1. OLs, as performed by regress.
2. Restricted OLS, as performed by cnsreg.

3. Instrumental variables estimators—2SLS, LIML, Fuller’s LIML, k-class, or GMM—
as fit with ivregress or the ivreg2 package of Baum, Schaffer, and Stillman
(2007). In all cases, the WRE bootstrap is applied by default. boottest initializes
the bootstrap DGP with LIML and, in particular, restricted LIML unless the user
includes the nonull option. It then applies the user’s chosen estimator on the
bootstrap datasets. After GMM estimation, boottest bootstraps only with the
final moment-weighting matrix; it does not replicate the process for computing
that matrix.'* By default, Wald tests are performed. However, the AR test
is available; its default hypothesis is that all instrumented variables have zero
coefficients and that the overidentifying restrictions are satisfied. After 2SLS and
GMM, the score bootstrap is also available.

4. OLS and linear IV estimators with one set of “absorbed” FEs, as fit with Stata’s
areg command, its xtreg and xtivreg commands with the fe option, or the
community-contributed xtivreg2 (Schaffer 2005) or reghdfe (Correia 2014) com-
mand.

5. ML estimators, as fit with commands such as probit, logit, glm, sem, gsem,
and the community-contributed cmp (Roodman 2011). Here boottest offers only
the score bootstrap. To reestimate nonlinear models while imposing the null,
boottest must modify and reissue the original estimation command. This re-
quires that the estimation package accept the standard options constraints(),
iterate(), and from(). The package must also support generation of scores via
predict. Many ML-based estimation procedures in Stata meet these criteria. Be-
cause of the computational burden that is typical of ML estimation, boottest
does not attempt to construct confidence sets by inverting score bootstrap tests.

14. It would be better to recompute the GMM weighting matrix in each replication according to
whatever algorithm the researcher has chosen, but that has not been implemented.

36 Wild bootstrap inference with boottest

boottest detects and accommodates the choice of variance matrix type used in the
estimation procedure, be it homoskedastic, heteroskedasticity-robust, cluster-robust, or
multiway cluster—robust. It does the same for small-sample corrections, such as with the
small option of ivregress. It also lets users override those settings during inference,
accepting its own robust, cluster (), and small options. Thus, for example, tests after
regress can be multiway clustered even though that command does not itself support
multiway clustering. In fact, the boottest package includes the wrappers waldtest
and scoretest to expose such functionality without requiring any bootstrapping. The
following code shows two examples:

regress wage tenure ttl_exp collgrad, cluster(industry)
waldtest tenure, cluster(industry age)

probit c_city tenure wage ttl_exp collgrad, cluster(industry)
scoretest tenure

A third wrapper, artest, offers the nonbootstrapped AR test:

ivregress 2sls wage ttl_exp collgrad (tenure = union), cluster(industry)
artest, cluster(industry age)

The boottest command accepts the following options, nearly all of which are in-
herited by the wrapper commands:

nonull suppresses the imposition of the null hypothesis on the bootstrap DGP.

reps (#) sets the number of replications, B. The default is reps (999). Especially when
clusters are few, increasing this number costs little in run time. reps(0) requests a
Wald test or, if boottype (score) is also specified and nonull is not, a score test.
The wrappers waldtest and scoretest facilitate this usage.

seed(#) sets the initial state of the random-number generator; see [R] set seed.

ptype (symmetric|equaltail | lower |upper) chooses the p-value type from the ones

~ listed in (18) and (19). The option applies only to unary hypotheses, ones involving
a single equality. The default is ptype(symmetric) and has the p-value derived
from the square of the t/z statistic or, equivalently, the absolute value. equaltail
performs a two-tailed test using the t/z statistic. For example, if the confidence level
is 95, then the symmetric p-value is less than 0.05 if the square of the test statistic is
in the top 5 centiles of the corresponding bootstrapped distribution. The equal-tail
p-value is less than 0.05 if the test statistic is in the top or bottom 2.5 centiles. In
addition, lower and upper allow one-sided tests.

level (#) specifies the confidence level, as a percentage, for the confidence interval.
The default is 1level(95) or as set by set level. Setting it to 100 suppresses
computation and plotting of the confidence set while still allowing plotting of the
confidence curve or surface.

madjust (bonferroni | sidak) requests the Bonferroni or Sidék adjustment for multiple
hypothesis tests. The Bonferroni p-value is min(1,nP), where P is the unadjusted
p-value and n is the number of hypotheses. The Sidak p-value is 1 — (1 — P)™.

D. Roodman, J. G. MacKinnon, M. @. Nielsen, and M. D. Webb 37

weighttype (rademacher | mammen | webb | normal | gamma) specifies the distribution for
the wild weights, v;b, from among the choices in section 3.4. The default is
weighttype (rademacher). For the Rademacher distribution, if the number of repli-
cations B exceeds the number of possible draw combinations, 2¢, then boottest will
use each possible combination once (enumeration).

noci prevents the automatic computation of a confidence interval when it would other-
wise be computed. This can save a lot of time when the null is imposed and when
B or the number of bootstrapping clusters is large.

nograph prevents graphing of the confidence function but not the derivation of the
confidence set.

small requests finite-sample corrections even after estimates that did not make them.

robust and cluster (varlist) have the traditional meanings and override settings used
in estimation. To cluster by several variables, list them all in cluster().

bootcluster (varname) specifies the bootstrap clustering variable or variables. If more
than one variable is specified, then bootstrapping is clustered by the intersections of
clustering implied by the listed variables. The default is to cluster by the intersection
of all the cluster () variables, although this is generally not recommended with mul-
tiway clustering; see section 4.2. Note that cluster(A B) and bootcluster(A B)
mean different things. The first is two-way clustering of the errors by A and B. The
second is one-way clustering of the bootstrap errors by the intersections of A and B.

ar requests the AR test. It applies only to IV estimation. The null defaults to all
coefficients on endogenous (instrumented) variables being zero. If the null is specified
explicitly, then it must fix all coefficients on instrumented variables, and no others.

boottype(wild|score) specifies the bootstrap type. After ML estimation, score is the
default and only option. Otherwise, wild or WRE bootstrap is the default, which
boottype (score) overrides in favor of the score bootstrap.

quietly, when working with ML estimates, suppresses display of the initial reestimation
with the null imposed.

gridmin (# [#}), gridmax (# [#}), and gridpoints(# [#]) override the default
lower and upper bounds and the resolution of the grid search that begins the process
of plotting the contour curve or surface and, for one-dimensional hypotheses, search-
ing for the confidence interval bounds. By default, boottest estimates the lower
and upper bounds by working with the bootstrap distribution. It initially evaluates
25 grid points. Reducing this number can save time in computationally demanding
problems, at the cost of some crudeness in the confidence plot and the risk, if the
confidence set may be disjoint, of missing one or more parts of it.

graphname(name[, replace]) names any confidence plots. When multiple indepen-
dent hypotheses are being tested, name will be used as a stub, producing name_1,
name_2, and so on.

38 Wild bootstrap inference with boottest

graphopt (string) allows the user to pass formatting options to the graph twoway com-
mand to control the appearance of the confidence plot.

mat[(t |numer)] requests that the bootstrapped test statistics be saved in return
value r(dist). This can be diagnostically useful because it allows analysis of the
simulated distribution. Section 8.3 below provides an example. If svmat (numer) is
specified, overriding the default of svmat (t), only the test statistic numerators are
returned. If the null hypothesis is that a coefficient is zero, then these numerators
are the estimates of that coefficient in all the bootstrap replications.

cmdline(string) provides boottest with the command line used to generate the esti-
mates. This is typically needed only when performing the Kline-Santos score boot-
strap after estimation with the ml1 model command and only when imposing the
null. To impose the null on an ML estimate, boottest needs to rerun the estimation
subject to the constraints imposed by the null. To do that, it needs access to the
command line that generated the results. Most Stata estimation commands save the
command line in the e (cmdline) return macro, which boottest looks for. However,
if one uses Stata’s m1 model command, perhaps with a custom likelihood evaluator,
no e(cmdline) is saved. The cmdline(string) option provides a work-around by
allowing the user to pass the estimation command line manually.

matsizegb(#) limits the memory demand of the G x B matrix v* to prevent caching
of virtual memory to disk. The limit is specified in gigabytes. Note that this option
does not limit the actual size of v*. Instead, it forces boottest to break the matrix
into chunks no larger than the limit, creating and destroying each chunk in turn.

8 Empirical examples

To illustrate the methods that boottest makes available, we present four empirical
examples adapted from published research.

8.1 OLS with few clusters

Gruber and Poterba (1994) studied whether tax incentives prompt self-employed people
to buy health insurance. They used a difference-in-differences design to study the impact
of the passage of the Tax Reform Act of 1986 in the United States. The act extended
a preexisting tax subsidy for employer-provided insurance to self-employed people as
well. Thus, the employed served as the comparison group for the self-employed. The
dataset spans the eight years 1983-1990, with the posttreatment period beginning in
1988, when the law came into full effect.

CGM (2008) revisited this study using an aggregated version of the Gruber—Poterba
dataset with just 16 observations, one for each combination of year and employment
type.'® They regressed the insured fraction on dummies for employment type, the

15. Because treatment is fixed for each year and employment type and standard errors are clustered
by year, we expect that the same analysis on disaggregated data would yield similar results.

D. Roodman, J. G. MacKinnon, M. @. Nielsen, and M. D. Webb 39

posttreatment period, and the product thereof, with the last of these being the treatment
dummy:

. use http://faculty.econ.ucdavis.edu/"dlmiller/statafiles/collapsed
. regress hasinsurance selfemployed post post_self, cluster(year)

(output omitted)

This command estimates Byost_se1s, the parameter of interest, to be 0.055 with a stan-
dard error of 0.0074 when clustering by year. To illustrate the wild cluster boot-
strap, CGM (2008) tested the hypothesis fpost_se1s = 0.04. The associated ¢ statistic
is (0.055—0.04)/0.0074 = 2.02, which, when evaluated against the standard normal and
the ¢(6) distribution, yielded p-values of 0.043 and 0.090, respectively. They reported
that a wild bootstrap with 999 replications, Mammen weights, and no imposition of the
null returned P = 0.070. We obtain fairly similar results as follows:

. waldtest post_self = .04, noci
Wald test:
post_self = .04
t(7) = 2.0194
Prob>|t]| = 0.0832

. boottest post_self=.04, weighttype(mammen) nonull noci seed(2309487)
Warning: with 8 Clusters, the number of replications, 999, exceeds the universe
> of Mammen draws, 278 = 256.
Consider Webb weights instead, using weight (webb).
Wild bootstrap, null not imposed, 999 replications, Wald test, bootstrap
> clustering by year, Mammen weights:
post_self=.04
t(7)
Prob>|t]|

2.0194
0.0480

In the first test, following Stata convention, waldtest uses the ¢(G —1) distribution, and
here there are G = 8 clusters. For the bootstrap test, boottest produces an interesting
warning. Although cGM (2008) used 999 replications, with 8 clusters, the two-point
Mammen distribution can produce only 256 different bootstrap samples.

We improve on this example by imposing the null, as advised by cGM (2008) and in
section 3.2, then drawing from the six-point Webb distribution, increasing the number
of bootstrap samples to B = 999, 999, and inverting the test to derive a 95% confidence
interval for Bpest_se1s:

40 Wild bootstrap inference with boottest

. boottest post_self=.04, reps(999999) weighttype (webb)

Wild bootstrap, null imposed, 999999 replications, Wald test, bootstrap
> clustering by year, Webb weights:
post_self=.04

t(7) 2.0194
Prob>|t]| 0.0756

95}, confidence set for null hypothesis expression: [.03851, .07106]

8.2 OLS with multiway clustering

Michalopoulos and Papaioannou (2013) investigated the effect of precolonial ethnic in-
stitutions on comparative regional development in African countries. They proxied
regional variation in economic activity by satellite images of light density taken at
night. In section 4 of Michalopoulos and Papaioannou (2013), geographic pixels of size
0.125 x 0.125 decimal degrees are the unit of analysis. Their specification is

Yp,i,e = Qe + 'VIQLi +)‘PDp,i7c + Z/ v + X;c(b + Cp,i,c

p,i,cC

where y,, ; - represents economic activity in pixel p in the historical homeland of ethnicity
i in country c¢. Controls include country-level FEs (a.), log population density (PDy;),
pixel-level variables (Z, ;), and ethnicity-country-level variables (X, .). The predictor
of interest is IQL;, which represents the degree of jurisdictional hierarchy, beyond the
local level, for ethnic institutions.

In the regression that we replicate—{rom Michalopoulos and Papaioannou (2013)
table V, panel A, column 10—the dependent variable is the log of average pixel lumi-
nosity in 2007-2008. The N = 66,173 observations come from G = 49 countries and
H = 94 ethno-linguistic groups. The two clustering dimensions have 295 nonempty
intersections. We reproduce this regression using the Michalopoulos and Papaioannou
(2013) data file!® and cGM’s (2011) multiway clustering command, cgmreg.'”

use pixel-level-baseline-final, clear

global pix lnkm pixpetro pixdia pixwaterd pixcapdist pixmal pixsead ///
pixsuit pixelev pixbdist

global geo lnwaterkm lnkm2split mean_elev mean_suit malariasuit ///
petroleum diamondd

global poly capdistancel seadistl borderdisti

encode pixwbcode, gen(ccode) // make numerical country identifier

cgmreg 1nl0708s i.ccode centr_tribe lnpd0 $pix $geo $poly, ///
cluster(ccode pixcluster)

The coefficient estimate of interest, for cntr_tribe, is 0.156. The standard error, two-
way clustered by ethno-linguistic group and country, is 0.048, yielding a t statistic
(reported in Michalopoulos and Papaioannou [2013] as a z statistic) of 3.228 for the
null hypothesis that v = 0. This implies a 95% confidence interval of [0.061,0.251].

16. Available at http://econometricsociety.org / content /supplement-pre-colonial-ethnic-institutions-
and-contemporary-african-development-0.

17. Available at http: //web.archive.org /web /20170406170058 / http: // gelbach.law.upenn.edu /
~gelbach / ado / cgmreg.ado

http://econometricsociety.org/content/supplement-pre-colonial-ethnic-institutions-and-contemporary-african-development-0
http://econometricsociety.org/content/supplement-pre-colonial-ethnic-institutions-and-contemporary-african-development-0
http://web.archive.org/web/20170406170058/http://gelbach.law.upenn.edu/~gelbach/ado/cgmreg.ado
http://web.archive.org/web/20170406170058/http://gelbach.law.upenn.edu/~gelbach/ado/cgmreg.ado

D. Roodman, J. G. MacKinnon, M. @. Nielsen, and M. D. Webb 41

As discussed in section 4.2, there are three natural choices for the level of bootstrap
clustering in this case: by ethno-linguistic group, by country, or by the intersection of
the two. Simulation results in MacKinnon, Nielsen, and Webb (2017) favor clustering
in the dimension with the fewest clusters, which, in this case, is the 49 countries. For
illustration, we perform tests for all three levels. Also for illustration, we move to Stata’s
FE linear regression command, areg. The latter cannot perform multiway clustering, so
we do not bother to specify clustering during estimation. Instead, we use the waldtest
wrapper to calculate the appropriate multiway p-value. Likewise, we add the cluster ()
option to the boottest command lines. We then use the bootcluster() option to
control the level of bootstrap clustering:

areg 1nl0708s centr_tribe 1lnpd0 $pix $geo $poly, absorb(ccode)

waldtest centr_tribe, cluster(ccode pixcluster)

set seed 2309487 // for exact reproducibility of results

boottest centr_tribe, reps(9999) clust(ccode pixcluster) bootcluster(ccode)

boottest centr_tribe, reps(9999) clust(ccode pixcluster) bootcluster(pixcluster)

boottest centr_tribe, reps(9999) clust(ccode pixcluster) /17
bootcluster(ccode pixcluster)

The calls to boottest return 95% confidence intervals of [0.055,0.249], [0.045,0.264],
and [0.054, 0.249], respectively. These differ only slightly from the original [0.061, 0.251].
This is not surprising, because even the coarsest clustering dimension here contains 49
clusters. The number of clusters is probably large enough that the performance of
nonbootstrap tests and confidence intervals is close to their asymptotic behavior.

8.3 Difference-in-differences with few treated clusters

Conley and Taber (2011) observed that, in difference-in-differences estimation with few
treated clusters, the cluster—robust CRVE can be severely biased. In response, Con-
ley and Taber (2011) proposed a particular application of randomization inference.
MacKinnon and Webb (2017b) showed that the wild cluster bootstrap also fails in
this setting: the WCU bootstrap overrejects, and the WCR bootstrap underrejects.
Later, MacKinnon and Webb (2018) proposed the subcluster bootstrap mentioned in
section 4.2 as a way to reduce the extent of the problem. We illustrate these findings
in the context of an empirical example studied in Conley and Taber (2011).

Conley and Taber (2011) studied the impact on college enrollment of state-level
merit scholarship programs using data from Current Population Surveys for all states
and the District of Columbia, covering 1989-2000.'® During the study period, 10 states
adopted such programs. Conley and Taber (2011) regressed an individual-level dummy
for eventual college enrollment on dummies for sex, race, state, and year, as well as
the treatment variable, which is a dummy for the availability of state-level scholarships.
One of Conley and Taber’s (2011) specifications evaluates the average impact of all 10
states’ programs, and another focuses on the most famous program, Georgia’s HOPE,
by dropping the other 9 treatment states from the sample. In both cases, standard
errors are clustered by state. If G; denotes the number of clusters in which treatment

18. Data are available at http: //economics.uwo.ca / people / conley_docs / code_to_download.html.

http://economics.uwo.ca/people/conley_docs/code_to_download.html

42 Wild bootstrap inference with boottest

occurs, these models have N = 42,161, G = 51, and G; = 10 for the merit scholarship
regressions and N = 34,902, G = 42, and G; = 1 for the HOPE scholarship regressions.
Thus, the HOPE regressions illustrate the extreme case in which there is just one treated
cluster.

We first consider the model with 10 states. We apply six variants of the wild cluster
bootstrap to test the hypothesis that the scholarship programs were not associated with
college enrollment. Three impose the null hypothesis, and three do not. Within each
triplet, the first variant clusters the bootstrap errors by state, the level at which they
are clustered in the CRVE. The second variant clusters the bootstrap errors by state-year
combination, and the third variant clusters them by individual. Clustering by individual
means not clustering at all, so this variant is actually the ordinary wild bootstrap.

infile coll merit male black asian year state chst using regm.raw, clear
set seed 3541641

regress coll merit male black asian i.year i.state, cluster(state)

generate individual = _n // unique ID for each observation

boottest merit, reps(9999) gridpoints(10) // defaults to bootcluster(state)
boottest merit, reps(9999) gridpoints(10) nonull

boottest merit, reps(9999) gridpoints(10) bootcluster(state year)
boottest merit, reps(9999) gridpoints(10) nonull bootcluster(state year)
boottest merit, reps(9999) gridpoints(10) bootcluster(individual)

boottest merit, reps(9999) gridpoints(10) nonull bootcluster(individual)

The last two commands are especially demanding: memory usage temporarily rises by
about 4.5GB. The primary cause is the construction of a wild weight matrix v* with one
row for each of the 42,161 observations (“clusters” for bootstrapping purposes) and one
column for each of the 9,999 replications.'® When the null hypothesis is imposed, the
computational burden of constructing and multiplying the large matrices is compounded
by the search for confidence interval bounds, which requires rerunning the bootstrap
for many trial values (see section 3.5). The gridpoints(10) options save a bit of time
by instructing boottest to evaluate 10 instead of the default 25 evenly spaced values
in its initial search for confidence interval bounds. The cost of that choice is that the
confidence curve plots, which we do not look at here, are rougher. On the hardware
referenced in section 5, the penultimate command takes 9.7 minutes.?0

We next run the same tests for Georgia’s HOPE program alone. This time, we
condense the boottest commands into a loop and take advantage of boottest’s svmat
option to save the t statistics from each bootstrap sample. To give insight into the
behavior of the wild cluster bootstrap here, we plot histograms for all six distributions:

19. Actually, it has 10,000 columns because an extra one is inserted as in the model code in section 5.
20. In Stata/MP, using 4 processors cuts the run time to 5.6 minutes.

D. Roodman, J. G. MacKinnon, M. @. Nielsen, and M. D. Webb 43

regress coll merit male black asian i.year i.state ///
if !inlist(state,34,57,59,61,64,71,72,85,88), cluster(state)
local gr O
foreach bootcluster in state "state year" individual {
foreach nonull in "" nonull {
boottest merit, reps(9999) gridpoints(10) bootcl(bootcluster) “nonull” svmat
mat dist = r(dist)
svmat dist
histogram distl, xline(r(t) ") title(" bootcluster” “nonull”") ///
xtitle("") ytitle("") ylabel(,angle(horizontal)) name(gr ++gr~, replace)
drop distl
¥
}

graph combine grl gr3 grb5 gr2 gr4 gr6, imargin(tiny) xcommon ycommon

Table 1 presents parameter estimates, cluster—robust standard errors, and ¢ statistics
for the 10-state and Georgia-specific regressions, along with six bootstrap p-values and
the associated 95% confidence intervals.?! For the 10-state regression, the p-values
and confidence intervals are similar to one another, which is to be expected given the
number of clusters (51) and number of treated clusters (10). In contrast, the Georgia-
only p-values and confidence intervals vary radically. As predicted by the theory in
MacKinnon and Webb (2017b, 2018), the WCU bootstrap test strongly rejects and the
WCR bootstrap test does not reject when the bootstrap errors are clustered by state.
Clustering the bootstrap errors by state-year intersections instead of by state reduces,
but does not eliminate, the disagreement. However, “clustering” the bootstrap errors
by individual (that is, using the ordinary wild bootstrap) brings the restricted and
unrestricted bootstrap tests into very good agreement, with almost identical p-values
and confidence intervals.

Table 1. Estimates, p-values, and 95% confidence intervals for scholarship programs

Treatment group 10 states Georgia only
Estimate 0.0337 0.0722
Cluster-robust standard error 0.0127 0.0108

t statistic 2.664 6.713

p-values and confidence intervals: p-val. Conlf. int. p-val. Conf. int.
HG — 1) 0.010 [0.008,0.059] 0.000 [0.050,0.094]
Bootstrap by state, restricted 0.020 [0.007,0.067] 0.495 [—2.787,1.307]
Bootstrap by state, unrestricted 0.025 [0.005,0.063] 0.000 [0.050,0.095]
Bootstrap by state-year, restricted 0.037 [0.003,0.066] 0.291 [—5.375,4.700]
Bootstrap by state-year, unrestricted 0.041 [0.002,0.066] 0.094 [—0.013,0.157]
Bootstrap by individual, restricted 0.031 [0.004,0.064] 0.390 [—0.099,0.246]
Bootstrap by individual, unrestricted 0.033 [0.003,0.064] 0.392 [—0.096, 0.240]

21. The top rows of table 1 match the results in column C of tables 1 and 2 in Conley and Taber
(2011).

44 Wild bootstrap inference with boottest

The simulated distributions for the six Georgia-specific bootstrap ¢ statistics are
displayed in figure 2. In all six plots, a vertical line marks the actual ¢ statistic of 6.713.
In the two leftmost panels, we see the degenerate behavior of the bootstrap distribution
with clustering at the state level: it is bimodal when the null is imposed (WCR) and
unimodal and narrow when it is not imposed (WCU). Bootstrapping with finer clustering
produces much more plausible-looking distributions. They suggest that it would not be
unusual to obtain a ¢ statistic as large as 6.713 even if the HOPE program had no impact.

state state year individual

4 4 4

3 3 3+

2 2 2-

1 A4 14

0 T T T T 0"1—7—*—!7 0"7—*1»17
-40 20 0 20 40 -40 20 0 20 40 40 20 0 20 40

state nonull state year nonull individual nonull

4 4 4

3 3 3+

2 2 2+

A A A4

0 ‘ : ‘ oﬁ—L o—ﬁ———Ar——f
-40 -20 0 20 40 40 -20 0 20 40 -40 20 0 20 40

Figure 2. Wild bootstrap distributions of ¢ statistic in Conley and Taber (2011)
difference-in-differences evaluation of Georgia’s HOPE program, varying the bootstrap
clustering and whether the null is imposed

8.4 1V estimation

Levitt (1996) studied the short-term elasticity of the crime rate with respect to the
incarceration rate in a U.S. state panel covering 1973-1993. To identify causal impacts,
the study instrumented prisoners per capita with a set of dummies representing the
somewhat arbitrarily timed progression of lawsuits over prison overcrowding. For ex-
ample, if a court temporarily took control of a prison system, prison growth tended to
slow at the onset of control and accelerate after control ended.

The definition of the overcrowding-lawsuit IVs is complex, so we will omit most
details here. Levitt (1996) divided the life cycle of an overcrowding lawsuit into six

D. Roodman, J. G. MacKinnon, M. @. Nielsen, and M. D. Webb 45

stages and subdivided these into three substages. Starting from a dataset provided by
Steven Levitt, which may not exactly match that used in the study, we computed and
added these variables. We also precomputed some per-capita variables and logarithms
thereof.??

Separately for violent and property crime, Levitt regressed year-on-year log changes
(D.1Violentpop and D.1Propertypop in our regressions) on the previous year’s log
change in prisoners per capita (LD.1lpris_totpop). In the 2SLS regressions, the latter is
instrumented with interactions of stage and substage as factor variables. State-level
demographic and economic controls, all first-differenced, include log income per capita,
unemployment, log police per capita, the metropolitan population fraction, the fraction
that is black, and various age group fractions. Year and state dummies are included in
the specification we copy here. Standard errors are robust to heteroskedasticity only.

This code produces our best replications of the original regressions and runs some
bootstrap tests:

use Levitt, clear
set seed 8723419
foreach crimevar in Violent Property {
ivregress 2sls D.1" crimevar “pop ///
(LD.1lpris_totpop = ibnL.stage#i(1/3)L.substage) ///
D.(lincomepop unemp lpolicepop metrop black a*pop) i.year i.state, robust

boottest LD.lpris_totpop, clust(state year) bootcluster(year) ///
ptype(equaltail) gridmin(-2) gridmax(2) graphname(crimevar”, replace) ///
graphopt (xtitle("") ytitle("") title("crimevar” crime) ///

ylabel(,angle(horizontal)))
}
graph combine Violent Property, imargin(tiny) ysize(2.5) iscale(*1.5)

From ivregress, we obtain elasticity estimates of —0.456 (standard error 0.170) for
violent crime and —0.243 (0.106) for property crime, as opposed to —0.379 (0.180) and
—0.261 (0.117) in Levitt (1996, table VI, cols. 3 and 6). For a more extensive discussion
of this study, see Roodman (2017).

The boottest command line above treats the specification in a more modern way.
It two-way clusters the standard errors by state and year and then bootstraps the
distribution of the resulting ¢ statistic using the WRE (see section 6.1). It computes the
equal-tail p-value, which is recommended for IV applications, in which bias toward the
OLS estimate tends to make the confidence curve asymmetric (Davidson and MacKinnon
2010). The bootstrap is clustered by the coarsest error-clustering dimension, which is
the year. Surprisingly, this procedure produces 95% confidence sets that are disjoint
and unbounded. The confidence set for violent crime is (—o0,0.178] U [0.561, +-00) and
that for property crime is (—oo, —1.546] U [—0.681, 0.148] U [0.407, +00).

The confidence plots presented in figure 3 show exactly how these confidence sets
were obtained.?? The boottest command line above customizes their appearance us-
ing “gridmin(2) gridmax(2)” to set their horizontal bounds and graphopt () to pass

22. Data and preparation code are available at http: //davidroodman.com / david / Levitt.zip.
23. For clarity, we moved one of the marker labels in figure 3 using Stata’s Graph Editor.

http://davidroodman.com/david/Levitt.zip

46 Wild bootstrap inference with boottest

options to the underlying graph command. For violent crime, only the interval between
0.178 and 0.561 does not belong to the 95% confidence set, because the bootstrap p-
values are less than 0.05 only in that interval. Similarly, for property crime, only the
two intervals between —1.546 and —0.681 and between 0.148 and 0.407 do not belong
to the 95% confidence set. These types of confidence sets may seem odd, but they can
arise when the instruments are weak; see Dufour (1997).

Violent crime Property crime
1 1
.84 84
.6 6+
4 4
2 24
'Oga 178561 'OSA 155 681 148 407
T T T T T T T T T T
-2 -1 0 1 2 =2 -1 0 1 2

Figure 3. Confidence curve for short-term elasticity of violent and property crime rate
with respect to imprisonment rate, using a Wald test with the WRE bootstrap, in the
context of Levitt (1996) FEs IV regressions

9 Conclusion

We have discussed in detail the package boottest, which calculates several versions
of the wild bootstrap for tests of linear restrictions on linear regression models with
heteroskedastic errors, one-way clustering, or multiway clustering. The package also
calculates the WRE bootstrap (Davidson and MacKinnon 2010) for models with one
or more endogenous explanatory variables, with or without clustering, and the score
bootstrap (Kline and Santos 2012) for a variety of nonlinear models.

The mathematical structure of the wild cluster bootstrap, especially for models fit
by OLS, lends itself to efficient implementation, thus removing computational cost as a
barrier to use. As we explained in section 5, boottest takes advantage of this, and the
code is remarkably fast, even when both the number of observations and the number of
bootstrap replications are very large.

The empirical examples of section 8 reinforce a well-known message from simulation
studies (for example, Cameron, Gelbach, and Miller [2008]; Davidson and MacKinnon
[2010]; Finlay and Magnusson [2014]; Djogbenou, MacKinnon, and Nielsen [2018]): re-
sults from wild bootstrap tests are often very similar to those from tests relying on
large-sample theory, but not always. In particular, when the assumptions of asymptotic

D. Roodman, J. G. MacKinnon, M. @. Nielsen, and M. D. Webb 47

theory are far from being satisfied—for example, when there are few clusters, very un-
balanced clusters, few treated clusters, or weak instruments—the bootstrap-based tests
and the tests based on large-sample theory may lead to very different inferences. In
these cases, indeed in almost all cases, it is preferable to rely on bootstrap-based tests
because they typically exhibit better finite-sample properties.

10 Acknowledgments

We thank an anonymous reviewer and members of the audience at the 2018 Canadian
Stata Conference for helpful comments and Joshua Roxborough for research assistance.
MacKinnon and Webb thank the Social Sciences and Humanities Research Council of
Canada for financial support. Nielsen thanks the Canada Research Chairs program,
the Social Sciences and Humanities Research Council, and the Center for Research
in Econometric Analysis of Time Series (CREATES, funded by the Danish National
Research Foundation, DNRF78) for financial support.

11 References

Baum, C. F., M. E. Schaffer, and S. Stillman. 2007. Enhanced routines for instrumental
variables/generalized method of moments estimation and testing. Stata Journal 7:
465-506.

Beran, R. 1986. Discussion: Jackknife, bootstrap and other resampling methods in
regression analysis. Annals of Statistics 14: 1295-1298.

Bertrand, M., E. Duflo, and S. Mullainathan. 2004. How much should we trust
differences-in-differences estimates? Quarterly Journal of Economics 119: 249-275.

Bester, C. A., T. G. Conley, and C. B. Hansen. 2011. Inference with dependent data
using cluster covariance estimators. Journal of Econometrics 165: 137-151.

Cameron, A. C., J. B. Gelbach, and D. L. Miller. 2008. Bootstrap-based improvements
for inference with clustered errors. Review of Economics and Statistics 90: 414-427.

. 2011. Robust inference with multiway clustering. Journal of Business and
Economic Statistics 29: 238-249.

Carter, A. V., K. T. Schnepel, and D. G. Steigerwald. 2017. Asymptotic behavior
of a t-test robust to cluster heterogeneity. Review of Economics and Statistics 99:
698-7009.

Caskey, J. 2010. cgmwildboot. https: //sites.google.com / site / judsoncaskey / data.

Conley, T. G., and C. R. Taber. 2011. Inference with “difference in differences” with a
small number of policy changes. Review of Economics and Statistics 93: 113-125.

https://sites.google.com/site/judsoncaskey/data

48 Wild bootstrap inference with boottest

Correia, S. 2014. reghdfe: Stata module to perform linear or instrumental-variable
regression absorbing any number of high-dimensional fixed effects. Statistical Soft-
ware Components S457874, Department of Economics, Boston College. https: //ideas.
repec.org /¢ /boc /bocode /457874 . html.

Davezies, L., X. D’Haultfceuille, and Y. Guyonvarch. 2018. Asymptotic results under
multiway clustering. ArXiv Working Paper No. arXiv:1807.07925. https: // arxiv.org /
abs /1807.07925.

Davidson, J., A. Monticini, and D. Peel. 2007. Implementing the wild bootstrap using
a two-point distribution. Economics Letters 96: 309-315.

Davidson, R., and E. Flachaire. 2008. The wild bootstrap, tamed at last. Journal of
FEconometrics 146: 162-169.

Davidson, R., and J. G. MacKinnon. 1993. Estimation and Inference in Econometrics.
New York: Oxford University Press.

. 1999. The size distortion of bootstrap tests. Econometric Theory 15: 361-376.

. 2004. Econometric Theory and Methods. New York: Oxford University Press.

. 2010. Wild bootstrap tests for 1V regression. Journal of Business and Economic
Statistics 28: 128-144.

. 2014. Confidence sets based on inverting Anderson—Rubin tests. Econometrics
Journal 17: S39-S58.

Davison, A. C., and D. V. Hinkley. 1997. Bootstrap Methods and Their Application.
Cambridge: Cambridge University Press.

Djogbenou, A. A., J. G. MacKinnon, and M. @. Nielsen. 2018. Asymptotic theory
and wild bootstrap inference with clustered errors. Queen’s University, Department
of Economics, Working Paper No. 1399. https: //ideas.repec.org/p/qed /wpaper /
1399.html.

Dufour, J.-M. 1997. Some impossibility theorems in econometrics with applications to
structural and dynamic models. Econometrica 65: 1365—1387.

Eicker, F. 1963. Asymptotic normality and consistency of the least squares estimators
for families of linear regressions. Annals of Mathematical Statistics 34: 447-456.

Field, C. A., and A. H. Welsh. 2007. Bootstrapping clustered data. Journal of the Royal
Statistical Society, Series B 69: 369-390.

Finlay, K., and L. M. Magnusson. 2014. Bootstrap methods for inference with cluster-
sample IV models. University of Western Australia, Department of Economics, Work-
ing Paper No. 14-12. https: //ideas.repec.org /p /uwa / wpaper / 14-12.html.

https://ideas.repec.org/c/boc/bocode/s457874.html
https://ideas.repec.org/c/boc/bocode/s457874.html
https://arxiv.org/abs/1807.07925
https://arxiv.org/abs/1807.07925
https://ideas.repec.org/p/qed/wpaper/1399.html
https://ideas.repec.org/p/qed/wpaper/1399.html
https://ideas.repec.org/p/uwa/wpaper/14-12.html

D. Roodman, J. G. MacKinnon, M. @. Nielsen, and M. D. Webb 49

Finlay, K., L. M. Magnusson, and M. E. Schaffer. 2014. weakiv: Stata module to per-
form weak-instrument-robust tests and confidencce intervals for instrumental-variable
(Iv) estimation of linear, probit and tobit models. Statistical Software Compo-
nents S457684, Department of Economics, Boston College. https: //ideas.repec.org /
¢ /boc /bocode /457684 . html.

Gould, W. 2010. Mata Matters: Stata in Mata. Stata Journal 10: 125-142.

Gruber, J., and J. Poterba. 1994. Tax incentives and the decision to purchase health
insurance: Evidence from the self-employed. Quarterly Journal of Economics 109:
701-733.

Hansen, C. B. 2007. Asymptotic properties of a robust variance matrix estimator for
panel data when T is large. Journal of Econometrics 141: 597—620.

Hérdle, W., and E. Mammen. 1993. Comparing nonparametric versus parametric re-
gression fits. Annals of Statistics 21: 1926-1947.

Hu, F., and J. D. Kalbfleisch. 2000. The estimating function bootstrap. Canadian
Journal of Statistics 28: 449-481.

Hu, F., and J. V. Zidek. 1995. A bootstrap based on the estimating equations of the
linear model. Biometrika 82: 263-275.

Kline, P., and A. Santos. 2012. A score based approach to wild bootstrap inference.
Journal of Econometric Methods 1: 23-41.

Lee, C. H., and D. G. Steigerwald. 2018. Inference for clustered data. Stata Journal 18:
447-460.

Levitt, S. D. 1996. The effect of prison population size on crime rates: Evidence from
prison overcrowding litigation. Quarterly Journal of Economics 111: 319-351.

Liang, K.-Y., and S. L. Zeger. 1986. Longitudinal data analysis using generalized linear
models. Biometrika 73: 13-22.

Liu, R. Y. 1988. Bootstrap procedures under some non-I1.I.D. models. Annals of Statis-
tics 16: 1696-1708.

MacKinnon, J. G. 2009. Bootstrap hypothesis testing. In Handbook of Computational
Econometrics, ed. D. A. Belsley and E. J. Kontoghiorghes, 183-213. Chichester, UK:
Wiley.

. 2013. Thirty years of heteroskedasticity-robust inference. In Recent Advances
and Future Directions in Causality, Prediction, and Specification Analysis: Essays in
Honor of Halbert L. White Jr., ed. X. Chen and N. R. Swanson, 437-461. New York:

Springer.

. 2015. Wild cluster bootstrap confidence intervals. L’Actualité Economique 91:
11-33.

https://ideas.repec.org/c/boc/bocode/s457684.html
https://ideas.repec.org/c/boc/bocode/s457684.html

50 Wild bootstrap inference with boottest

MacKinnon, J. G., M. @. Nielsen, and M. D. Webb. 2017. Bootstrap and asymptotic
inference with multiway clustering. Queen’s University, Department of Economics,
Working Paper No. 1386. https: //ideas.repec.org /p/qed /wpaper / 1386.html.

MacKinnon, J. G., and M. D. Webb. 2017a. Pitfalls when estimating treatment effects
using clustered data. Political Methodologist 24: 20-31.

. 2017b. Wild bootstrap inference for wildly different cluster sizes. Journal of
Applied Econometrics 32: 233-254.

. 2018. The wild bootstrap for few (treated) clusters. Econometrics Journal 21:
114-135.

Mammen, E. 1993. Bootstrap and wild bootstrap for high dimensional linear models.
Annals of Statistics 21: 255-285.

Menzel, K. 2017. Bootstrap with clustering in two or more dimensions. ArXiv Working
Paper No. arXiv:1703.03043. https: //arxiv.org /abs /1703.03043.

Michalopoulos, S., and E. Papaioannou. 2013. Pre-colonial ethnic institutions and con-
temporary African development. Econometrica 81: 113-152.

Pitt, M. M., and S. R. Khandker. 1998. The impact of group-based credit programs on
poor households in Bangladesh: Does the gender of participants matter? Journal of
Political Economy 106: 958-996.

Roodman, D. 2011. Fitting fully observed recursive mixed-process models with cmp.
Stata Journal 11: 159-206.

. 2017. The impacts of incarceration on crime. Open Philanthropy Project, Work-
ing Paper. https: // www.openphilanthropy.org / blog / impact-incarceration-crime.

Roodman, D., and J. Morduch. 2014. The impact of microcredit on the poor in
Bangladesh: Revisiting the evidence. Journal of Development Studies 50: 583-604.

Schaffer, M. E. 2005. xtivreg2: Stata module to perform extended 1vV/2SLS, GMM and
AC/HAC, LIML, and k-class regression for panel-data models. Statistical Software Com-
ponents S456501, Department of Economics, Boston College. https: //ideas.repec.
org /c/boc /bocode /$456501.html.

Stock, J. H., and M. W. Watson. 2008. Heteroskedasticity-robust standard errors for
fixed effects panel data regression. Econometrica 76: 155-174.

Thompson, S. B. 2011. Simple formulas for standard errors that cluster by both firm
and time. Journal of Financial Economics 99: 1-10.

Webb, M. D. 2014. Reworking wild bootstrap based inference for clustered errors.
Queen’s University, Department of Economics, Working Paper No. 1315. https://
ideas.repec.org /p /qed / wpaper / 1315.html.

https://ideas.repec.org/p/qed/wpaper/1386.html
https://arxiv.org/abs/1703.03043
https://www.openphilanthropy.org/blog/impact-incarceration-crime
https://ideas.repec.org/c/boc/bocode/s456501.html
https://ideas.repec.org/c/boc/bocode/s456501.html
https://ideas.repec.org/p/qed/wpaper/1315.html
https://ideas.repec.org/p/qed/wpaper/1315.html

D. Roodman, J. G. MacKinnon, M. @. Nielsen, and M. D. Webb 51

White, H. 1980. A heteroskedasticity-consistent covariance matrix estimator and a
direct test for heteroskedasticity. Econometrica 48: 817-838.

. 1984. Asymptotic Theory for Econometricians. London: Academic Press.

Wooldridge, J. M. 2010. Econometric Analysis of Cross Section and Panel Data. 2nd
ed. Cambridge, MA: MIT Press.

Wu, C. F. J. 1986. Jackknife, bootstrap and other resampling methods in regression
analysis. Annals of Statistics 14: 1261-1295.

About the authors

David Roodman is a senior advisor at the Open Philanthropy Project in San Francisco. He
wrote Stata Journal articles about the commands xtabond2 and cmp, which together earned
the journal’s first Editors’ Prize.

James G. MacKinnon is the Sir Edward Peacock Professor of Econometrics at Queen’s Uni-
versity in Kingston, Ontario, Canada.

Morten @rregaard Nielsen holds the David Chadwick Smith Chair in Economics and the
Canada Research Chair in Time Series Econometrics at Queen’s University in Kingston, On-
tario, Canada, and is an international fellow at CREATES, Aarhus University, Denmark.

Matthew D. Webb is an assistant professor at Carleton University and the Ottawa-Carleton
Graduate School of Economics in Ottawa, Ontario, Canada.

A Methods and formulas in boottest

In this appendix, we present additional details of the discussion in section 5 about the
methods and formulas in boottest. For example, we extend the computational frame-
work to multiway clustering, discuss how to speed up the inversion of one-dimensional
tests to form confidence intervals, and describe the modifications needed to perform the
score bootstrap efficiently.

A.1 Generalizing the wild cluster bootstrap for OLS

Section 5 presented a method for performing the wild cluster bootstrap that is optimized
for the case of few clusters. Here we generalize that exposition to incorporate

e parameter constraints under the maintained hypothesis, if any, in addition to those
under the null hypothesis;

e null hypotheses of dimension g > 1;
e observation weights;

e one-way FEs;

e multiway clustering; and

e subcluster bootstrapping.

52 Wild bootstrap inference with boottest

We adopt the following definitions:

e The constraints under the null hypothesis are given by R3 = r, and there are
q > 1 of them. Additional a priori constraints under the maintained hypothesis
are given by R;3 = ry, and there are ¢g; > 0 of them. For example, if one applies
boottest after cnsreg, the restrictions imposed by cnsreg are R13 = r;. The
latter are sometimes referred to as the “model constraints”.

e Wis an N x N diagonal observation weighting matrix. If there are no weights,
WwW=1

e Npg is the number of FEs, if any. D is the N x N matrix, left-multiplication by
which partials out the FE dummies; that is, D demeans data within FE groups. If
there are no FEs, D = L.

e Because data may be clustered in several ways, ¢ subscripts are affixed to objects
whose definitions depend on the choice of a particular clustering dimension for the
errors (in the same way that we used G, H, and GH specifically for two-way clus-
tering in section 4). These objects include S, the matrix that by left-multiplication
creates clusterwise sums; ﬁ, the “estimate” of the clustered covariance matrix of
the error terms; and V, the cluster-robust covariance matrix estimate for the
coefficients. N, is the number of clusters in clustering dimension c.

e The clustering-specific finite-sample adjustment factors m. are understood to be
negated for clustering intersections of odd parity, such as the GH clustering under
the section 4 notation. Thus, we condense the multiway CRVE formula (26) into
ZC mCVC, where the sum is taken over all the different error clusterings and
combinations thereof.

e The subscript ¢* indicates the clustering used in the bootstrap DGP. It may differ
(for example, in the subcluster bootstrap) from all of the error clusterings indicated
with a plain ¢ subscript. In the one-way wild cluster bootstrap, there is only one
value for ¢, which also equals c*.

If there is a model constraint R;3 = ry, the restriction can equivalently be stated
in terms of an unconstrained parameter, 7, as

B=TiT+t (52)
T, =R}, (53)
t1 = Rll (RlRll)ilI'l (54)

where R/ | is a k x (k—¢) matrix whose columns are orthogonal to the columns of R .?*
The parameterization (52) is such that 7 exactly parameterizes the affine subspace of
admissible values for 8 under the constraints R;3 = ry. If there is no model constraint,
then we take Ty =1 and t; = 0.

24. In practice, the matrix R/ is constructed from an eigendecomposition; see [P] makecns for
details.

D. Roodman, J. G. MacKinnon, M. @. Nielsen, and M. D. Webb 53

To implement the restricted bootstrap, we need to fit the model not only under the
model constraints, but also under the null and model constraints jointly. To this end,

we define
o Rl - r
RO{R] and ro{r }

so that, under both sets of constraints, Ro3 = rg. We obtain Ty and ty by analogy
with T1 and tl.

With this notation, we can define the constrained, weighted, FE linear regression
estimators

B =To(T)X'D'WDXT,) ' T)X'D'WD(y — Xtg) + to (null imposed) (55)
B =T, (T,X'D'WDXT,;) 'T/X'D'WD(y — Xt;)+t; (null not imposed)
B =T, (T, X'D'WDXT,)" ' T,X'D'WD(y** — Xt;) +t; (bootstrap estimate)

Generalizing the estimation framework in these ways forces some changes to the
numerical recipe in section 5. We omit the details, providing just the results for the
Wald numerators and denominators. The expression for the Wald numerators in (36)
becomes

R(B* - B) = {S.-(ii:x WDXAR/)}v* (56)
where, for conciseness, we have defined
A = (T)X'D'WDXT,)! (57)

Up to a constant of proportionality, A is the inverse Hessian. Note that D and S.«
are never in fact constructed to compute the numerators. Rather, left-multiplication by
each is carried out through more direct manipulation of the data. For S.«, this is done
by summing columns within bootstrapping clusters; for D, it is done by demeaning
columns within FE groups.

More complications arise when computing the Wald denominators. To see why, we
again start by assuming that ¢ = 1. The penultimate statement of the formula for J*
a key factor in the denominators—see (42)—generalizes to

J=Kv" (58)
K= SC(WDXAR’:* D :x ii’) S..—S. (WDXAR’:* DXAX'D'W:x ﬁ’)S’c*
= SC(WDXAR’:* D :x ﬁ’)SL* —-S. (WDXAR’:* DX)A{SC*(ﬁ Sk WDX)}/ (59)

54 Wild bootstrap inference with boottest

Again, we omit details. Notice that these quantities are indexed by ¢; for multiway
clustering, they must be computed for all the different error clustering and combinations
thereof.?> The results are then summed in a revised (39) for the full set of Wald
denominators:

(RVR')* = colsum (ZCmCJ::* JZ) = colsum {v* % (ZCmCK:’K:)V*} (60)

The last rearrangement in (60) is novel: it aims once more to defer involvement of the
matrix v* this time by summing over clusterings first. The computational costs for
the two alternatives in (60) depend on the dimensions of the matrices involved: K is
N, x N, and v* is N+ X B. boottest chooses between the two versions based on an
estimate of their relative computational costs.

Note that (59) introduces a new complication, namely, an isolated instance of the
large N x N matrix D in the first term. Because it is not positioned as left-multiplying
against a data matrix, we cannot avoid constructing it merely by interpreting its pres-
ence as demeaning a data matrix within FE groups. In section 5, we did not allow
for FEs, so there D = I, which we avoided constructing by invoking the identity
a:xI:x b’ = diag(a:xb). However, that approach will not work now.

As we have done several times earlier, we will avoid constructing the troublesome
matrix by substituting a formula for it, then rearranging the larger expression. In this
case, the formula is

D=1-FFW

where F is a data matrix of the FE dummies and W is a diagonal matrix holding
the weight shares of each observation within its FE group (or, if observations are not
weighted, the reciprocal of the number of observations in its group). If we substitute
for D in the first term in (59) and expand it, using (9) and (10), we obtain
S(WDXAR':+D:x1')S..

=S (WDXAR/:+I:x1')S.. — S(WDXAR:+ FF'W % i')S..

= S.diag(WDXAR/:x11)S. — S(WDXAR/:+ F)(F'W :x1)S.

=S.diag(WDXAR/':#i1)S.. — S(WDXAR/:+F){S.-(Wii:«F)} (61)

25. If a function such as panelsum() is used to create left-multiplication by the S. matrices, then the
various matrices being summed must in some iterations be resorted according to a different clus-
tering, which is a potentially costly operation; panelsum() requires sorted data. If the clusterings
are not too fine, this cost can be reduced substantially by preliminarily collapsing (clusterwise
summing) these matrices to the level of the intersection of all the different error clusterings.

D. Roodman, J. G. MacKinnon, M. @. Nielsen, and M. D. Webb 55

In general, if a is a column vector, then the N. X Npg matrix S.(a:xF), the type
of expression found twice on the right-hand side of (61), is a so-called crosstab (CT):
each entry (7, j) is the sum of those elements of a belonging to the ith cluster in clus-
tering ¢ and the jth FE group. We symbolize this CT by CT.rgr(a). It can be com-
puted directly without constructing the large, sparse matrix F. The left-hand term of
(61) is a CT, too, of WDXAR':x1' with respect to the clusterings ¢ and c*; that is,
CTe,c« (WDXAR' :x1'). Drawing these threads together, we rewrite (59) as

K' = CTe o (WDXAR' :x1ii) — CT, pp(WDXAR')CT,+ pp(Wid)/
—S.(WDXAR’:+ DX)A{S.-(it:+ WDX) }’ (62)

Notice that, because the residuals i come from an estimator that controls for the FEs,
their (weighted) sum within each FE group is zero. If every FE group is in turn either
equal to or contained in a single cluster under clustering c*, then CT.« pg(Wii) = 0,
and the second term in (62) drops out. That possibility includes the common case of
the FE grouping and the (bootstrap) error clustering coinciding. Of course, the term
never arises if there are no FEs.

Finally, we deal with the complications introduced by allowing ¢ > 1. Now the
q X k matrix R is no longer a row vector. This does not hamper the calculation of the
bootstrap Wald numerators in (56), which is unchanged. However, the formulas for the
denominators lose meaning. The breakdown occurs in (38), which requires, as explained
just before that equation, that R’ is a column vector.

In general, a bootstrap Wald denominator, R\Af"‘bR'7 is a ¢ X ¢ matrix with (dq, d2)th
element given by Rdl\A/"‘“bR’dz7 where the d subscripts identify rows of R that express
individual constraints. A natural way to generalize the denominator formulas to higher-
dimensional hypotheses is to double-subscript the J and K matrices for both error
clustering and null constraint row, as follows:

Jea =Kogv™ (63)
¥1=CTeos(WDXAR) :xi1) — CT. pre(WDXAR/)CT,. pp(Wil)’

—S.(WDXAR/, :+ DX)A{S..(it:+ WDX) }' (64)

(RVR/)}, 4, = colsum {v* Sk (Zcmc .y Z7d2)v*} (65)

Compare (58), (59), and (60). Equation (65) produces a 1x B row vector of the (d;, d3)th
elements of all the bootstrap Wald denominators. Because these denominators are
symmetric, the triplet of formulas must be applied for each of the ¢(¢+1)/2 independent
entries in such matrices. In boottest, the denominator for each replication b is then
constructed via explicit loops that extract and arrange the bth elements from the row
vectors in (65).

Once again, we have arrived at a set of formulas that together compute all the wild
bootstrap Wald numerators and denominators while minimizing explicit looping and
avoiding construction of large intermediate matrices. This time, the formulas allow for

56 Wild bootstrap inference with boottest

a priori linear constraints on the model, higher-dimensional null hypotheses, observation
weights, FEs, multiway clustering, and subcluster bootstrapping.

A.2 Inverting a test when imposing the null hypothesis

As explained in section 3.5, we can form confidence sets by inverting any bootstrap test.
In that section, we focused on tests of the hypothesis that 8; = Bjo. More generally,
however, we need to invert a test for the linear restriction R3 = r. (In practice,
boottest can only do so when ¢ = 1 and r is therefore scalar.) When a bootstrap
DGP satisfies the restrictions that are being tested, the bootstrap distribution must
be recomputed for every trial value of r, and this can be computationally demanding.
Fortunately, however, the formulas for the wild bootstrap Wald statistic under OLS are
essentially linear in r. This opens the door to substantial efficiency gains.

The linearity can be seen by tracing through how variation in r affects the various
quantities in our numerical recipe.

In analogy with (54), tq is linear in ry and thus in its subvector r. In turn, by (55),
5 is linear in ty. Thus the corresponding estimation residuals i1 are too. The bootstrap
numerators and the K}, factors in the denominators are also linear in i1; see (56) and
(64). Thus, we can express all of these quantities in the form P + Qr, where P and Q
are the same for all values of r and so need to be computed only once.

Currently, after OLS (or after IV estimation when performing the AR test), boottest
exploits much, but not all, of this linearity.

A.3 The score bootstrap

Adapting the methods presented here to the score bootstrap (Kline and Santos 2012)
brings simplifications and one complication. For exposition, we will first consider how
to compute the score bootstrap after OLS, even though we recommend not doing this
in practice; see section 6.2.

Section 6.2 showed how, with reference to OLS, the move from the wild bootstrap
to the score bootstrap can mostly be captured with a straightforward observation and
a small algebraic change. The observation is that the inverse Hessian, which should be
available for any appropriately differentiable extremum estimator, is what we defined in
(57) as A, up to a factor of proportionality that affects the numerator and denominator
equally and hence is irrelevant. Thus, the inverse Hessian should be used wherever A
appears in (56), (64), and (65). The algebraic change is to replace U** by u*® in (32),
the equation for the bootstrap CRVE.

Following Kline and Santos (2012), we recenter (demean) the bootstrapped score
contributions, s** = X'u*®, for each replication. This requires some changes to the
computational recipe given in appendix A.1. For the numerators, we rearrange (56) to
clarify where the scores and Hessian enter as primary inputs:

D. Roodman, J. G. MacKinnon, M. @. Nielsen, and M. D. Webb 57

~

R(B*: B) = {S- (i1:x WDXAR/)}'v*
= {Se+ (W (ii:* DX)AR')}'v* = {S.- (Ws*H'R/)}/v* (66)

For the denominators, recall from (40) that 4** = Mxu*® = u*® — Pxu*. This
algebraic expansion is the ultimate source of the third term of (64); see (42). Because
the score bootstrap replaces G** = u*® —Pxu*® with u*®, the third term of (64) becomes
zero. Next, (37) is the initial formula for J* which is a major factor in the denominator.
If we generalize it for the possibilities considered in this appendix, we get

J* =8, (0" :« WDXAR/) = S.{W(u*’ :x« DX)AR/,} = S.(Ws**AR/))
in which the bootstrapped scores are given by s** = u*® :x DX.

The mathematical step of recentering s** by demeaning it columnwise may seem
trivial. However, once more we can find some computational gains. Let ¢ be the N x 1
column of 1s and M, = I — L(L’WL)’lL'W be the associated orthogonal projection
matrix that demeans data columns while allowing for observation weights, W. Then,

recentered J*) = S.(WM,s**AR/))
=S.(Ws™AR/)) — S.{W(J/'Wi) "/'Ws* AR/}
=S.(Ws*AR/) — (/W) 'S, (Wu/'Ws**AR/)
=S.(Ws*AR/) — (/'We) 'S, (W) colsum(Ws**AR/))
= J*% — W, colsum(J74) (67)
where we have implicitly defined W, = (/'W¢)™1S.(W¢). This is the N. x 1 column

vector whose entries are each c-cluster’s share of the weight total—or, if there are no
weights, each cluster’s share of the number of observations.

Using (67), we once more vectorize over bootstrap replications and defer involvement
of the large matrix v*. Expanding with (63),

recentered J’; = K ,v* — W, colsum(K},v")

= {K}; — W, colsum(K};) }v* = (recentered K};)v* (68)

Counterintuitively, the mathematical work of recentering the bootstrapped scores can
in effect be carried out before the bootstrap.

To recap, we can execute the score bootstrap by computing the numerators using
(66), computing the matrices K, using (64), recentering them as in (68), and then
plugging the results into the formula for the bootstrap denominators in (65).

B An analytical solution for restricted LIML

The WRE bootstrap of Davidson and MacKinnon (2010) brings the wild bootstrap to
IV estimation. As presented in section 6.1, the WRE begins by refitting the model of

58 Wild bootstrap inference with boottest

interest subject to the constraints of the null hypothesis using restricted LIML. This
appendix defines restricted LIML and derives a variant of the usual analytical solution
for LIML that accommodates such constraints while still avoiding iterative search.

We begin by collecting the regressors from (44) in the matrix Z = [Y2 X;] with
coefficient § = [y B']’. Given a restriction R4 = r, we can find a matrix T and a
column vector t such that

§=Tr+t (69)

where 7 is the unconstrained parameter under the restriction; see (52)-(54). The main
complication in restricted LIML is that in general the restrictions involve coefficients on
both endogenous and exogenous regressors, which violates the partitioning between the
two groups of variables that is typically used explicitly in the estimation procedure.

Substituting (69) into (44) and rearranging, we obtain the model

y1i—Zt =7ZT1+wu (70)
Y, = XII+ U, (71)

The regressand in the structural equation is y; — Zt, and the regressor matrix is ZT.
We assume that [Yo X] has full column rank. To ensure identification, we also need
rank(ZT) < rank(X), for which a sufficient condition is rank(Z) < rank(X). We can
consolidate (70) and (71) into the structural form,

YT =XB+U (72)
where Y = [y1 — Zt Y3], U = [u; Uy] with mean 0 and contemporaneous covariance
matrix X,

. 1 0 . TxT O
F—[_wa}v B—[b } (73)
and T = [Ty, TX%]'. Note that the unrestricted model—as well as the unrestricted

LIML estimator—is obtained by setting T = I and t = 0, which implies Ty7T = « and
TxT = ﬂ

Restricted LIML is the application of ML estimation of the structural parameter
vector T, or equivalently § in view of (69), in the normal linear model (70) and (71). Note
that this formulation includes as a special case the most common restriction, namely,
that the coefficient vector v on the endogenous regressors is zero. In the latter case,
(71) remains in the estimation model even though there are, in effect, no endogenous
variables to instrument.

We proceed to derive the LIML estimator in the model given by (70) and (71) or,
equivalently, by (72). The quasi-log-likelihood function for a general simultaneous equa-
tions system as in (72), after concentrating out X, is given by26

.(I'B) = %(l +1)(1 +log2m) + glogdet(I‘) - glogdet(NflU'U) (74)

26. See Davidson and MacKinnon (1993, chap. 18) for a general reference.

D. Roodman, J. G. MacKinnon, M. @. Nielsen, and M. D. Webb 59

where N is the number of observations and [is the number of variables in Y (that is,
[+ 1 is the number of equations in the system). From here forward, U = YI' — XB
should not be interpreted as the true error terms but rather as functions of the data and
parameters. In the model (72), as can be seen from (73), det(I') = 1. Thus, maximizing
(74) is equivalent to minimizing the sum of squares, det(U’U).2”

Both the structural and reduced-form residuals are needed for the WRE bootstrap.
We group the parameters by equation, into 7 and II, rather than by regressor type as
above (into I" and B). We first concentrate out II. For a vector a and a matrix A with
the same number of rows, we have the well-known matrix identity

a'a a’'A

det { Aa A'A

} = (a’a)det{A’A — A’a(a’a) 'a’A} = (a’a)det(A'M,A) (75)

Applying this identity to det(U’U), we find that

ujuy) det{(Mule — M, XII) (M, Y2 — MulXH)} (76)

The first factor in (76), uju;, does not depend on II. Because IT is unconstrained,
even in restricted LIML, and the right-hand side of (71) contains the same regressors in
each equation, the second factor in (76) can be minimized by equation-by-equation OLS
regressions of My, Y2 on My, X. In practice, using the Frisch—Waugh-Lovell theorem,
this is done by regressing Yo on X and 1, the vector of LIML structural residuals,
after the latter have been computed, possibly subject to constraints on §. The resulting
estimates of I1, say, I1, are then used to compute the reduced-form residuals as Yo —XII.

The minimized residuals from regressing the columns of My, Y2 on My, X are given
by the expression Mm, xMy, Y2 = Mx 4, Y2, which again follows from the Frisch—
Waugh-Lovell theorem. Therefore,

ml_iIn det(U'U) = (ujuy) det (YoM, My, xMy,Y2) = (ujuy) det(UsMx 4,Uz2) (77)

Applying again (75) with a = Mxu; and A = MxUs, (77) becomes

ujuy ujuy

min det(U'U) = det(U'MxU) = det(Y'MxY) (78)

u Mxu uiMxuy

where the last equality uses the facts that MxX = 0 and det(I') = 1. We assume
that u{Mxu; # 0, that is, that the dependent variable contains some variation not
explainable by the exogenous variables. The second factor on the right-hand side of
(78) does not depend on the parameters. We write the first factor as

wu, T2\

= = 79
u’lqul T{Z'lMleTl ()

27. If there were only one equation in the system, this objective would reduce to the sum of the squared
residuals. In this sense, LIML is the one-stage least-squares IV estimator.

60 Wild bootstrap inference with boottest

where we have defined 7y = [1 — 7'’ and Zy = [y — Zt ZT]. Because & is the ratio of
the sum of squared residuals to the sum of squares of the same residuals after partialing
out X, it holds that x > 1.

It remains to minimize & in (79) with respect to the structural coefficients 7 or, equiv-
alently, with respect to 71. After some algebra, the first-order condition dx/01 = 0
gives

(Z’1Z1 — I{ZIIszl)Tl =0 (80)

Thus, the minimization of (79) reduces to an eigenvalue problem and has the well-known
solution
K= 1/)\max{(Z'1Z1)7lz’1MXZ1} (81)

where Apax(+) is the function that returns the maximum eigenvalue of its argument.
Note that we do not compute the right-hand side of (81) as the minimum eigenvalue of
(Z'\MxZ1)~'Z}Z; because the inverse involved cannot be assumed to exist in general.

Recalling that the first element of 7 is 1, we remove the first row in (80) and find
T'Z (y, — Zt — ZT7) — kT'Z'Mx(y1 — Zt — ZT7) =0
Solving for 7, we finally obtain the LIML estimator of T,
7= {T'Z'(1- xMx)ZT} 'T'Z (I - kMx)(y: — Zt)
By (69), the restricted LIML estimator of 4 is
Snivr, = TF +t = T{T'Z'(I — kMx)ZT} 'T'Z'(T — sMx)(y: — Zt) +t (82)

which can alternatively be written in terms of R and r instead of T and t by using (53)
and (54).

Finally, by setting T = I and t = 0 in (82), we obtain the unrestricted LIML
estimator of § from the formula for the restricted one as

duvr, = {Z'(1— kMx)Z} " Z/(1 — kMx)y, (83)

Note that the solution for x computed in (81) is the usual one. It has the same math-
ematical relationship to the minimization problem as in a more standard derivation of
LIML; consequently, (83) is the standard LIML estimator. The relevant development here
is that we derived the LIML estimator analytically without referencing the classification
of structural regressors by endogeneity. This formulation makes it straightforward to
allow arbitrary linear restrictions on the structural coeflicients.

