
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

The Stata Journal (2019)
19, Number 1, pp. 143–184 DOI: 10.1177/1536867X19830912

Updates to the ipfraking ecosystem

Stanislav Kolenikov
Abt Associates
Columbia, MO

stas kolenikov@abtassoc.com

Abstract. Kolenikov (2014, Stata Journal 14: 22–59) introduced the package
ipfraking for iterative proportional fitting (raking) weight-calibration procedures
for complex survey designs. In this article, I briefly describe the original package
and updates to the core program and document additional programs that are used
to support the process of creating survey weights in the author’s production code.

Keywords: st0323 1, ipfraking, ipfraking report, whatsdeff, totalmatrices, mat2do,
xls2row, wgtcellcollapse define, wgtcellcollapse sequence, wgtcellcollapse report,
wgtcellcollapse candidate, wgtcellcollapse collapse, survey, svy, calibration, raking,
weights, iterative proportional fitting

1 Introduction and background

Large-scale social, behavioral, and health data are often collected via complex survey
designs that may involve stratification, multiple stages of selection, unequal probabil-
ities of selection (Korn and Graubard 1995, 1999), or any combination thereof. In an
ideal setting, one accounts for varying probabilities of selection by using the Horvitz–
Thompson estimator of the totals (Horvitz and Thompson 1952; Thompson 1997), and
the remaining sampling fluctuations can be further ironed out by poststratification
(Holt and Smith 1979). However, on top of the planned differences in probabilities
of obtaining a response from a sampled unit, nonresponse is a practical problem that
has been growing more acute in recent years (Groves et al. 2002; Pew Research Center
2012). The analysis weights provided along with the public use microdata by data-
collecting agencies are designed to account for unequal probabilities of selection, nonre-
sponse, and other factors affecting imbalance between the population and the sample,
thus making the analyses conducted on such microdata generalizable to the target pop-
ulation.

Earlier work (Kolenikov 2014) introduced the package ipfraking, which imple-
ments calibration of survey weights to known control totals to ensure that the resulting
weighted data are representative of the population of interest. The process of calibra-
tion is aimed at aligning the sample totals of the key variables with those known for the
population as a whole. The remainder of this section provides a condensed treatment
of estimation with survey data using calibrated weights; I provided a full description in
the previous article.

c© 2019 StataCorp LLC st0323 1

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1536867X19830912&domain=pdf&date_stamp=2019-03-14

144 Raking survey data: Updates

For a given finite population U of units indexed i = 1, . . . , N , the interests of survey
statisticians often lie in estimating the population total of a variable Y :

T (Y) =
∑

i∈U

Yi (1)

A sample S of n units indexed by j = 1, . . . , n is taken from U . If the probability to
select the ith unit is known to be πi, then the probability weights, or design weights,
are given by the inverse probability of selection,

wdi = π−1
i

where subscript d stands for design probabilities of selection. With these weights, an un-
biased (design-based, nonparametric) estimator of the total of (1), according to Horvitz
and Thompson (1952), is

t(y) =
∑

j∈S

yj
πj

≡
∑

j∈S

wdjyj

Probability weights protect the end user from potentially informative sampling designs
in which the probabilities of selection are correlated with outcomes and relieve the
user from the need to fully account for the sampling design variables in their anal-
ysis. This is required in methods such as multilevel regression with poststratifica-
tion (Park, Gelman, and Bafumi 2004). Design-based methods generally ensure that
inference can be generalized to the finite population even when the statistical mod-
els used by analysts and researchers are not specified correctly (Pfeffermann 1993;
Binder and Roberts 2003).

Survey statisticians often have auxiliary information on the units in the frame, and
such information can be included at the sampling stage to create more efficient designs.
Unequal probabilities of selection are then controlled with probability weights, imple-
mented as [pw=varname] in Stata (and can be permanently affixed to the dataset with
the svyset command; see [SVY] svyset).

In many situations, however, usable information is not available beforehand and
may appear only in the collected data. For example, the census totals of the age and
gender distribution of the population may exist, but age and gender of the sampled
units are unknown until they are measured in the survey. One can still capitalize on this
additional data by adjusting the weights in such a way that the reweighted data conform
to these known figures. The procedures to perform these reweighting steps are generally
known as weight calibration (Deville and Särndal 1992; Deville, Särndal, and Sautory
1993; Kott 2006, 2009; Särndal 2007).

Suppose there are several variables, referred to as control variables, that are avail-
able for both the population and the sample (age groups, race, gender, educational
attainment, etc.). Categorical variables are represented by the 0/1 category indica-
tors, although Kolenikov and Hammer (2015) provide an illustrative example of how
the counts of persons in each demographic category within a household (that is, vari-
ables taking values 0, 1, 2, . . .) can be used to create person-level weights that are

S. Kolenikov 145

constant within households. Weight calibration aims to adjust the weights via an itera-
tive optimization so that the control totals for the control variables xj = (x1j , . . . , xpj),
obtained with the calibrated weights wcj , align with the known population totals:

∑

j∈S

wcjxj = T (X) (2)

The population totals of the control variables in the right-hand side of (2) are assumed
to be known from a census or a higher quality survey. Deville and Särndal (1992) framed
the problem of finding a suitable set of weights as that of constrained optimization with
the control equations (2) serving as constraints. Optimization is targeted at making
the discrepancy between the design weights wdj and calibrated weights wcj as close as
suitably possible.

The package ipfraking (Kolenikov 2014) implements a popular calibration algo-
rithm known as iterative proportional fitting, or raking, that consists of iterative updat-
ing (poststratification) of each of the margins. For an in-depth discussion of distinctions
between raking and poststratification, see Kolenikov (2016). Since 2014, the continuing
code development resulted in additional features that this update documents.

2 Updates to ipfraking program and package

Listed below is the full syntax of ipfraking. For a description of its options, see
Kolenikov (2014).

2.1 Syntax for ipfraking

ipfraking
[
if
] [

in
]
[pw=varname], ctotal(matrix name

[
matrix name . . .

]
)

{generate(newvar) | replace}
[
tolerance(#) iterate(#) nodivergence

ctrltolerance(#) trace alpha(#) trimhiabs(#) trimhirel(#)

trimloabs(#) trimlorel(#) trimfrequency(once | sometimes | often)
double meta nograph loglevel(#) linear

]

2.2 New features of ipfraking

The new features of ipfraking concern reporting and diagnostics, an alternative func-
tional form specification, and richer metadata stored in the characteristics of the weight
variable.

Reporting of results and errors by ipfraking was improved in several ways. It
now reports the discrepancy for the worst-fitting category and the number of trimmed
observations.

146 Raking survey data: Updates

Using example 3 from Kolenikov (2014) with trimming options, we have

. capture drop rakedwgt3

. ipfraking [pw=finalwgt], generate(rakedwgt3)
> ctotal(ACS2011_sex_age Census2011_region Census2011_race)
> trimhiabs(200000) trimloabs(2000) meta

Iteration 1, max rel difference of raked weights = 14.95826
Iteration 2, max rel difference of raked weights = .21474256
Iteration 3, max rel difference of raked weights = .02754514
Iteration 4, max rel difference of raked weights = .00511347
Iteration 5, max rel difference of raked weights = .00095888
Iteration 6, max rel difference of raked weights = .00018036
Iteration 7, max rel difference of raked weights = .00003391
Iteration 8, max rel difference of raked weights = 6.377e-06
Iteration 9, max rel difference of raked weights = 1.199e-06
Iteration 10, max rel difference of raked weights = 2.254e-07

The worst relative discrepancy of 3.0e-08 is observed for race == 3
Target value = 20053682; achieved value = 20053682
Trimmed due to the upper absolute limit: 5 weights.

Summary of the weight changes

Mean Std. dev. Min Max CV

Orig weights 11318 7304 2000 79634 .6453
Raked weights 22055 18908 4033 200000 .8573
Adjust factor 2.1486 0.9220 18.9828

(output omitted)

. char list rakedwgt3[]
rakedwgt3[source]: finalwgt
rakedwgt3[objfcn]: 2.25435521164e-07
rakedwgt3[maxctrl]: 3.00266819571e-08
rakedwgt3[converged]: 1
rakedwgt3[worstcat]: 3
rakedwgt3[worstvar]: race
rakedwgt3[command]: [pw=finalwgt], generate(rakedwgt3) ctotal(ACS20..
rakedwgt3[trimloabs]: trimloabs(2000)
rakedwgt3[trimhiabs]: trimhiabs(200000)
rakedwgt3[trimfrequency]: sometimes
rakedwgt3[hash1]: 3644541563
rakedwgt3[svyset]: rake(i.sex_age i.region i.race, totals(11.sex..
rakedwgt3[mat3]: Census2011_race
rakedwgt3[over3]: race
rakedwgt3[totalof3]: _one
rakedwgt3[Census2011_race]: 7.48567522438e-09
rakedwgt3[mat2]: Census2011_region
rakedwgt3[over2]: region
rakedwgt3[totalof2]: _one
rakedwgt3[Census2011_region]:

3.00266819571e-08
rakedwgt3[mat1]: ACS2011_sex_age
rakedwgt3[over1]: sex_age
rakedwgt3[totalof1]: _one
rakedwgt3[ACS2011_sex_age]: 4.13778301743e-09
rakedwgt3[note1]: Raking controls used: ACS2011_sex_age Census201..
rakedwgt3[note0]: 1

If ipfraking determines that the categories do not match in the control totals
received from ctotal() and those found in the data, it provides a full listing of categories

S. Kolenikov 147

and explicitly shows the categories not found in one or the other. Using example 2 of
Kolenikov (2014), let us modify one of the variables to a nonsensical value:

. replace sex_age = 15 if sex_age == 21
(2,056 real changes made)

. ipfraking [pw=finalwgt], generate(rakedwgt2d)
> ctotal(ACS2011_sex_age Census2011_region Census2011_race)

categories of sex_age do not match in the control ACS2011_sex_age and in the
> data (nolab option)
This is what ACS2011_sex_age gives:

_one:11 _one:12 _one:13 _one:21 _one:22 _one:23
This is what I found in data:

_one:11 _one:12 _one:13 _one:15 _one:22 _one:23
This is what ACS2011_sex_age has that data don´t:

_one:21
This is what data have that ACS2011_sex_age doesn´t:

_one:15
r(111);

Option meta saves more information in characteristics of the calibrated weight vari-
ables that can be used in production diagnostics. The following characteristics are
stored with the newly created weight variable (see [P] char).

command the full command as typed by the user
matrix name the relative matrix difference from the corresponding

control total; see [D] functions
trimhiabs, trimloabs, corresponding trimming options, if specified
trimhirel, trimlorel,
trimfrequency

maxctrl the greatest mreldif between the targets and the
achieved weighted totals

objfcn the value of the relative weight change at exit
converged whether ipfraking exited because of convergence (1)

versus because of an increase in the objective
function or reaching the limit on the number of
iterations (0)

source weight variable specified as the [pw=] input
worstvar the variable in which the greatest discrepancy between

the targets and the achieved weighted totals
(maxctrl) was observed

worstcat the category of the worstvar variable in which the
greatest discrepancy was observed

For the control total matrices #= 1, 2, . . ., the following meta information is stored.

mat# the name of the control total matrix
totalof# the multiplier variable (matrix coleq)
over# the margin associated with the matrix

(that is, the categories represented by the columns)

148 Raking survey data: Updates

Also, ipfraking stores the notes regarding the control matrices used and which of
the margins did not match the control totals, if any. See [D] notes.

The linear option provides linear calibration (case 1 of Deville and Särndal [1992]).
The weights are calculated analytically:

wj,lin = wdj(1 + x′
jλ), λ =

(∑

j∈S

wdjxjx
′
j

)−1{T (X)− t(X)}

Because no iterative optimization is required, linear calibration works quickly. However,
it undesirably may potentially produce negative weights because the range of weights
is not controlled. Because raking works by multiplying the current weights by positive
factors, if the input weights are all positive, the output weights will also be positive.
Negative weights are not allowed by the official svy commands or commands that work
with [pweight]. In many tasks, running linear weights first, pulling up the negative and
small positive weights (replace weight = 1 if weight <= 1), and reraking using the
“proper” iterative proportional fitting runs faster than raking from scratch. An example
of linearly calibrated weights is given below in section 6.

2.3 Utility commands

The original package ipfraking provided additional utility commands: mat2do and
xls2row. One of these utility commands, mat2do, was updated to provide the option
notimestamp to omit the time stamps (which tend to unnecessarily throw off the project
building and revision control systems).

This update provides two more utility commands, whatsdeff and totalmatrices.

Design effects

A new utility command, whatsdeff, was added to compute the unequal weighting
(UWE) design effects (DEFFs) and margins of error. These are common tasks associated
with describing survey weights. Specifically, the Transparency Initiative of the American
Association for Public Opinion Research (AAPOR 2017) requires that

For probability samples, the estimates of sampling error will be reported,
and the discussion will state whether or not the reported margins of sam-
pling error or statistical analyses have been adjusted for the DEFF due to
weighting, clustering, or other factors.

whatsdeff weight variable
[
if
] [

in
] [

, by(varlist)
]

S. Kolenikov 149

The utility command whatsdeff calculates the apparent DEFF due to UWE,

DEFFUWE = 1 + CV
2
w = 1 + r(Var)/(r(mean))^2

using the returned values from summarize weight variable (see help return). Addi-
tionally, it reports the effective sample size, n/DEFFUWE, and returns the margins of
error for the sample proportions that estimate the population proportions of 10% and
50%.

. webuse nhanes2, clear

. whatsdeff finalwgt

Min Mean Max CV DEFF N N eff

Overall
2000.00 11318.47 79634.00 0.6453 1.4164 10351 7307.97

. return list

scalars:
r(N) = 10351

r(MOE10) = .0068792766212984
r(MOE50) = .0114654610354974

r(Neff_Overall) = 7307.974353253639
r(DEFF_Overall) = 1.416397964696134

DEFF can also be broken down by a categorical variable:

. whatsdeff finalwgt, by(sex)

Min Mean Max CV DEFF N N eff

sex == Male
2000.00 11426.14 79634.00 0.6578 1.4326 4915 3430.94

sex == Female
2130.00 11221.12 61534.00 0.6333 1.4010 5436 3880.01

Overall
2000.00 11318.47 79634.00 0.6453 1.4164 10351 7307.97

. return list

scalars:
r(N) = 10351

r(MOE10) = .0068792766212984
r(MOE50) = .0114654610354974

r(Neff_Overall) = 7307.974353253639
r(DEFF_Overall) = 1.416397964696134

r(Neff_sex_eq_Femal
e) = 3880.00710397866

r(DEFF_sex_eq_Femal
e) = 1.40102836266093
r(Neff_sex_eq_Male) = 3430.938195872213
r(DEFF_sex_eq_Male) = 1.432552765279559

The estimates of UWE DEFFs that whatsdeff produces should be considered a typ-
ical magnitude of a DEFF. As pointed out by a referee, in many situations when survey
variables are correlated with weights or with the variables that weight calibration is
based on, the actual DEFFs reported by postestimation command estat effect should

150 Raking survey data: Updates

be expected to be lower, provided that variance estimation methods account for calibra-
tion properly, for example, via replicate variance estimation as described in Kolenikov
(2010) or via the svy, vce(calibrate) functionality of the official Stata svy suite
available in Stata 15.1+ (Valliant and Dever 2018). In other words, for most situations
these estimates could be considered an upper bound on this DEFF because this calcu-
lation assumes that the weights are independent of the survey variable of descriptive
interest.

Conversion of the matrices

A new command, totalmatrices, converts the control totals matrices between the
formats expected by ipfraking and svycal (Valliant and Dever 2018).

totalmatrices matrix list, stub(name)
[
svycal ipfraking replace convert

]

stub(name) provides the naming convention for the converted control total matrices.
If the conversion is from ipfraking to svycal, one matrix whose name is supplied
in the stub() option will be created. If the conversion is from svycal to ipfraking,
matrices corresponding to each variable will be created and have their names set to
concatenation of the stub and the variable name. stub() is required.

svycal checks that the supplied matrix or matrices are compatible with svycal speci-
fication of totals as a matrix.

ipfraking checks that the supplied matrix or matrices are compatible with ipfraking.

replace specifies that the matrices with the required names can be overwritten if they
already exist in memory.

convert is used to request the conversion; otherwise, totalmatrices will check only
that the format of the inputs seems to be correct.

If you want to convert several matrices from ipfraking format to a single matrix
in svycal format, type

. totalmatrices ACS2011_sex_age Census2011_region Census2011_race,
> ipfraking stub(alltotals) replace convert
It appears that the matrix ACS2011_sex_age is of ipfraking format.
It appears that the matrix Census2011_region is of ipfraking format.
It appears that the matrix Census2011_race is of ipfraking format.
You can now matrix list alltotals to check and then call svycal as:

svycal [regress|rake] 11.sex_age 12.sex_age 13.sex_age 21.sex_age 22.sex_age
> 23.sex_age 1.region 2.region 3.region 4.region 1.race 2.race 3.race
> [pw=finalwgt], generate(...) totals(alltotals) nocons
I suspect the following would be simpler and could work, too:

svycal [regress|rake] ibn.sex_age ibn.region ibn.race [pw=finalwgt],
> generate(...) totals(alltotals) nocons

S. Kolenikov 151

If you want to convert a single matrix compatible with svycal requirements for its
totals(matrix name) format into a list of matrices compatible with ipfraking, type

. totalmatrices alltotals, ipfraking stub(totmat_) replace convert
It appears that the matrix alltotals is of the svycal format.
Matrices created:
matrix list totmat_sex_age
matrix list totmat_region
matrix list totmat_race

. matrix list totmat_region

totmat_region[1,4]
_one: _one: _one: _one:

1 2 3 4
region 40679030 49205289 85024007 53385843

Note that at the moment, totalmatrices does not handle conversion of interactions,
which is arguably one of the greatest strengths of svycal. As noted in section 7, for
interactions to work out with ipfraking, standalone variables need to be created, and
totalmatrices would rather have the user do that.

2.4 New commands in the package

I added two new commands to the package, ipfraking report and wgtcellcollapse,
and I document them in the subsequent sections of this article. The former provides
reports on the raked weights, including summaries of the unweighted data, data with
the input weights, and data with the calibrated weights. The latter creates a mostly
automated flow of collapsing weighting cells that are too detailed (and hence have low
sample sizes).

3 Excel reports on raked weights: ipfraking report

ipfraking report using filename, raked weight(weight variable)
[
matrices(matrix list) by(varlist) xls replace force

]

The utility command ipfraking report produces a detailed report describing the
raked weights and places it into filename.dta (or, if the xls option is specified, both
filename.dta and filename.xls).

Along the way, ipfraking report runs a regression of the log raking adjustment
ratio on the calibration variables. This regression is expected to have R2 equal to or
close to 1 and residual variance equal to or close to 0. This naturally produces high t
test values, but the purpose of this regression is not in establishing “significance” of any
variable in explaining the outcome (which we know to be predicted with near certainty).
Instead, the regression coefficients provide insights regarding which categories received
greater versus smaller adjustments (which in turn indicate lower response or coverage
rates for the corresponding population subgroups). Conversely, control variables that

152 Raking survey data: Updates

are associated with relatively similar adjustment factors may be contributing relatively
little to the weight adjustment and may be candidates for removal from the list of control
totals.

The regression output, using example 3 from Kolenikov (2014), is as follows:

. ipfraking_report using rakedwgt3-report, raked_weight(rakedwgt3) replace
> by(_one)
Margin variable sex_age (total variable: _one; categories: 11 12 13 21 22 23).
Margin variable region (total variable: _one; categories: 1 2 3 4).
Margin variable race (total variable: _one; categories: 1 2 3).
Auxiliary variable _one (categories: 1).

file rakedwgt3-report.dta saved

Source SS df MS Number of obs = 10,351
F(10, 10340) > 99999.00

Model 2086.13859 10 208.613859 Prob > F = 0.0000
Residual .78315703 10,340 .000075741 R-squared = 0.9996

Adj R-squared = 0.9996
Total 2086.92175 10,350 .201634952 Root MSE = .0087

__000003 Coef. Std. Err. t P>|t| [95% Conf. Interval]

sex_age
11 .0644365 .0002775 232.21 0.000 .0638925 .0649804
12 .4545577 .0003154 1441.25 0.000 .4539395 .455176
13 .6782466 .0002804 2418.71 0.000 .6776969 .6787963
22 .3966406 .0003049 1300.84 0.000 .3960429 .3972383
23 .7304392 .0002726 2679.97 0.000 .7299049 .7309734

region
NE -.4455127 .0002536 -1756.49 0.000 -.4460099 -.4450155
MW -.4428144 .0002335 -1896.53 0.000 -.4432721 -.4423567
W -.6672675 .0002407 -2772.21 0.000 -.6677393 -.6667957

race
Black .3360321 .0002848 1180.08 0.000 .3354739 .3365902
Other 1.613276 .0006303 2559.34 0.000 1.612041 1.614512

_cons .5864801 .0002455 2388.48 0.000 .5859988 .5869614

Raking adjustments for sex_age variable:
the smallest was 1.798 for category 21 (21)
the greatest was 3.732 for category 23 (23)

Raking adjustments for region variable (1=NE, 2=MW, 3=S, 4=W):
the smallest was 0.922 for category 4 (W)
the greatest was 1.798 for category 3 (S)

Raking adjustments for race variable (1=white, 2=black, 3=other):
the smallest was 1.798 for category 1 (White)
the greatest was 9.023 for category 3 (Other)

We can see that ipfraking had to make greater adjustments to the weights of older
females (sex age==23, that is, sex==2 & age==3; the adjustment factor for this cate-
gory was 3.732 versus the low of 1.798 for young women) and especially of individuals of
other races (the adjustment factor was 9.023, versus 1.798 for the whites). The diagnos-
tic value is in the differences in the adjustment factors with the same variable. Because
no attempt is being made to average across the population or the sample or to assign

S. Kolenikov 153

the “base” variable, the absolute reported values of the adjustment factors may not be
meaningful. In the example above, 1.798 figures both as the greatest adjustment factor
of the region variable and as the lowest adjustment factor for the race and sex-by-age
interaction. As is easily seen from regression output, this value is the exponent of the
intercept 1.798=exp(0.586). Because all the “estimates” of the region-specific coeffi-
cients are negative, the lowest reported value is less than this baseline value. Because
all the “estimates” of the race and sex-by-age indicators are positive, all the category-
specific adjustment factors are greater than this baseline value. This is an interplay
of the base categories and the differences in the demographic composition within each
category of a control total variable vis-a-vis other weighting variables.

3.1 Options for ipfraking report

raked weight(weight variable) specifies the name of the raked weight variable to create
the report for. raked weight() is required.

matrices(matrix list
[
matrix list ...

]
) provides a list of known control totals. The

ipfraking report command will pick up the raking variables and their categories.
Each matrix is expected to be compatible with the matrices consumed by ipfraking

as control totals, the ctotal() option. While the functionality of producing results
by different variables is provided with the by() option, passing the known control
totals with matrices() allows comparing the required versus achieved control totals.

by(varlist) specifies a list of additional variables for which the weights are to be tab-
ulated in the raking weights report. The difference with the matrices() option is
that the control totals for these variables may not be known (or may not be rele-
vant). In particular, by(one), where one is identically 1, will produce the overall
report.

xls requests exporting the report to an Excel file.

replace specifies that the files produced by ipfraking report (that is, the .dta and
the .xls file if xls option is specified) should be overwritten.

force requests that ipfraking report provide summaries of weights for a given vari-
able each time it is encountered. The multiple opportunities include being one of the
raking margins picked up from the control totals saved by ipfraking, meta; being
supplied with the by() option; and being supplied with the matrices() option. The
reasons to include a variable multiple times in these options is to see how the weights
perform depending on whether a variable with known control totals is included as a
raking margin.

154 Raking survey data: Updates

3.2 Variables in the raking report

The raking report file contains the following variables.

Variable name Definition

Weight Variable the name of the weight variable,
generate()

C Total Margin Variable Name the name of the control margin,
rowname of the corresponding ctotal()

matrix
C Total Margin Variable Label the label of the control margin variable
Variable Class the role of the variable in the report:

Raking margin: a variable used as a
calibration margin (picked up automatically
from the ctotal() matrix, provided the
meta option was specified);
Other known target: supplied with the
matrices() option of ipfraking report;
Auxiliary variable: additional variable
supplied with the by() option of
ipfraking report

C Total Arg Variable Name the name of the multiplier variable
C Total Arg Variable Label the label of the multiplier variable
C Total Margin Category Number numeric value of the control total category
C Total Margin Category Label label of the control total category
C Total Margin Category Cell an indicator of whether a weighting cell was

produced by collapsing categories
using wgtcellcollapse

Category Total Target the control total to be calibrated to
(the specific entry in the ctotal() matrix)

Category Total Prop control total proportion
(the ratio of the specific entry in the
ctotal() matrix to the matrix total)

Unweighted Count number of sample observations in the
category

Unweighted Prop unweighted proportion
Unweighted Prop Discrep difference Unweighted Prop−

Category Total Prop

Category Total SRCWGT weighted category total with input weight
Category Prop SRCWGT weighted category proportion with input

weight

Continued on next page

S. Kolenikov 155

Variable name Definition

Category Total Discrep SRCWGT difference Category Total SRCWGT−
Category Total Target

Category Prop Discrep SRCWGT difference Category Prop SRCWGT−
Category Total Prop

Category RelDiff SRCWGT reldif(Category Total SRCWGT,

Category Total Target)

Overall Total SRCWGT sum of source weights
Source the name of the matrix from which the

totals were obtained
Comment placeholder for comments, to be entered

during manual review

For each of the input weights (SRCWGT suffix), raked weights (RKDWGT suffix), and
raking ratio (the ratio of raked and input weights, RKDRATIO suffix), the following sum-
maries are provided.

Variable name Definition

Min WEIGHT minimum of the respective weights
P25 WEIGHT 25th percentile of the respective weights
P50 WEIGHT median of the respective weights
P75 WEIGHT 75th percentile of the respective weights
Max WEIGHT maximum of the respective weights
Mean WEIGHT mean of the respective weights
SD WEIGHT standard deviation of the respective weights
DEFF WEIGHT apparent UWE DEFF of the respective weights

156 Raking survey data: Updates

3.3 Example

Continuing with the example of calibration by region, race, and sex-by-age interaction,
we find that a glimpse of the raking report looks as follows:

. use rakedwgt3-report, clear
(Weighting report on rakedwgt3)

. list C_Total_Margin_Variable_Name C_Total_Margin_Category_Label
> Category_Total_Target Category_Total_RKDWGT DEFF_SRCWGT DEFF_RKDWGT,
> sepby(C_Total_Margin_Variable_Name)

C_Tota.. ~y_Label Categor~t Categor.. DEFF_SR~T DEFF_RK~T

1. sex_age 11 41995394 41995394 1.2148059 1.6259899
2. sex_age 12 42148662 42148662 1.2462168 1.5716613
3. sex_age 13 26515340 26515340 1.2241095 1.5460785
4. sex_age 21 41164255 41164255 1.2325105 1.5639529
5. sex_age 22 43697440 43697440 1.1937826 1.5175312
6. sex_age 23 32773080 32773080 1.233902 1.664307

7. region NE 40679030 40679030 1.3056639 1.3657837
8. region MW 49205289 49205289 1.3475551 1.4909581
9. region S 85024007 85024006 1.4950056 1.4912995
10. region W 53385843 53385844 1.459859 2.3772667

11. race White 1.784e+08 1.784e+08 1.4059259 1.4337901
12. race Black 29856865 29856865 1.5173846 1.5092533
13. race Other 20053682 20053682 1.3179136 1.2264706

14. _one 1 . 2.283e+08 1.4164382 1.7349278

The last line, corresponding to the auxiliary variable one identically equal to 1 (this
variable was present in the dataset because it was used by ipfraking as a multiplier),
contains summaries for the sample as a whole. I recommend to always include it (note
the use of ipfraking report, . . . by(one) in the syntax in the previous section).

The functionality of ipfraking report is aimed at manual quality control, which
typically involves i) review of variables and categories with raking factors that differ the
most (in the output such as that shown on page 152) and ii) review of the resulting report
file in Excel (for example, for DEFFs and discrepancies between targets and achieved
totals).

4 Collapsing weighting cells: wgtcellcollapse

An additional new component of the ipfraking package is a tool to semiautomatically
collapse weighting cells to achieve a required minimal size of the weighting cell. A
typical recommendation is to have cells of size at least 30 to 50.

wgtcellcollapse task
[
if
] [

in
] [

, task options
]

S. Kolenikov 157

where task is one of the following:

report lists the currently defined collapsing rules.

define defines collapsing rules explicitly.

sequence creates collapsing rules for a sequence of categories.

candidate finds rules applicable to a given category.

label labels collapsed cells using the original labels after wgtcellcollapse collapse.

collapse performs cell collapsing.

4.1 wgtcellcollapse report

Syntax

wgtcellcollapse report, variables(varlist)
[
break

]

Options

variables(varlist) specifies the list of variables for which to report the collapsing rules.
variables() is required.

break makes wgtcellcollapse report exit with an error when technical inconsisten-
cies are encountered.

4.2 wgtcellcollapse define

Syntax

wgtcellcollapse define, variables(varlist)
[
from(numlist) to(#)

label(string) max(#) clear
]

Options

variables(varlist) specifies the list of variables for which the collapsing rule can be
used. variables() is required.

from(numlist) specifies the list of categories that can be collapsed according to this
rule.

to(#) specifies the numeric value of the new collapsed category.

label(string) provides the value label to be attached to the new collapsed category.

max(#) overrides the automatically determined max value of the collapsed variable.

clear clears all the rules currently defined.

158 Raking survey data: Updates

Example

Let us demonstrate the two subcommands introduced so far with the following toy
example.

. clear

. set obs 4
number of observations (_N) was 0, now 4

. generate byte x = _n

. label define x_lbl 1 "One" 2 "Two" 3 "Three" 4 "Four"

. label values x x_lbl

. wgtcellcollapse define, variable(x) from(1 2 3) to(123)

. wgtcellcollapse report, variable(x)

Rule (1): collapse together
x == 1 (One)
x == 2 (Two)
x == 3 (Three)
into x == 123 (123)
WARNING: unlabeled value x == 123

For automated quality control purposes, the break option of wgtcellcollapse

report can be used to abort the execution when encountering technical deficiencies
in the rules or in the data. In the above example, the label of the new category 123
was not defined. Should the break option be specified, an absence of the category label
would be considered a serious enough deficiency to stop with an error:

. wgtcellcollapse report, variable(x) break

Rule (1): collapse together
x == 1 (One)
x == 2 (Two)
x == 3 (Three)
into x == 123 (123)
ERROR: unlabeled value x == 123

assertion is false
r(9);

. wgtcellcollapse define, variable(x) clear

. wgtcellcollapse define, variable(x) from(1 2 3) to(123)
> label("One through three")

. wgtcellcollapse report, variable(x) break

Rule (1): collapse together
x == 1 (One)
x == 2 (Two)
x == 3 (Three)
into x == 123 (One through three)

S. Kolenikov 159

4.3 wgtcellcollapse sequence

Syntax

wgtcellcollapse sequence, variables(varlist) from(numlist) depth(#)

Options

variables(varlist) specifies the list of variables for which the collapsing rule can be
used. variables() is required.

from(numlist) specifies the sequence of values from which the plausible subsequences
can be constructed. from() is required.

depth(#) specifies the maximum number of the original categories that can be col-
lapsed. depth() is required.

Example

Continuing with the toy example introduced above, let us see an example of moderate-
length sequences to collapse categories:

. clear

. set obs 4
number of observations (_N) was 0, now 4

. generate byte x = _n

. label define x_lbl 1 "One" 2 "Two" 3 "Three" 4 "Four"

. label values x x_lbl

. wgtcellcollapse sequence, variable(x) from(1 2 3 4) depth(3)

. wgtcellcollapse report, variable(x)

Rule (1): collapse together
x == 1 (One)
x == 2 (Two)
into x == 212 (One to Two)

Rule (2): collapse together
x == 2 (Two)
x == 3 (Three)
into x == 223 (Two to Three)

Rule (3): collapse together
x == 3 (Three)
x == 4 (Four)
into x == 234 (Three to Four)

Rule (4): collapse together
x == 1 (One)
x == 2 (Two)
x == 3 (Three)
into x == 313 (One to Three)

160 Raking survey data: Updates

Rule (5): collapse together
x == 1 (One)
x == 223 (Two to Three)
into x == 313 (One to Three)

Rule (6): collapse together
x == 3 (Three)
x == 212 (One to Two)
into x == 313 (One to Three)

Rule (7): collapse together
x == 2 (Two)
x == 3 (Three)
x == 4 (Four)
into x == 324 (Two to Four)

Rule (8): collapse together
x == 2 (Two)
x == 234 (Three to Four)
into x == 324 (Two to Four)

Rule (9): collapse together
x == 4 (Four)
x == 223 (Two to Three)
into x == 324 (Two to Four)

Note how wgtcellcollapse sequence automatically created labels for the collapsed
cells.

When creating sequential collapses, wgtcellcollapse sequence uses the following
conventions in assigning the values for the new collapsed categories:

• First comes the length of the collapsed subsequence (up to depth(#)).

• Then comes the starting value of the category in the subsequence (padded by zeros
as needed).

• Then comes the ending value of the category in the subsequence (padded by zeros
as needed).

In the example above, rules 7 through 9 lead to collapsing into the new category
324, which stands for “the subsequence of length 3 that starts with category 2 and ends
with category 4”. A numeric value of the collapsed category that reads like 50412 means
“the subsequence of length 5 that starts with category 4 and ends with category 12”.
In that second example, wgtcellcollapse sequence padded the value of 4 with an
additional 0, so the length of resulting collapsed category value is always (number of
digits of the sequence length)+twice (number of digits of the greatest source category).

Note that wgtcellcollapse sequence respects the order in which the categories
are supplied in the from() option and does not sort them. If the categories are supplied
in the order 2, 4, 1, and 3, then wgtcellcollapse sequence would collapse 2 with 4,
4 with 1, and 1 with 3:

S. Kolenikov 161

. wgtcellcollapse define, var(x) clear

. wgtcellcollapse sequence, var(x) from(2 4 1 3) depth(2)

. wgtcellcollapse report, var(x)

Rule (1): collapse together
x == 2 (Two)
x == 4 (Four)
into x == 224 (Two to Four)

Rule (2): collapse together
x == 4 (Four)
x == 1 (One)
into x == 241 (Four to One)

Rule (3): collapse together
x == 1 (One)
x == 3 (Three)
into x == 213 (One to Three)

4.4 wgtcellcollapse candidate

Syntax

wgtcellcollapse candidate, variable(varname) category(#)
[
maxcategory(#)

]

Options

variable(varname) specifies the variable to be collapsed. variable() is required.

category(#) specifies the category to be collapsed. category() is required.

maxcategory(#) specifies the maximum value of the categories in the candidate rules
to be returned.

Example

The rules found are quietly returned through the mechanism of sreturn (see [P] return)
because they are intended to stay in memory sufficiently long for wgtcellcollapse

collapse to evaluate each rule. Going back to the example from the previous sec-
tion with sequential collapses of depth 3, we can identify the following candidates for
categories 2 and 212 (collapsed values of 1 and 2) and a nonexistent category of 55:

162 Raking survey data: Updates

. wgtcellcollapse candidate, variables(x) category(2)

. sreturn list

macros:
s(goodrule) : "1 2 4 7 8"

s(rule8) : "2:234=324"
s(rule7) : "2:3:4=324"
s(rule4) : "1:2:3=313"
s(rule2) : "2:3=223"
s(rule1) : "1:2=212"

s(cat) : "2"
s(x) : "x"

. wgtcellcollapse candidate, variables(x) category(2) max(9)

. sreturn list

macros:
s(goodrule) : "1 2 4 7"

s(rule7) : "2:3:4=324"
s(rule4) : "1:2:3=313"
s(rule2) : "2:3=223"
s(rule1) : "1:2=212"

s(cat) : "2"
s(x) : "x"

. wgtcellcollapse candidate, variables(x) category(212)

. sreturn list

macros:
s(goodrule) : "6"

s(rule6) : "3:212=313"
s(cat) : "212"

s(x) : "x"

. wgtcellcollapse candidate, variables(x) category(55)

. sreturn list

macros:
s(cat) : "55"

s(x) : "x"

In the second call to the option, we used max(9) to restrict the returned rules to
the rules that deal only with the original categories (so rule 8 that involved a collapsed
category 234 was omitted). It relies on the naming conventions described in the previous
section: any of the collapsed cells would have three-digit values. In the third call,
we requested a list of rules that involve a collapsed category cat(212). Requests for
nonexisting categories are not considered errors but simply produce empty lists of “good
rules”.

S. Kolenikov 163

4.5 wgtcellcollapse label

Syntax

wgtcellcollapse label, variable(varname)
[
verbose force

]

Options

variable(varname) specifies the collapsed variable to be labeled. variable() is re-
quired.

verbose outputs the labeling results. There may be a lot of output.

force instructs wgtcellcollapse label to use only categories present in the data.

Example

An example is given in section 5.2 below.

4.6 wgtcellcollapse collapse

Syntax

wgtcellcollapse collapse
[
if
] [

in
]
, variables(varlist) mincellsize(#)

saving(dofile name)
[
generate(newvar) replace append feed(varname)

strict sort(varlist) run maxpass(#) maxcategory(#) zeroes(numlist)

greedy
]

Options

variables(varlist) provides the list of variables whose cells are to be collapsed. When
more than one variable is specified, wgtcellcollapse collapse proceeds from right
to left, that is, first attempts to collapse the rightmost variable. variables() is
required.

mincellsize(#) specifies the minimum cell size for the collapsed cells. For most
weighting purposes, values of 30 to 50 can be recommended. mincellsize() is
required.

saving(dofile name) specifies the name of the do-file that will contain the cell-collapsing
code. saving() is required.

generate(newvar) specifies the name of the collapsed variable to be created.

replace overwrites the do-file if one exists.

append appends the code to the existing do-file.

164 Raking survey data: Updates

feed(varname) provides the name of an already existing collapsed variable.

strict modifies the behavior of wgtcellcollapse collapse to use only collapsing
rules for which all participating categories have nonzero counts.

sort(varlist) sorts the dataset before proceeding to collapse the cell. The default sort
order is in terms of the values of the collapsed variable. A different sort order may
produce a different set of collapsed cells when cells are tied on size.

run specifies that the do-file created is run upon completion. This option is typically
specified with most runs.

maxpass(#) specifies the maximum number of passes through the dataset. The default
is maxpass(10000).

maxcategory(#) specifies the maximum category value of the variable being collapsed.
It is passed to the internal calls to wgtcellcollapse candidate; see above.

zeroes(numlist) provides a list of the categories of the collapsed variable that may have
zero counts in the data.

greedy modifies the behavior of wgtcellcollapse collapse to prefer the rules that
collapse the maximum number of categories.

Remarks

The primary intent of wgtcellcollapse collapse is to create the code that can be
used in both a survey data file and a population targets data file that are assumed to
have identically named variables. Thus, it not only manipulates the data in memory and
collapses the cells but also produces the do-file code that can be recycled in automated
weight production. To that effect, when a do-file is created with the replace and
saving() options, the user must specify the generate() option to provide the name
of the collapsed variable; and when the said do-file is appended with the append and
saving() options, the name of that variable is provided with the feed() option.

The algorithm wgtcellcollapse collapse uses to identify the cells to be collapsed
uses a variation of greedy search. It first identifies the cells with the lowest (positive)
counts; finds the candidate rules for the variable or variables to be collapsed; evaluates
the counts of the collapsed cells across all of these candidate rules; and uses the rule
that produces the smallest size of the collapsed cell across all applicable rules. So when
it finds several rules that are applicable to the cell being currently processed that has a
size of 5, and the candidate rules produce cells of sizes 7, 10, and 15, wgtcellcollapse
collapse will use the rule that produces the cell of size 7. The algorithm runs until all
cells have sizes of at least mincellsize(#) or until maxpass(#) passes through the
data are executed. In real-world situations with messy data, this basic algorithm often
produces inconsistent results generally because it fails to identify empty cells or fully
track the cells that have already been collapsed. For that reason, I provide some hints
to modify its behavior. Section 5 demonstrates a worked-out example.

S. Kolenikov 165

Hint 1. Because wgtcellcollapse collapse works with the sample data, it will
not be able to identify categories that are not observed in the sample (for example, rare
categories missing because of unit nonresponse) but may be present in the population.
This will lead to errors at the raking stage, when the control total matrices have more
categories than the data, forcing ipfraking to stop with errors. (See page 147 for the
output ipfraking provides in this situation.) To help with that, the option zeroes()

allows the user to pass the categories of the variables that are known to exist in the
population but not in the sample.

Hint 2. The behavior of wgtcellcollapse collapse, zeroes() leads to undesir-
able artifacts when collapsing long streaks of sequential zeros. While the edge zero cells
would be collapsed with their nonzero neighbors, the zero cell in between may end up
being collapsed with some faraway cells, creating collapsing rules with breaks in the se-
quences. To improve upon that behavior, the option greedy makes wgtcellcollapse
collapse look for a rule that combines as many cells as possible, thus collapsing as
many categories with zero counts in one pass as it can.

Hint 3. Other than for dealing with zero cells, the option strict should be specified
most of the time. It ensures that each cell in a candidate rule being evaluated has some
data in it.

Hint 4. If you want to guarantee some specific combination of cells to be collapsed
by wgtcellcollapse collapse, the most reliable way is to explicitly identify them
with the if qualifier and specify a very large cell size like mincellsize(10000) so
that wgtcellcollapse collapse makes every possible effort to collapse those cells.
Because the resulting cell or cells will fall short of that size, the program will exit with a
complaint that this size could not be achieved, but hopefully the cells will be collapsed
as needed.

Hint 5. If any of the cells fail to reach the required sizes, the problematic values
are returned to the user in the r(failed) macro as a space-delimited list and in the
r(cfailed) as a comma-delimited list. The content of the r(failed) macro can be
used in code that could read

foreach c in `r(failed)´ {
...
* run some diagnostics for each category that failed
list ... if collapsed variable == `c´
...

}

while the content of the r(cfailed) macro can be used in code that could read

list ... if inlist(collapsed variable,`r(cfailed)´)

Also, these returned values should be used in production code by using the assert

command (Gould 2003) to ascertain that these macros are empty (that is, no errors
were encountered):

assert "`r(failed)´" == ""

166 Raking survey data: Updates

A referee noted that wgtcellcollapse could also have utility in preparing for hot-
deck imputation procedures. The textbook versions of hotdeck procedures impute miss-
ing data by assuming a missing at random model (Rubin 1976) with conditioning on a
set of categorical variables, that is, cells of a multivariate table. Akin to weighting pro-
cedures, hotdeck procedures are more stable with larger cells, so cell collapsing is often
recommended to achieve minimal cell sizes (with an understanding of the bias-versus-
variance tradeoff built into these collapsing decisions). For a review of the hotdeck and
related imputation methods, see Andridge and Little (2010).

5 Extended motivating example

The primary purpose of developing wgtcellcollapse and adding it to the ipfraking

suite was to address the need to collapse cells of the margin variables so that each cell
has a minimum sample size in a way that can be easily made consistent between a
sample data and the population targets data. The problem arises when some of the
target variables have dozens of categories, most of which have small counts. Example
where such needs arise include

• transportation surveys, where many stations will have low counts of boardings,
alightings, or both;

• country of origin variables in household surveys, where most countries will have
very low counts; and

• continuous age variables that can be collapsed into age groups differently for dif-
ferent values of race or sex.

S. Kolenikov 167

The workflow of wgtcellcollapse is demonstrated with the following simulated
transportation dataset of trips along a commuter metro line composed of 21 stations:

. use stations, clear

. list station_id, sep(0)

station_id

1. 1. Alewife
2. 2. Brookline
3. 8. Carmenton
4. 11. Dogville
5. 18. East End
6. 24. Framington
7. 26. Grand Junction
8. 30. High Point
9. 36. Irvingtown
10. 39. Johnsville
11. 40. King Street
12. 44. Limerick
13. 47. Moscow City
14. 49. Ninth Street
15. 50. Ontario Lake
16. 53. Picadilly Square
17. 55. Queens Zoo
18. 60. Redline Circle
19. 62. Silver Spring
20. 68. Toledo Town
21. 69. Union Station

Suppose turnstile counts were collected at entrances (board id) and exits
(alight id) of these stations, producing the following population figures:

168 Raking survey data: Updates

. use trip_population, clear

. table board_id daypart, c(sum num_pass) cellwidth(10) mi

daypart
board_id AM Peak Midday PM Reverse Night Weekend

1. Alewife 1423 34 219 113 44
2. Brookline 7198 298 773 169 144
8. Carmenton 19254 181 3739 872 422
11. Dogville 12626 872 3476 769 1270
18. East End 2470 143 1263 145 114

24. Framington 634 50 1296 133 60
26. Grand Junction 2208 233 439 88 166

30. High Point 4319 424 3740 482 115
36. Irvingtown 1221 34 444 30 167
39. Johnsville 93 4 64 2 6
40. King Street 398 46 76 11 13

44. Limerick 1021 19 129 53 34
47. Moscow City 3300 776 984 140 301

49. Ninth Street 38 22 191 5 5
50. Ontario Lake 606 22 80 18 23

53. Picadilly Square 642 71 622 153 69
55. Queens Zoo 331 23 174 15 19

60. Redline Circle 270 4 63 13 3
62. Silver Spring 3402 240 950 206 445

68. Toledo Town 5085 61 744 272 112

. table alight_id daypart, c(sum num_pass) cellwidth(10) mi

daypart
alight_id AM Peak Midday PM Reverse Night Weekend

2. Brookline 19 . 3 2 .
8. Carmenton 492 18 56 23 15
11. Dogville 2475 42 423 153 80
18. East End 929 31 193 67 68

24. Framington 404 13 91 28 27
26. Grand Junction 576 20 147 42 41

30. High Point 2189 89 560 165 167
36. Irvingtown 288 10 91 21 18
39. Johnsville 41 . 11 2 1
40. King Street 131 3 38 8 6

44. Limerick 277 9 87 20 18
47. Moscow City 1746 78 556 142 128

49. Ninth Street 88 2 25 3 4
50. Ontario Lake 232 11 70 14 14

53. Picadilly Square 633 33 198 47 47
55. Queens Zoo 230 10 71 13 14

60. Redline Circle 90 2 26 3 4
62. Silver Spring 1134 67 369 91 85

68. Toledo Town 1372 81 444 112 118
69. Union Station 53193 3038 16007 2733 2677

Most people ride the train to the last station, with much smaller traffic at other popu-
lation centers.

S. Kolenikov 169

Suppose a survey was administered to a sample of the metro line users, with the
following counts of cases collected.

. use trip_sample, clear

. table board_id daypart, c(freq) cellwidth(10) mi

daypart
board_id AM Peak Midday PM Reverse Night Weekend

1. Alewife 46 4 11 7 3
2. Brookline 236 4 35 6 7
8. Carmenton 653 4 184 47 24
11. Dogville 410 41 166 35 56
18. East End 85 5 64 4 4

24. Framington 30 3 74 3 1
26. Grand Junction 72 13 23 5 6

30. High Point 158 20 187 25 12
36. Irvingtown 34 2 25 1 15
39. Johnsville 5 1 1 . .
40. King Street 17 1 2 . 1

44. Limerick 28 . 9 1 3
47. Moscow City 94 31 49 7 13

49. Ninth Street . . 9 . .
50. Ontario Lake 13 1 4 1 1

53. Picadilly Square 23 4 35 7 5
55. Queens Zoo 10 1 14 . 2

60. Redline Circle 13 . 5 . .
62. Silver Spring 106 18 38 12 17

68. Toledo Town 149 6 33 11 3

. table alight_id daypart, c(freq) cellwidth(10) mi

daypart
alight_id AM Peak Midday PM Reverse Night Weekend

2. Brookline 1
8. Carmenton 11 1 1 . 1
11. Dogville 85 1 14 6 5
18. East End 36 1 18 1 4

24. Framington 15 1 2 2 2
26. Grand Junction 15 2 8 1 1

30. High Point 73 4 22 11 8
36. Irvingtown 9 . 4 2 2
39. Johnsville 3 . 1 . .
40. King Street . . 3 . .

44. Limerick 13 . 2 . 2
47. Moscow City 81 6 22 6 6

49. Ninth Street 3 1 1 . .
50. Ontario Lake 2 . 1 2 1

53. Picadilly Square 23 1 8 3 2
55. Queens Zoo 6 . 5 1 .

60. Redline Circle 5
62. Silver Spring 49 . 19 3 9

68. Toledo Town 43 3 24 6 7
69. Union Station 1,709 138 813 128 123

170 Raking survey data: Updates

Because only 3,654 surveys were collected from a total of 96,783 riders, we would
reasonably expect that there is a need for weighting and nonresponse adjustment. The
data available for calibration include the population turnstile counts listed above. We
will produce interactions of the day part and the station that will serve as two weighting
margins (one for the stations where the metro users boarded and one for the stations
where they got off).

First, we need to define the weighting rules. In this case, the stations are numbered
sequentially, with the northernmost station Alewife being number 1 and the southern-
most station, Union Station, where everybody gets off to rush to their city jobs or
attractions, being number 69. Below, we create a list of stations and provide it to
wgtcellcollapse sequence. We would be collapsing stations along the line with the
expectation that travelers boarding or leaving at adjacent stations within the same day
part are more similar to one another than the travelers boarding or leaving a particular
station at different times of the day. Collapsing rules need to be defined for the daypart
variable as well—mostly because wgtcellcollapse collapse expects all variables to
have collapsing rules defined.

. use trip_sample, clear

. wgtcellcollapse sequence, var(daypart) from(2 3 4) depth(3)

. levelsof board_id, local(stations_on)
1 2 8 11 18 24 26 30 36 39 40 44 47 49 50 53 55 60 62 68

. levelsof alight_id, local(stations_off)
2 8 11 18 24 26 30 36 39 40 44 47 49 50 53 55 60 62 68 69

. local all_stations: list stations_on | stations_off

. wgtcellcollapse sequence, var(board_id alight_id) from(`all_stations´)
> depth(20)

. save trip_sample_rules, replace
file trip_sample_rules.dta saved

The syntax above relies on the stations being in the sequential order, which is how
the output of levelsof is organized. Otherwise, the internal numeric identifiers of the
stations would need to be supplied in the order in which the trains run through them.

The number of collapsing rules for variables board id and alight id created by
wgtcellcollapse sequence is 2,961 each.

Below, we present the final syntax to produce the collapsed cells. A more detailed
version of this article, available upon request from the author, describes the process of
building the syntax through trial and (mostly) error. A reader who plans to thoroughly
use wgtcellcollapse should read the full description.

S. Kolenikov 171

. use trip_sample_rules, clear

. * (1) Run 1

. wgtcellcollapse collapse, variables(daypart board_id) mincellsize(1)
> zeroes(39 44 49 60) greedy maxcategory(99)
> generate(dpston5) saving(dpston5.do) replace run

(output omitted)

. * (2) Run 2

. wgtcellcollapse collapse, variables(daypart board_id) mincellsize(20)
> strict feed(dpston5) saving(dpston5.do) append run

(output omitted)

. assert "`r(failed)´" == ""

. * (3) Run 3

. wgtcellcollapse collapse, variables(daypart alight_id) mincellsize(1)
> zeroes(2 40 60) greedy maxcategory(99)
> generate(dpstoff5) saving(dpstoff5.do) replace run
Pass 0 through the data...

smallest count = 1 in the cell 1000002

Processing zero cells...

Invoking rule 39:40=23940 to collapse zero cells
replace dpstoff5 = 1023940 if inlist(dpstoff5, 1000039, 1000040)

Pass 0 through the data...
smallest count = 1 in the cell 1000002
Invoking rule 1:2:8=30108 to collapse zero cells
replace dpstoff5 = 2030108 if inlist(dpstoff5, 2000001, 2000002, 2000008)

Pass 0 through the data...
smallest count = 1 in the cell 1000002
Invoking rule 30:36:39:40:44=53044 to collapse zero cells
replace dpstoff5 = 2053044 if inlist(dpstoff5, 2000030, 2000036, 2000039,

> 2000040, 2000044)

(output omitted)

Pass 0 through the data...
smallest count = 1 in the cell 1000002
Invoking rule 53:55:60=35360 to collapse zero cells
replace dpstoff5 = 5035360 if inlist(dpstoff5, 5000053, 5000055, 5000060)

Pass 0 through the data...
smallest count = 1 in the cell 1000002

Pass 12 through the data...
smallest count = 1 in the cell 1000002
Done collapsing! Exiting...

. * (4) Run 4

. wgtcellcollapse collapse if inlist(daypart,4,5) & inrange(alight_id,49,50),
> variables(daypart alight_id) mincellsize(1)
> feed(dpstoff5) zeroes(49) maxcategory(99) saving(dpstoff5.do) append run
Pass 12 through the data...

smallest count = 1 in the cell 5000050

Processing zero cells...

Invoking rule 49:50=24950 to collapse zero cells
replace dpstoff5 = 4024950 if inlist(dpstoff5, 4000049, 4000050)

Pass 12 through the data...
smallest count = 1 in the cell 5000050
Invoking rule 49:50=24950 to collapse zero cells
replace dpstoff5 = 5024950 if inlist(dpstoff5, 5000049, 5000050)

Pass 12 through the data...
smallest count = 1 in the cell 5024950

172 Raking survey data: Updates

Pass 14 through the data...
smallest count = 1 in the cell 5024950
Done collapsing! Exiting...

. * (5) Run 5

. * special cells for weekend

. wgtcellcollapse collapse if daypart==5 & inrange(alight_id,1,36),
> variables(daypart alight_id) mincellsize(50)
> strict feed(dpstoff5) saving(dpstoff5.do) append run
Pass 14 through the data...

smallest count = 1 in the cell 5000026
Invoking rule 24:26=22426
replace dpstoff5 = 5022426 if inlist(dpstoff5, 5000024, 5000026)

Pass 15 through the data...
smallest count = 1 in the cell 5030108
Invoking rule 11:30108=40111
replace dpstoff5 = 5040111 if inlist(dpstoff5, 5000011, 5030108)

(output omitted)

Pass 19 through the data...
smallest count = 10 in the cell 5043040
Invoking rule 70126:43040=110140
replace dpstoff5 = 5110140 if inlist(dpstoff5, 5070126, 5043040)

Pass 20 through the data...
smallest count = 23 in the cell 5110140
WARNING: could not find any rules to collapse dpstoff5 == 5110140

Pass 21 through the data...
smallest count = .i in the cell 1000002
Done collapsing! Exiting...

. * (6) Run 6

. wgtcellcollapse collapse if daypart==5 & inrange(alight_id,44,68),
> variables(daypart alight_id) mincellsize(50)
> strict feed(dpstoff5) saving(dpstoff5.do) append run
Pass 20 through the data...

smallest count = 1 in the cell 5024950
Invoking rule 24950:35360=54960
replace dpstoff5 = 5054960 if inlist(dpstoff5, 5024950, 5035360)

Pass 21 through the data...
smallest count = 2 in the cell 5000044
Invoking rule 44:47=24447
replace dpstoff5 = 5024447 if inlist(dpstoff5, 5000044, 5000047)

(output omitted)

Pass 25 through the data...
smallest count = 27 in the cell 5094468
WARNING: could not find any rules to collapse dpstoff5 == 5094468

Pass 26 through the data...
smallest count = .i in the cell 1000002
Done collapsing! Exiting...

S. Kolenikov 173

. * (7) Run 7

. * all other cells

. wgtcellcollapse collapse, variables(daypart alight_id) mincellsize(20)
> strict feed(dpstoff5) saving(dpstoff5.do) append run
Pass 25 through the data...

smallest count = 1 in the cell 1000002
Invoking rule 2:8=20208
replace dpstoff5 = 1020208 if inlist(dpstoff5, 1000002, 1000008)

Pass 26 through the data...
smallest count = 1 in the cell 2000011
Invoking rule 11:18=21118
replace dpstoff5 = 2021118 if inlist(dpstoff5, 2000011, 2000018)

(output omitted)

Pass 64 through the data...
smallest count = 15 in the cell 3054960
Invoking rule 62:54960=64962
replace dpstoff5 = 3064962 if inlist(dpstoff5, 3000062, 3054960)

Pass 65 through the data...
smallest count = 21 in the cell 2200168
Done collapsing! Exiting...

. assert "`r(failed)´" == ""

Each pass identified the smallest cell count, the cell where this low count is found, the
rule that can be used to collapse this cell with some other cell (see more on determination
of what wgtcellcollapse believes to be the best rule below), and Stata code that can
be used to apply this collapsing rule.

The collapsed values of dpston (daypart-station-on) and dpstoff (daypart-station-
off) combine the values of the parent variables. The value of dpston==1000003 in-
dicates the combination of categories daypart==1 and station number 3. The value
of dpston==1023940 indicates daypart==1 and sequence of two stations from 39 to 40.
The value of dpston==2053044 indicates daypart==2 and sequence of five stations from
30 to 44.

The first call to wgtcellcollapse uses the options generate() and replace to
create a new variable and a new do-file, while subsequent calls feed() this variable
back and append additional cell-collapsing code to the existing do-file.

The zeroes() option specified in calls 1, 3, and 4 notified wgtcellcollapse that
there are values of alight id that are never observed. (Riders get on the train on
these stations and exit in small numbers, but no completed surveys were obtained.)
The mincellsize(1) option effectively instructed wgtcellcollapse to exit once all of
these zero cells are identified and merged with nonzero cells. The maxcategory(99)

option restricts collapsing rules only to those that involve individual stations. It relies
on the convention that all the individual station IDs are less than 99 and all the collapsed
values are at least 20102 (that is, the first two stations merged together, forming a cell
of size 2 that stretched from 01 to 02). Without these options, wgtcellcollapse would
be allowed to pick up one of the previously collapsed cells. However, it seems safer to
collapse stations with zero count to only one station.

174 Raking survey data: Updates

Using the subsampling conditions like if daypart==5 & inrange(alight id,1,36)

in calls 5 and 6 effectively specifies one specific collapsing cell that the algorithm could
not otherwise identify. A higher target value, mincellsize(50), is used in conjunction
to ensure that the algorithm does not exit prematurely. The special missing value .i

that appears in the smallest count report, as opposed to the actual counts in other runs,
is used internally to stop wgtcellcollapse after all the relevant cases selected by the
if qualifier have been processed.

Using the greedy option in call 3 made it possible to collapse the streak of zero
counts in the midday part from 36. Irvington to 44. Limerick. Without it, each
individual zero count station would be paired with a nonmissing station, which leads to
cells that overlap in space.

After all zero counts stations are processed, the strict option should almost always
be specified, as is done in runs 2, 5, 6, and 7. It prevents wgtcellcollapse from picking
up rules that may have skipped categories in them. In other words, it ensures that the
collapsed cells are contiguous.

The resulting cells satisfy the sample size requirements of at least 20 cases per cell:

. by dpston5, sort: assert _N >= 20

. by dpstoff5, sort: assert _N >= 20

5.1 Pipeline to raking

As its output, wgtcellcollapse produced two files, one for each weighting margin,
called dpston.do and dpstoff.do. An interested reader is welcome to type them; they
contain long sequences of replace commands to perform the cell collapsing. These
do-files are intended to be run on both the sample and the population data to create
identical collapsed categories and produce consistent matrices of the population control
totals for ipfraking.

S. Kolenikov 175

. use trip_population, clear

. run dpston5.do

. total num_pass, over(dpston5)

Total estimation Number of obs = 719

1000001: dpston5 = 1000001
1000002: dpston5 = 1000002

(output omitted)

5000011: dpston5 = 5000011
5026268: dpston5 = 5026268
5030108: dpston5 = 5030108
5051836: dpston5 = 5051836
5093960: dpston5 = 5093960

Over Total Std. Err. [95% Conf. Interval]

num_pass
1000001 1423 967.7508 -476.9595 3322.959
1000002 7198 4895.91 -2414.011 16810.01

(output omitted)

5000011 1270 834.301 -367.961 2907.961
5026268 557 364.4324 -158.4805 1272.481
5030108 610 263.2061 93.25444 1126.746
5051836 622 215.5712 198.7749 1045.225
5093960 473 261.8954 -41.17225 987.1723

. matrix dpston5 = e(b)

. matrix coleq dpston5 = _one

. matrix rownames dpston5 = dpston5

. run dpstoff5.do

. total num_pass, over(dpstoff5)

Total estimation Number of obs = 719

1000018: dpstoff5 = 1000018
1000030: dpstoff5 = 1000030

(output omitted)

5000069: dpstoff5 = 5000069
5094468: dpstoff5 = 5094468
5110140: dpstoff5 = 5110140

Over Total Std. Err. [95% Conf. Interval]

num_pass
1000018 929 360.7303 220.7878 1637.212
1000030 2189 868.0319 484.8161 3893.184

(output omitted)

4000069 2733 728.6906 1302.381 4163.619
4080130 480 132.6806 219.5117 740.4883
4123668 476 72.94794 332.7832 619.2168
5000069 2677 895.7917 918.316 4435.684
5094468 432 87.57763 260.0612 603.9388
5110140 423 120.0254 187.3574 658.6426

. matrix dpstoff5 = e(b)

176 Raking survey data: Updates

. matrix coleq dpstoff5 = _one

. matrix rownames dpstoff5 = dpstoff5

. use trip_sample_rules, clear

. run dpston5

. run dpstoff5

. generate byte _one = 1

. ipfraking [pw=_one], ctotal(dpston5 dpstoff5) generate(raked_weight5)

Iteration 1, max rel difference of raked weights = 37.856256
Iteration 2, max rel difference of raked weights = .06404821
Iteration 3, max rel difference of raked weights = .00891802
Iteration 4, max rel difference of raked weights = .00128619
Iteration 5, max rel difference of raked weights = .00018966
Iteration 6, max rel difference of raked weights = .00002818
Iteration 7, max rel difference of raked weights = 4.198e-06
Iteration 8, max rel difference of raked weights = 6.257e-07

The worst relative discrepancy of 7.8e-08 is observed for dpstoff5 == 5110140
>
Target value = 423; achieved value = 423

Summary of the weight changes

Mean Std. dev. Min Max CV

Orig weights 1 0 1 1 0
Raked weights 26.487 5.754 13.174 38.634 .2172
Adjust factor 26.4869 13.1743 38.6339

. whatsdeff raked_weight5

Min Mean Max CV DEFF N N eff

Overall
13.17 26.49 38.63 0.2172 1.0472 3654 3489.37

5.2 Informative labels

Once the collapsing rules are finalized, several types of category labels can be attached
to the resulting collapsed cells. Using the mechanics of labels in multiple languages (see
[D] label language), wgtcellcollapse label defines three “languages” to describe
the cells. The language numbered ccells may be convenient for debugging purposes in
fine-tuning the collapsing algorithms, while the language texted ccells would prove
useful for ipfraking report in creating human-readable labels. In Stata Markup and
Control Language output, the label language instructions are clickable, so the user
can click the command rather than copying and pasting it.

. wgtcellcollapse label, variable(dpston5)
(language default renamed unlabeled_ccells)
(language numbered_ccells now current language)
(language texted_ccells now current language)

To attach the numeric labels (of the kind "dpston5==1000001"), type:
label language numbered_ccells

To attach the text labels (of the kind "dpston5==AM Peak; 1. Alewife"), type:
label language texted_ccells

The original state, which is also the current state, is:
label language unlabeled_ccells

S. Kolenikov 177

. wgtcellcollapse label, variable(dpstoff5)

To attach the numeric labels (of the kind "dpstoff5==1000018"), type:
label language numbered_ccells

To attach the text labels (of the kind "dpstoff5==AM Peak; 18. East End"), type:
label language texted_ccells

The original state, which is also the current state, is:
label language unlabeled_ccells

. label language numbered_ccells

. tabulate dpstoff5 if daypart==5

Long ID of the interaction Freq. Percent Cum.

daypart==5, alight_id==69 123 71.10 71.10
daypart==5, alight_id==94468 27 15.61 86.71

daypart==5, alight_id==110140 23 13.29 100.00

Total 173 100.00

. label language texted_ccells

. tabulate dpstoff5 if daypart==5

Long ID of the interaction Freq. Percent Cum.

Weekend; 69. Union Station 123 71.10 71.10
Weekend; 44. Limerick to 68. Toledo Tow 27 15.61 86.71
Weekend; 1. Alewife to 40. King Street 23 13.29 100.00

Total 173 100.00

. label language unlabeled_ccells

. tabulate dpstoff5 if daypart==5

Interaction
s of

daypart
alight_id,
with some
collapsing Freq. Percent Cum.

5000069 123 71.10 71.10
5094468 27 15.61 86.71
5110140 23 13.29 100.00

Total 173 100.00

6 Linear calibrated weights

Using the final set of collapsed categories in the simulated transportation data example,
let us demonstrate the linear calibration option of ipfraking, added since Kolenikov
(2014). In mathematical terms, linear weights explicitly solve the minimization problem
of finding a set of weights {wli, i = 1, . . . , n}, where the subscript l stands for linear
calibration, such that

n∑

i=1

(wli − wdi)
2

wdi
→ min

178 Raking survey data: Updates

Deville and Särndal (1992) and Särndal, Swensson, and Wretman (1992) provide ex-
plicit treatment of the problem and the resulting analytical expressions that are coded
in ipfraking, linear. The main advantage of linear weight calibration is a much faster
computing time. To demonstrate it, we will time the output by using the immediate
timing results, set rmsg on (see [R] set).

. set rmsg on
r; t=0.00 12:18:12

. ipfraking [pw=_one], ctotal(dpston5 dpstoff5) nograph generate(raked_weight5)

Iteration 1, max rel difference of raked weights = 37.856256
Iteration 2, max rel difference of raked weights = .06404821
Iteration 3, max rel difference of raked weights = .00891802
Iteration 4, max rel difference of raked weights = .00128619
Iteration 5, max rel difference of raked weights = .00018966
Iteration 6, max rel difference of raked weights = .00002818
Iteration 7, max rel difference of raked weights = 4.198e-06
Iteration 8, max rel difference of raked weights = 6.257e-07

The worst relative discrepancy of 7.8e-08 is observed for dpstoff5 == 5110140
Target value = 423; achieved value = 423

Summary of the weight changes

Mean Std. dev. Min Max CV

Orig weights 1 0 1 1 0
Raked weights 26.487 5.754 13.174 38.634 .2172
Adjust factor 26.4869 13.1743 38.6339
r; t=0.99 12:18:13

. ipfraking [pw=_one], ctotal(dpston5 dpstoff5) nograph generate(raked_weight5l)
> linear

Linear calibration
The worst relative discrepancy of 3.7e-14 is observed for dpstoff5 == 5110140
Target value = 423; achieved value = 423

Summary of the weight changes

Mean Std. dev. Min Max CV

Orig weights 1 0 1 1 0
Raked weights 26.487 5.7523 12.518 38.204 .2172
Adjust factor 26.4869 12.5178 38.2040
r; t=0.43 12:18:13

. set rmsg off

. label variable raked_weight5l "Linear calibrated weights"

S. Kolenikov 179

. compare raked_weight5 raked_weight5l

difference
count minimum average maximum

raked_w~5<raked_~5l 1896 -1.813144 -.0476911 -3.17e-11
raked_w~5>raked_~5l 1758 2.18e-09 .0514348 2.405758

jointly defined 3654 -1.813144 3.21e-10 2.405758

total 3654
1
0

2
0

3
0

4
0

R
a
k
e
d
 w

e
ig

h
t

10 20 30 40
Linear calibrated weight

Figure 1. Linear and raked weights

The speed advantages of linear calibration are quite clear (0.43 seconds versus
0.99 seconds), although raking convergence in 8 iterations is quite fast in my experience.
It is not unusual to see dozens of iterations, and when higher order interactions are
being used as raking margins, subtle correlations between the cells arise, slowing down
convergence and requiring hundreds of iterations. Linear calibrated and raked weights
are similar, as figure 1 demonstrates. However, the lowest of the linearly calibrated
weights are slightly smaller than comparable raked weights. The weights produced by
linear and raking calibration methods should be expected to agree in general, but the
match along the diagonal line of the plot should not be expected to be ideal.

As mentioned before, in extreme situations, linearly calibrated weights may become
negative, which creates additional issues. First, Stata’s svy commands or estimation
commands with pweight specifications do not accept negative weights and produce error
messages when such weights are encountered. This is not a bug but indeed a welcome
behavior. Second, negative weights are typically difficult to interpret; within a common,
although not technically accurate interpretation of sampling weights as the number
of population units that a sampled unit represents, it is puzzling to find a negative

180 Raking survey data: Updates

number of such population units. The way I use the linear calibration functionality
of ipfraking is to produce “preliminary” sets of weights. If the weights at the low
end satisfy the natural range restriction (greater than 0, to prevent input data check
errors with estimation commands; or in some applications, greater than 1, to satisfy
the “number of population units” interpretation that is often desirable), these weights
can be “accepted” as final. If they do not, ipfraking can be called with trimming
syntax such as trimloabs(1). The linear weights can then be used as a starting point
to accelerate convergence using the from() option.

While the general theory of calibrated estimation (Deville and Särndal 1992) en-
sures that linear calibrated weights (analyzed as case 1 in that article) and raked weights
(case 2) are asymptotically equivalent, this equivalence implicitly requires that the scales
of the population control matrices are identical. In practice, different control total vari-
ables may come from different sources, and some sources may either have different
populations to which they can technically be generalized or come at different scales
such as proportions versus population totals. Nearly every dual-frame random-digit
dialing survey of the general U.S. population that I dealt with would use the Amer-
ican Community Survey data for demographic variables (which would come with the
desirable population scaling) and National Health Interview Survey data for phone use
variables (cell phone only, landline only, both, or none), which would come in the form
of proportions. While the raking version of ipfraking would not have any difficulty
incorporating both (with the caveat that the final scale of weights will be determined
by the last variable in the ctotal() list), the linear version of weights would try to
find a middle point between the population totals that are on the scale of millions and
proportions that are on the scale of about 1. The results would likely be quite strange.

7 Other packages with similar functionality

Other packages provide similar basic functionality (that is, raked weights, with or with-
out trimming). Kolenikov (2014) provided comparisons with survwgt (Winter 2002),
ipfweight (Bergmann 2011) and maxentropy (Wittenberg 2010) and reported that the
weights produced by these packages were identical within numeric accuracy.

Concurrently with Kolenikov (2014), another weight calibration package, sreweight
(Pacifico 2014), was published in the Stata Journal. It implements a full range of
objective functions from Deville and Särndal (1992) and does so faster than ipfraking

because the core iterative functionality is implemented in Mata. Finally, Stata 15.1 now
provides the svycal command, undocumented at the time of the writing of this article,
although described and exemplified in detail in Valliant and Dever (2018). Compared
with svycal, the core functionality of ipfraking provides a richer set of trimming
specifications. I compared the weights produced by ipfraking with those produced by
sreweight and svycal in the case of the basic raking procedure without trimming, and
they agree within numeric accuracy:

S. Kolenikov 181

. svycal rake ibn.sex_age ibn.region ibn.race [pw=finalwgt],
> generate(rakedwgt2a) totals(alltotals) nocons
note: 4.region omitted because of collinearity
note: 3.race omitted because of collinearity

. compare rakedwgt2 rakedwgt2a

difference
count minimum average maximum

rakedwgt2<rakedw~2a 6843 -.0057653 -.0001227 -3.27e-06
rakedwgt2>rakedw~2a 3508 1.56e-07 .0002394 .0038718

jointly defined 10351 -.0057653 3.41e-13 .0038718

total 10351

. assert reldif(rakedwgt2, rakedwgt2a) < c(epsfloat)

Weights produced by ipfraking also agree with those produced by the R package
survey (Lumley 2010, 2018), namely, the survey::calibrate(...,calfun="raking")
function, and those produced by SAS raking macro RAKE AND TRIM() (Izrael et al. 2017).
When trimming options are specified, the results from different packages diverge because
trimming operations appear to be implemented differently in each package.

It is unfortunate that so much effort has gone into replicating the functionality by
the different authors. The primary distinction of the current ipfraking package is the
rich ecosystem that goes along with it, aimed at producing survey weights by a survey
organization in a way that is efficient, robust, and flexible codewise.

As a practicing survey statistician who needs to experiment with the weights a lot, I
believe that ipfraking is easier to experiment with than svycal or sreweight for sev-
eral reasons. First, ipfraking relies on the control totals being carried over from svy:

total with minimal modifications such as renaming row and column names; passing
control totals is more cumbersome with other packages. Second, ipfraking produces
detailed diagnostics of problems and oddities it encounters along the way, assisting the
survey statistician in assessing whether the resulting weights are satisfactory.

For relatively simpler tasks of producing replicate weights and calibrating them at
the same time, survwgt provides easier syntax. Coding the task with ipfraking or any
other package would require explicit cycles.

From a code development perspective, I believe that relying on matching the order of
control totals and variables, as required by all other community-contributed packages,
creates a potential for errors that are easy to make and difficult to catch. If you supplied
20 control totals and 19 variables, at which position in the list should the 20th missing
variable be? With ipfraking and the official svycal, the risk that a control total figure
would be associated with a wrong category of the control total variable is much lower
because they pair the values and the categories in a single object (via the names attached
to the control total matrices) or explicit syntax value.variable = # specification of
svycal. However, the matrix naming is different between ipfraking and svycal, so I
provide a conversion tool, totalmatrices, in this update.

182 Raking survey data: Updates

Additionally, ipfraking can incorporate variables that sum up to different totals,
for example, totals from different sources or years, or totals and proportions if unified
data are not available, with the side effect of producing weights whose totals agree with
the last control total variable. Without trimming, doing so ensures that proportions for
each calibration variable are satisfied. Because maxentropy, sreweight, and svycal

produce weights by optimization with the goal of satisfying all totals simultaneously,
it is unclear what the properties of the resulting weight would be when the scales of
control totals differ between variables and whether the resulting weights would produce
marginal proportions that agree between the control totals and calibrated weights.

Compared with ipfraking, the official svycal command handles interactions far
more graciously and consistently with the Stata user experience of using factor vari-
ables in regression models (see [U] 11.4.3 Factor variables). It creates the necessary
interactions internally on the fly, while ipfraking requires explicit generation of inter-
action variables.

Finally, of all the Stata weight calibration packages, ipfraking is unique in offering
the possibility of using multipliers other than 0 and 1 (that is, category dummies).

Ultimately, the choice of the package is a matter of personal preference, package
familiarity, and coding style.

8 Acknowledgments

The author is grateful to an anonymous referee for a thorough review and thoughtful
suggestions, to Tom Guterbock for bug reports and functionality suggestions, and to
Jason Brinkley for extensive comments and critique. The opinions stated in this article
are of the author only and do not represent the position of Abt Associates.

9 References
AAPOR. 2017. AAPOR terms and conditions for transparency certification. American
Association for Public Opinion Research. https://www.aapor.org/AAPOR Main/
media/MainSiteFiles/TI-Terms-and-Conditions-10-4-17.pdf.

Andridge, R. R., and R. J. A. Little. 2010. A review of hot deck imputation for survey
non-response. International Statistical Review 78: 40–64.

Bergmann, M. 2011. ipfweight: Stata module to create adjustment weights for surveys.
Statistical Software Components S457353, Department of Economics, Boston College.
http://econpapers.repec.org/software/bocbocode/s457353.htm.

Binder, D. A., and G. R. Roberts. 2003. Design-based and model-based methods for
estimating model parameters. In Analysis of Survey Data, ed. R. L. Chambers and
C. J. Skinner, 29–48. Chichester, UK: Wiley.

https://www.aapor.org/AAPOR_Main/media/MainSiteFiles/TI-Terms-and-Conditions-10-4-17.pdf
https://www.aapor.org/AAPOR_Main/media/MainSiteFiles/TI-Terms-and-Conditions-10-4-17.pdf
http://econpapers.repec.org/software/bocbocode/s457353.htm

S. Kolenikov 183

Deville, J.-C., and C.-E. Särndal. 1992. Calibration estimators in survey sampling.
Journal of the American Statistical Association 87: 376–382.

Deville, J.-C., C.-E. Särndal, and O. Sautory. 1993. Generalized raking procedures in
survey sampling. Journal of the American Statistical Association 88: 1013–1020.

Gould, W. 2003. Stata tip 3: How to be assertive. Stata Journal 3: 448.

Groves, R. M., D. A. Dillman, J. L. Eltinge, and R. J. A. Little, eds. 2002. Survey
Nonresponse. New York: Wiley.

Holt, D., and T. M. F. Smith. 1979. Post stratification. Journal of the Royal Statistical
Society, Series A 142: 33–46.

Horvitz, D. G., and D. J. Thompson. 1952. A generalization of sampling without
replacement from a finite universe. Journal of the American Statistical Association
47: 663–685.

Izrael, D., M. P. Battaglia, A. A. Battaglia, and S. W. Ball. 2017. You do not have to
step on the same rake: SAS raking macro—generation IV. SAS Global Forum 2017.
https://support.sas.com/resources/papers/proceedings17/0470-2017-poster.pdf.

Kolenikov, S. 2010. Resampling variance estimation for complex survey data. Stata
Journal 10: 165–199.

. 2014. Calibrating survey data using iterative proportional fitting (raking). Stata
Journal 14: 22–59.

. 2016. Post-stratification or non-response adjustment? Survey Practice 9(3).
https://www.surveypractice.org/article/2809-post-stratification-or-non-response-
adjustment.

Kolenikov, S., and H. Hammer. 2015. Simultaneous raking of survey weights at mul-
tiple levels. Survey Methods: Insights from the Field. https://surveyinsights.org/?
p=5099.

Korn, E. L., and B. I. Graubard. 1995. Analysis of large health surveys: Accounting for
the sampling design. Journal of the Royal Statistical Society, Series A 158: 263–295.

. 1999. Analysis of Health Surveys. New York: Wiley.

Kott, P. S. 2006. Using calibration weighting to adjust for nonresponse and coverage
errors. Survey Methodology 32: 133–142.

. 2009. Calibration weighting: Combining probability samples and linear predic-
tion models. In Sample Surveys: Inference and Analysis, vol. 29B, ed. D. Pfeffermann
and C. R. Rao, 55–82. Oxford: Elsevier.

Lumley, T. S. 2010. Complex Surveys: A Guide to Analysis Using R. Hoboken, NJ:
Wiley.

https://support.sas.com/resources/papers/proceedings17/0470-2017-poster.pdf
https://www.surveypractice.org/article/2809-post-stratification-or-non-response-adjustment
https://www.surveypractice.org/article/2809-post-stratification-or-non-response-adjustment
https://surveyinsights.org/?p=5099
https://surveyinsights.org/?p=5099

184 Raking survey data: Updates

. 2018. Survey analysis in R. http://r-survey.r-forge.r-project.org/survey/.

Pacifico, D. 2014. sreweight: A Stata command to reweight survey data to external
totals. Stata Journal 14: 4–21.

Park, D. K., A. Gelman, and J. Bafumi. 2004. Bayesian multilevel estimation with
poststratification: State-level estimates from national polls. Political Analysis 12:
375–385.

Pew Research Center. 2012. Assessing the representativeness of public opin-
ion surveys. Technical report, Pew Research Center for People and
Press. http://www.people-press.org/2012/05/15/assessing-the-representativeness-
of-public-opinion-surveys/.

Pfeffermann, D. 1993. The role of sampling weights when modeling survey data. Inter-
national Statistical Review 61: 317–337.

Rubin, D. B. 1976. Inference and missing data. Biometrika 63: 581–592.

Särndal, C.-E. 2007. The calibration approach in survey theory and practice. Survey
Methodology 33: 99–119.

Särndal, C.-E., B. Swensson, and J. Wretman. 1992. Model Assisted Survey Sampling.
New York: Springer.

Thompson, M. E. 1997. Theory of Sample Surveys. London: Chapman & Hall.

Valliant, R., and J. A. Dever. 2018. Survey Weights: A Step-by-Step Guide to Calcu-
lation. College Station, TX: Stata Press.

Winter, N. 2002. survwgt: Stata module to create and manipulate survey weights.
Statistical Software Components S427503, Department of Economics, Boston College.
https:// ideas.repec.org/c/boc/bocode/s427503.html.

Wittenberg, M. 2010. An introduction to maximum entropy and minimum cross-entropy
estimation using Stata. Stata Journal 10: 315–330.

About the author

Stanislav (Stas) Kolenikov is a principal scientist at Abt Associates. His work involves ap-
plications of statistical methods in collecting survey data for public opinion research, public
health, economic policy making, transportation, and other disciplines that rely on primary
survey data collection. Within survey methodology, his expertise includes advanced sampling
techniques, survey weighting, calibration, missing data imputation, variance estimation, non-
response analysis and adjustment, small area estimation, and mode effects. Besides survey
statistics, Stas has extensive experience developing and applying statistical methods in social
sciences, focusing on structural equation modeling and microeconometrics. He has been writing
Stata programs since 1998, or Stata 5.

http://r-survey.r-forge.r-project.org/survey/
http://www.people-press.org/2012/05/15/assessing-the-representativeness-of-public-opinion-surveys/
http://www.people-press.org/2012/05/15/assessing-the-representativeness-of-public-opinion-surveys/
https://ideas.repec.org/c/boc/bocode/s427503.html

