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Abstract. In this article, we consider time-series, ordinary least-squares, and
instrumental-variable regressions and introduce a new pair of commands, har

and hart, that implement more accurate heteroskedasticity- and autocorrelation-
robust (HAR) F and t tests. These tests represent part of the recent progress
on HAR inference. The F and t tests are based on the convenient F and t ap-
proximations and are more accurate than the conventional chi-squared and normal
approximations. The underlying smoothing parameters are selected to target the
type I and type II errors, which are the two fundamental objects in every hypoth-
esis testing problem. The estimation command har and the postestimation test
command hart allow for both kernel HAR variance estimators and orthonormal-
series HAR variance estimators. In addition, we introduce another pair of new
commands, gmmhar and gmmhart, that implement the recently developed F and
t tests in a two-step generalized method of moments framework. For these com-
mands, we opt for the orthonormal-series HAR variance estimator based on the
Fourier bases because it allows us to develop convenient F and t approximations
as in the first-step generalized method of moments framework. Finally, we present
several examples to demonstrate these commands.

Keywords: st0548, har, hart, gmmhar, gmmhart, heteroskedasticity- and auto-
correlation-robust inference, fixed-smoothing, kernel function, orthonormal series,
testing-optimal, AMSE, OLS/IV, two-step GMM, J statistic

1 Introduction

During the last two decades, there has been substantial progress in heteroskedasticity-
and autocorrelation-robust (HAR) inference.

First, researchers developed fixed-smoothing asymptotic theory, which is a new class
of asymptotic theory. See, for example, Kiefer and Vogelsang (2005) and Sun (2014a)
and the references therein. It is now well known that fixed-smoothing asymptotic ap-
proximations are more accurate than conventional increasing-smoothing asymptotic ap-
proximations, that is, the chi-squared and normal approximations. The higher accuracy,
which is supported by ample numerical evidence, has been established rigorously via
high-order Edgeworth expansions in Jansson (2004) and Sun, Philips, and Jin (2008).
The accuracy is because the new asymptotic approximations capture the estimation un-
certainty in the nonparametric HAR variance estimator. Both the effect of the smoothing
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parameter and the form of the variance estimator are retained in the fixed-smoothing
asymptotic approximations. In addition, the estimation error in the model parameter
estimator is also partially reflected in the new asymptotic approximations.

Second, researchers developed a new rule for selecting the smoothing parameter that
is optimal for the HAR testing. Researchers have pointed out that the mean squared
error (MSE) of the variance estimator is not the most suitable criterion to use in the
testing context. For hypothesis testing, the ultimate goals are the type I error and the
type II error. One should choose the smoothing parameter to minimize a loss function
that is a weighted sum of the type I and type II errors with the weights reflecting
the relative consequences of committing these two types of errors. Alternatively and
equivalently, one should minimize one type of error subject to the control of the other
type of error. See Sun, Philips, and Jin (2008) and Sun (2014a) for the choices of the
smoothing parameter that are oriented toward the testing problem at hand.

Finally, while kernel methods are widely used in practice, there is a renewed inter-
est in using a different nonparametric variance estimator that involves a sequence of
orthonormal basis functions. In a special case, this gives rise to the simple average of
periodograms as an estimator of the spectral density at zero. Such an estimator is a
familiar choice in the literature on spectral density estimation. The advantage of using
the orthonormal-series (OS) HAR variance estimator is that the fixed-smoothing asymp-
totic distribution is the standard F or t distribution. There is no need to simulate any
critical value, unlike the usual kernel HAR variance estimator, in which nonstandard
critical values must be simulated.

The fixed-smoothing asymptotic approximations have been established in various
settings. For the kernel HAR variance estimators, the smoothing parameter can be
parameterized as the ratio of the truncated lag (for truncated kernels) to the sample size.
This ratio is often denoted by b, and the fixed-smoothing asymptotics are referred to as
the fixed-b asymptotics in the literature. The fixed-b asymptotics have been developed
by Kiefer and Vogelsang (2002a,b, 2005), Jansson (2004), Sun, Philips, and Jin (2008),
and Gonçlaves and Vogelsang (2011) in the time-series setting; Bester et al. (2016) and
Sun and Kim (2015) in the spatial setting; and Gonçlaves (2011), Kim and Sun (2013),
and Vogelsang (2012) in the panel-data setting. For the OS HAR variance estimators, the
smoothing parameter is the number of basis functions used. This smoothing parameter
is often denoted by K, and the fixed-smoothing asymptotics are often called the fixed-
K asymptotics. For its theoretical development and related simulation evidence, see,
for example, Phillips (2005), Müller (2007), and Sun (2011, 2013). A recent article by
Lazarus et al. (2016) shows that tests based on the OS HAR variance estimator have
competitive power compared with tests based on the kernel HAR variance estimator
with the optimal kernel.

Most research on fixed-smoothing asymptotics has been devoted to first-step gener-
alized method of moments (GMM) estimation and inference. More recently, researchers
established fixed-smoothing asymptotics in a general two-step GMM framework. See
Sun and Kim (2012), Sun (2013, 2014b), and Hwang and Sun (2017). The key dif-
ference between first- and two-step GMM is that in two-step GMM, the HAR variance
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estimator not only appears in the covariance estimator but also plays the role of the
optimal weighting matrix in the second-step GMM criterion function.

While the fixed-smoothing approximations are more accurate than the conventional
increasing-smoothing approximations, they have not been widely adopted in empirical
applications for two possible reasons. First, the fixed-smoothing asymptotic distribu-
tions based on popular kernel variance estimators are nonstandard, and therefore critical
values must be simulated. Second, no Stata command implements the new and more
accurate approximations.

In this article, we describe the new estimation command har and the new postes-
timation test command hart, which implement the fixed-smoothing Wald and t tests
of Sun (2013, 2014a) for linear regression models with possibly endogenous covariates.
These two commands automatically select the testing-optimal smoothing parameter.
We also provide another pair of commands, gmmhar and gmmhart, that implement
the fixed-smoothing Wald and t tests in a two-step efficient GMM setting, introduced
in Hwang and Sun (2017). Under the fixed-smoothing asymptotics, Hwang and Sun
(2017) show that the modified Wald statistic is asymptotically F distributed and the
modified t statistic is asymptotically t distributed. Thus, the new tests are convenient
to use. In addition, Sun and Kim (2012) show that under the fixed-smoothing asymp-
totics, the J statistic for testing overidentification is also asymptotically F distributed.

The remainder of this article is organized as follows: In sections 2 and 3, we present
the fixed-smoothing inference based on the first-step estimator and the two-step esti-
mator, respectively. In sections 4 and 5, we describe the syntaxes of har and gmmhar

and illustrate their usage. In section 6, we present some simulation evidence. In sec-
tion 7, we describe the two postestimation test commands hart and gmmhart. In the
last section, we conclude and discuss future work.

2 Fixed-smoothing asymptotics: First-step GMM

2.1 Ordinary least-squares and instrumental-variable regressions

Consider the regression model

Yt = Xtθ0 + et t = 1, . . . , T

where {et} is a zero-mean process that may be correlated with the covariate process
{Xt ∈ R

1×d}. There are instruments
{
Zt ∈ R

1×m
}
such that the moment conditions

EZ′
t (Yt −Xtθ) = 0

hold if and only if θ = θ0. When Xt is exogenous, we take Zt = Xt, leading to
the moment conditions behind the ordinary least-squares (OLS) estimator. Note that
the first elements of Xt and Zt are typically 1. We allow the process {Z′

tet} to have
autocorrelation of unknown forms. The model may be overidentified with the degree of
overidentification q = m− d ≥ 0.
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Define

SZX =
1

T

T∑
t=1

Z′
tXt, SZZ =

1

T

T∑
t=1

Z′
tZt, SZY =

1

T

T∑
t=1

Z′
tYt

Then the instrumental-variable (IV) estimator of θ0 is given by

θ̂IV =
(
S′
ZXW−1

0T SZX

)−1 (
S′
ZXW−1

0T SZY

)
(1)

where W0T = SZZ ∈ R
m×m. For the asymptotic results that follow, we can allow W0T

to be a general weighting matrix. One can assume that PlimT→∞W0T = W0 for a
positive definite nonrandom matrix W0. When Zt = Xt, the IV estimator reduces to
the OLS estimator.

Suppose we are interested in testing the null H0 : Rθ0 = r against the alternative
H1 : Rθ0 �= r, where r ∈ R

p×1 and R ∈ R
p×d is a matrix of full row rank. Non-

linear restrictions can be converted into linear restrictions via the delta method. Let
G0 = ESZX ∈ R

m×d, and let ut = R
(
G′

0W
−1
0 G0

)−1
G′

0W
−1
0 Z′

tet be the transformed
moment process. Under some standard high-level conditions, we have

√
TR
(
θ̂IV − θ0

)
d→ N (0,Ω)

where Ω =
∑j=+∞

j=−∞Eutu
′
t−j is the long-run variance (LRV) of {ut}.

The Wald statistic for testing H0 against H1 is

FIV =
{√

T
(
Rθ̂IV − r

)}′
Ω̂

−1
{√

T
(
Rθ̂IV − r

)}
/p (2)

where Ω̂ is an estimator of Ω. When p = 1, we can construct the t statistic

tIV =
√
T
(
Rθ̂IV − r

)
/
√

Ω̂

Let GT = SZX , ût = R
(
G′

TW
−1
0T GT

)−1
G′

TW
−1
0T Z

′
t

(
Yt −Xtθ̂IV

)
, and ûave =

T−1
∑T

s=1 ûs. We consider the estimator Ω̂ of the form

Ω̂ =
1

T

T∑
s=1

T∑
t=1

Qh

(
s

T
,
t

T

)
(ût − ûave) (ûs − ûave)

′
(3)

where Qh (r, s) is a weighting function and h is the smoothing parameter.

The above estimator includes the kernel HAR variance estimators and the OS HAR

variance estimators as special cases. For the kernel LRV estimator, we let Qh (r, s) =

k{(r − s)/b} and h = 1/b for a kernel function k (·). In this case, the estimator Ω̂ can
be written in a more familiar form that involves a weighted sum of autocovariances

Ω̂ =

T−1∑
j=−(T−1)

k

(
j

MT

)
Γ̂j
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where

Γ̂j =

⎧⎪⎪⎨⎪⎪⎩
T−1

T∑
t=j+1

(ût − ûave) (ût−j − ûave)
′

for j ≥ 0

T−1
T∑

t=j+1

(ût+j − ûave) (ût − ûave)
′

for j < 0

and MT = bT is the so-called truncation lag. This is a misnomer because the kernel
function may not have bounded support. Nevertheless, we follow the literature and
refer to MT as the truncation lag.

The OS HAR variance estimator has a long history. There is a renewed interest in
this type of estimator in econometrics, starting from Phillips (2005), Sun (2006), and
Müller (2007). For the OS HAR variance estimator, we let

Qh (r, s) = K−1
K∑
j=1

φj (r)φj (s)

and h = K, where {φj (·)}Kj=1 are orthonormal basis functions on L2(0, 1) satisfying∫ 1

0
φj (r) dr = 0 for j = 1, . . . ,K. Here we assume that K is even and focus only on the

Fourier basis functions:

φ2j−1(x) =
√
2 cos(2jπx) and φ2j(x) =

√
2 sin(2jπx) for j = 1, . . . ,K/2

In this case, Ω̂ is equal to the average of the first K/2 periodograms multiplied by 2π.
Other basis functions can be used, but the form of the basis functions does not seem to
make a difference.

For both the kernel and OS HAR variance estimators, we parameterize h so that h
indicates the amount of smoothing. We consider the fixed-smoothing asymptotics under
which T → ∞ for a fixed h. Let

Q∗
h(r, s) = Qh(r, s)−

∫ 1

0

Qh(τ, s)dτ −
∫ 1

0

Qh(r, τ)dτ +

∫ 1

0

∫ 1

0

Qh(τ1, τ2)dτ1dτ2

It follows from Kiefer and Vogelsang (2005) and Sun (2014a,b) that when h is fixed,

FIV →d F∞(p, h) and tIV →d t∞(p, h)

where

F∞(p, h) = W′
p (1)C

−1
pp Wp (1) /p

t∞(p, h) = Wp (1) /
√
Cpp

Cpp =

∫ 1

0

∫ 1

0

Q∗
h(r, s)dWp(r)dW

′
p(s)

and Wp(r) is the standard p-dimensional Brownian motion process.
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2.2 The kernel case

For the kernel case, the limiting distributions F∞(p, h) and t∞(p, h) are nonstandard.
The critical values, that is, the quantiles of F∞(p, h) and t∞(p, h), must be simulated.
This hinders the use of the new approximation in practice. Sun (2014a) establishes
a standard F approximation to the nonstandard distribution F∞(p, h). In particular,
Sun (2014a) shows that the 100(1 − α)% quantile of the distribution F∞(p, h) can be
approximated well by

F1−α
IV := κF1−α

p,K

where F1−α
p,K is the 100 (1− α)% quantile of the standard Fp,K distribution,

K = max

(⌈
1

bc2

⌉
, p

)
− p+ 1 (4)

is the equivalent degrees of freedom (�·� is the ceiling function), and

κ =
exp [b {c1 + (p− 1) c2}] + [1 + b {c1 + (p− 1) c2}]

2
(5)

is a correction factor. In the above, c1 =
∫∞
−∞ k(x)dx, c2 =

∫∞
−∞ k2(x)dx. For the

Bartlett kernel, c1 = 1, c2 = 2/3. For the Parzen kernel, c1 = 3/4, c2 = 0.539285. For
the quadratic-spectral (QS) kernel, c1 = 1.25, c2 = 1.

For the fixed-smoothing test based on the t statistic, we can use the approximate
critical value

t1−α
IV =

⎧⎨⎩
√
κF1−2α

1,K α < 0.5

−
√
κF2α−1

1,K α ≥ 0.5
(6)

To see this, consider the case where α < 0.5. Because t∞(p, h) is symmetric, its 1 − α
quantile t1−α

∞ is positive. By definition,

1− α = P
{
t∞(p, h) < t1−α

∞
}

= 1− P
{
t∞(p, h) ≥ t1−α

∞
}
= 1− 1

2
P
{
|t∞(p, h)|2 ≥ ∣∣t1−α

∞
∣∣2}

= 1− 1

2
P
{
F∞(1, h) ≥ ∣∣t1−α

∞
∣∣2} =

1

2
+

1

2
P
{
F∞(1, h) <

∣∣t1−α
∞
∣∣2}

So P{F∞(1, h) <
∣∣t1−α
∞
∣∣2} = 1−2α, which implies that

∣∣t1−α
∞
∣∣2 is the (1− 2α) quantile of

the distribution F∞(1, h). Therefore, we can take t1−α
IV =

√
κF1−2α

1,K as the approximate

critical value. The result for α ≥ 0.5 can be similarly proved. For a two-sided t test, we
use the (1 − α/2) quantile of t∞(p, h) as the critical value for a test with nominal size

α. This quantile can be approximated by
√
κF1−α

1,K .

The test based on the scaled F critical value κFα
p,K is an approximate fixed-smooth-

ing test. Sun (2014a) establishes asymptotic approximations to the type I and type II
errors of this test. Given the approximate type I and type II errors eI(b) and eII(b),



X. Ye and Y. Sun 957

Sun (2014a) proposes selecting the bandwidth parameter b to solve the constrained
minimization problem

bopt = argmin eII(b) s.t. eI(b) ≤ τα

for some tolerance parameter τ > 1. For our new commands, we take τ = 1.15.

Consider the local alternative H1 (δ) : Rθ0 = r + Ω1/2c̃/
√
T for c̃ uniformly dis-

tributed on Sp

(
δ2
)
= (c̃ ∈ R

p : ‖c̃‖2 = δ2). Let G′
p,δ2 (·) be the probability density

function of the noncentral χ2
p

(
δ2
)
distribution with degrees of freedom p and noncen-

trality parameter δ2. Sun (2014a) shows that the test-optimal smoothing parameter b
for testing H0 against the alternative H1 (δ) at the significance level α is given by

bopt =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{

2qG′
p,δ2(X 1−α

p )|B|
δ2G′

(p+2),δ2
(X 1−α

p )c2

} 1
q+1

T− q
q+1 B > 0{

G′
p(X 1−α

p )X 1−α
p |B|

(τ−1)α

}1/q
1
T B ≤ 0

(7)

where X 1−α
p is the (1− α) quantile of the chi-squared distribution χ2

p with p degrees of

freedom, δ2 is chosen according to Pr{χp

(
δ2
)
> X 1−α

p } = 75%,

B = tr(BΩ−1)/p and B = −ρq
∞∑

h=−∞
|h|q Eutu

′
t−h

q is the order of the kernel used, and ρq is the Parzen characteristic exponent of the
kernel. For the Bartlett kernel q = 1, ρq = 1. For the Parzen kernel q = 2, ρq = 6. For
the QS kernel q = 2, ρq = 1.421223.

For a one-sided fixed-smoothing t test, the testing-optimal b is not available from
the literature. We suggest using the rule in (7).

The parameter B can be estimated by a standard vector autoregressive model of
order 1 [VAR(1)] plugin procedure. This is what we opt for in the new commands.

Plugging the estimate of B into (7) yields b̂temp. The data-driven choice of bopt is then

given by b̂opt = min(̂btemp, 0.5). We do not use a b larger than 0.5 to avoid large power
loss.

2.3 The OS case

For the OS case, Sun (2013) shows that under the fixed-smoothing asymptotics,

FIV
d→ K

K − p+ 1
× Fp,K−p+1

where Fp,K−p+1 ∼ Fp,K−p+1 and Fp,K−p+1 is the F distribution with degrees of freedom
(p,K − p+ 1). This is a convenient result because the fixed-smoothing asymptotic
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approximation is a standard distribution. There is no need to simulate critical values.
Let F1−α

p,K−p+1 be the 1− α quantile of the F distribution Fp,K−p+1; we can then use

F1−α
IV =

K

K − p+ 1
F1−α

p,K−p+1

as the critical value to perform the fixed-smoothing Wald test when an OS HAR variance
estimator is used. Similarly,

tIV
d→ tK

where tK is the t distribution with degrees of freedom K. We can therefore use the
quantile from the tK distribution to carry out the fixed-smoothing t test.

The testing-optimal choice of K in the OS case is similar to the testing-optimal
choice of b in the kernel case. We can first compute the optimal b∗ for the following
configuration: q = 2, c2 = 1, ρq = π2/6. These are characteristic values associated with
the Daniell kernel, the equivalent kernel behind the OS HAR variance estimator using
Fourier bases. We then take K = �1/(bc2)�. More specifically, we use the following K
value:

Kopt =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{

δ2G′
(p+2),δ2(X 1−α

p )
4G′

p,δ2
(X 1−α

p )|B|
} 1

3

T
2
3 if B > 0{

(τ−1)α

G′
p(X 1−α

p )X 1−α
p |B|

}1/2

T if B ≤ 0

As before, the parameter B is estimated by a standard VAR(1) plugin procedure.
Plugging the estimate of B intoKopt yields K̂temp. We truncate K̂temp to be between p+
4 and T . Imposing the lower bound p+4 ensures that the variance of the approximating
distribution Fp,K−p+1 is finite and that power loss is not large. Finally, we round K̃temp

to the greatest even number less than K̃temp. We take this greatest even number,

denoted by K̂opt, to be our data-driven and testing-optimal choice for K.

2.4 The test procedure

The fixed-smoothing Wald test involves the following steps:

1. Specify the null hypothesis of interest H0 : Rθ0 = r and the significance level α.

2. Fit the model using the estimator in (1). Construct

ût = R
(
G′

TW
−1
0T GT

)−1
G′

TW
−1
0T Z

′
t

(
Yt −Xtθ̂IV

)
3. Fit a VAR(1) model into {ût}, and obtain a plugin estimator Best

. Compute b̂
opt

or K̂opt as described in the previous two subsections.
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4. For the kernel case, plug b̂
opt

into (4) and (5) to obtain K̂ and κ̂, and compute

F̂1−α
IV = κ̂F1−α

p, ̂K
. For the OS case, compute

F̂1−α
IV =

K̂opt

K̂opt − p+ 1
F1−α

p, ̂Kopt−p+1

5. Calculate

Ω̂ =
1

T

T∑
s=1

T∑
t=1

k

(
t− s

b̂T

)
(ût − ûave) (ûs − ûave)

′

Ω̂ =
1

K̂opt

̂Kopt∑
j=1

{
1√
T

T∑
t=1

φj

(
t

T

)
ût

}{
1√
T

T∑
s=1

φj

( s
T

)
ûs

}′

respectively for the kernel case and the OS case.

6. Construct the test statistic:

FIV =
{√

T
(
Rθ̂IV − r

)}′
Ω̂

−1
{√

T
(
Rθ̂IV − r

)}
/p

Reject the null if FIV > F̂1−α
IV .

We can follow similar steps to perform the fixed-smoothing t test.

To construct two-sided confidence intervals for any individual slope coefficient, we
can choose the restriction matrix R to be the selection vector. For example, to select
the second element of θ, we can let R = (0, 1, 0, . . . , 0). The 100 (1− α)% confidence
interval for Rθ0 is(

Rθ̂IV − t
1−α/2
IV ×

√
Ω̂R/T , Rθ̂IV + t

1−α/2
IV ×

√
Ω̂R/T

)

where t
1−α/2
IV is defined in (6). Here we have added a subscript ‘R’ to Ω̂ to indicate its

dependence on the restriction matrix R.

3 Fixed-smoothing asymptotics: The two-step GMM

When any element of Xt is endogenous and there are more instruments than the number
of regressors, we have an overidentified model. In this case, for efficiency, we may use a
two-step GMM estimator and conduct inferences based on this estimator.
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The two-step GMM estimator is given by

θ̂GMM = argmin
θ∈Θ

gT (θ)
′
{
WT

(
θ̂IV

)}−1

gT (θ)

=

[
S′
ZX

{
WT

(
θ̂IV

)}−1

SZX

]−1 [
S′
ZX

{
WT

(
θ̂IV

)}−1

SZY

]
where

WT (θ) =
1

T

T∑
s=1

T∑
t=1

Qh

(
s

T
,
t

T

)
{vt (θ)− v (θ)} {vs (θ)− v (θ)}′ (8)

vt (θ) = Z′
t (Yt −Xtθ), and v (θ) =

∑T
t=1 vt (θ) /T .

Note that WT (θ̂IV) is an estimator of the LRV of moment process {vt (θ0)}. It

takes the same form as Ω̂ given in (3) but is based on the (estimated) moment process

{vt(θ̂IV)} instead of the (estimated) transformed moment process {ût}.
The Wald statistic is given by

FGMM =
√
T
(
Rθ̂GMM − r

)′ [
R
{
G′

TW
−1
T

(
θ̂GMM

)
GT

}−1

R′
]−1

×
√
T
(
Rθ̂GMM − r

)
/p (9)

and the t statistic is given by

tGMM =

√
T
(
Rθ̂GMM − r

)
√

R
{
G′

TW
−1
T

(
θ̂GMM

)
GT

}−1

R′

Let Bp(r), Bd−p(r), and Bq(r) be independent standard Brownian motion processes
of dimensions p, d− p, and q, respectively. Denote

Cpp =

∫ 1

0

∫ 1

0

Q∗
h(r, s)dBp(r)dBp(s)

′ Cpq =

∫ 1

0

∫ 1

0

Q∗
h(r, s)dBp(r)dBq(s)

′

Cqq =

∫ 1

0

∫ 1

0

Q∗
h(r, s)dBq(r)dBq(s)

′ Dpp = Cpp −CpqC
−1
qq C

′
pq

Under some conditions, Sun (2014b) shows that under the fixed-smoothing asymptotics,

FGMM →d
{
Bp (1)− CpqC

−1
qq Bq (1)

}′
D−1

pp

{
Bp (1)− CpqC

−1
qq Bq (1)

}
/p

tGMM →d

{
Bp (1)− CpqC

−1
qq Bq (1)

}√
Dpp
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The fixed-smoothing asymptotic distributions are nonstandard in both kernel and
OS cases. For the OS case, Hwang and Sun (2017) show that a modified Wald statis-
tic is asymptotically F distributed and that a modified t statistic is asymptotically t
distributed. More specifically, the modified Wald and t statistics are given by

F c
GMM =

K − p− q + 1

K

FGMM

1 + 1
K JT

tcGMM =

√
K − q

K

tGMM√
1 + 1

K JT

where

JT = TgT

(
θ̂GMM

)′ {
WT

(
θ̂GMM

)}−1

gT

(
θ̂GMM

)
is the usual J statistic for testing overidentification restrictions. It is shown in Hwang
and Sun (2017) that

F c
GMM →d Fp,K−p−q+1 and tcGMM →d tK−q

So we can use (
1 +

1

K
JT

)(
K

K − p− q + 1

)
F1−α

p,K−p−q+1

as the critical value for the original Wald statistic FGMM and√
1 +

1

K
JT

√
K

K − q
t
1−α

2

K−q

as the critical value for the t statistic |tGMM|. As in the case with the first-step GMM, as
long as the OS HAR variance estimator is used, there is no need to simulate any critical
value.

We note that Sun and Kim (2012) establish that the modified J statistic is an asymp-
totically F distribution:

Jc
T :=

K − q + 1

qK
JT →d F (q,K − q + 1)

For the two-step GMM with an estimated weighting matrix, a testing-optimal choice
of K has not been established in the literature, but see Sun and Phillips (2008) for a
suggestion for the smoothing parameter choice that is oriented toward interval estima-
tion. For practical implementations, Hwang and Sun (2017) suggest selecting K based
on the conventional average mean squared error (AMSE) criterion implemented by using
the VAR(1) plugin procedure. More specifically,

K̂tmp =

⎡⎢⎢⎢⎢⎢
⎛⎜⎝ tr

{
(Im2 +Kmm)

(
Ω̂v ⊗ Ω̂v

)}
4vec

(
B̂v

)′
vec
(
B̂v

)
⎞⎟⎠

1/5

T 4/5

⎤⎥⎥⎥⎥⎥
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where Kmm is them2×m2 commutation matrix and Im2 is them2×m2 identity matrix.
In the above, B̂v is the plugin estimator of

Bv = −π
2

6

∞∑
j=−∞

j2Evtv
′
t−j

and Ω̂v is the plugin estimator of the LRV of {vt}. The formula for Ω̂v and B̂v in terms of
the estimated VAR(1) matrix and the error variance are available from Andrews (1991).

We then obtain K̃tmp by truncating K̂tmp to be between p+q+4 and T . Finally, we round

K̃
tmp

to K̂MSE, the greatest even number less than K̃
tmp

and use K̂MSE throughout the
two-step procedure.

To conduct the two-step fixed-smoothing Wald test, we follow the steps below:

1. Specify the null hypothesis of interest H0 : Rθ0 = r and the significance level α.

2. Estimate θ0 by the IV estimator, and construct v̂t = Z′
t(Yt −Xtθ̂IV).

3. Fit a VAR(1) model into {v̂t}, and compute the data-driven choice K̂MSE.

4. On the basis of K̂MSE, construct the weighting matrix ŴT = WT (θ̂IV) in (8).

5. Estimate θ0 by

θ̂GMM =
(
S′
ZXŴ−1

T SZX

)−1 (
S′
ZXŴ−1

T SZY

)
6. Calculate the test statistic FGMM defined in (9) and the critical value

F̂1−α
GMM =

{
1 +

1

K̂MSE

JT

(
θ̂GMM

)}( K̂MSE

K̂MSE − p− q + 1

)
F1−α

p, ̂KMSE−p−q+1

7. If FGMM > F̂1−α
GMM, then we reject the null. Otherwise, we fail to reject the null.

With some simple modifications, one can follow the above steps to perform the
fixed-smoothing t test.

Following the same procedure as in the IV case, we can use the two-step GMM

estimator and construct the associated 100 (1− α)% confidence interval for Rθ0 as

Rθ̂GMM ± t
1−α/2
GMM ×

√
R
{
G′

TW
−1
T

(
θ̂GMM

)
GT

}−1

R′/T

where

t
1−α/2
GMM =

√
1 +

1

K
JT

√
K

K − q
t
1−α/2
K−q
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4 The har command

4.1 Syntax

har depvar
[
varlist1

]
(varlist2 = varlist iv)

[
if
] [

in
]
, kernel(string)[

noconstant level(#)
]

You must tsset your data before using har; see [TS] tsset.

Time-series operators are allowed.

4.2 Options

kernel(string) sets the type of kernel. For the Bartlett kernel, any of the four usages—
kernel(bartlett), kernel(BARTLETT), kernel(B), or kernel(b)—produce the
same results. Similarly, for the Parzen, QS, and OS LRV estimators, we can use
any of the respective choices: (PARZEN, parzen, P, p), (QUADRATIC, quadratic, Q,
q), and (ORTHOSERIES, orthoseries, O, o). kernel() is required.

noconstant suppresses the constant term.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The
default is level(95).

4.3 Stored results

The har command uses ivregress to get the estimates of the model parameters. In
addition to the standard stored results from ivregress, har stores the following results
in e():
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Scalars
e(N) number of observations
∗ e(sF) adjusted F statistic
∗ e(ssdf) second degrees of freedom
∗ e(kopt) data-driven optimal K of orthonormal bases
† e(kF) adjusted F statistic
† e(ksdf) second degrees of freedom
† e(lag) data-driven truncation lag
∗† e(fdf) first degrees of freedom

Macros
e(cmd) har
e(cmdline) command as typed
e(depvar) name of dependent variable
e(title) title in the estimation output
e(vcetype) title used to label Std. Err.
e(carg) nocons or "" if specified
e(varline) variable line as typed
e(kerneltype) kernel in the estimation

Matrices
e(b) coefficient vector
∗ e(sstderr) adjusted standard error for each individual coefficient
∗ e(sdf) degrees of freedom of t statistic
∗ e(st) t statistic
∗ e(sbetahat) IV coefficient vector
† e(kbetahat) IV coefficient vector
† e(kstderr) adjusted standard error for each individual coefficient
† e(kdf) degrees of freedom of the t statistic
† e(kt) t statistic

Functions
e(sample) marks estimation sample

notes: ∗ for OS; † for Bartlett, Parzen, and QS kernels.

We use the time-series data downloaded from the Stata Press website http://www.
stata-press.com/data/r15/idle2.dta to illustrate the use of har by analyzing the influ-
ence of idle and wio on usr. The data are time series of 30 observations covering the
periods from 08:20 to 18:00. We must tsset the dataset before using har.

Case 1: Nonparametric Bartlett kernel approach, default confidence level 95%, test-
ing-optimal automatic bandwidth selection:

. webuse idle2

. tsset time
time variable: time, 1 to 30

delta: 1 unit

. har usr idle wio, kernel(bartlett)
Regression with HAR standard errors Number of obs = 30
Kernel: Bartlett F( 2, 17) = 47.66
Data-driven optimal lag: 2 Prob > F = 0.0000

HAR
usr Coef. Std.Err. t df P>|t| [95% Conf. Interval]

idle -.6670978 .0715786 -9.32 22 0.000 -.8155428 -.5186529
wio -.7792461 .11897 -6.55 13 0.000 -1.036265 -.522227

_cons 66.21805 6.984346 9.48 19 0.000 51.59965 80.83646

http://www.stata-press.com/data/r15/idle2.dta
http://www.stata-press.com/data/r15/idle2.dta
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The header consists of the kernel type, the data-driven testing-optimal truncation lag,
and the F statistic for the Wald test. The column titles of the table reports coefficients,
HAR standard errors, t statistics, the equivalent degrees of freedom, p-values, and con-
fidence intervals. Each covariate is associated with its own asymptotic t distribution.
This is different from the regular Stata commands regress and newey, which use a
single standard normal distribution because the testing-optimal smoothing parameter
b depends on the null restriction vector R. Each model parameter corresponds to a
different vector R and hence a different data-driven b and a different t approximation.

Case 2: Nonparametric Bartlett kernel approach, confidence level 99%, testing-
optimal automatic bandwidth selection, noconstant:

. webuse idle2

. tsset time
time variable: time, 1 to 30

delta: 1 unit

. har usr idle wio, kernel(bartlett) l(99) nocons
Regression with HAR standard errors Number of obs = 30
Kernel: Bartlett F( 2, 3) = 8.88
Data-driven optimal lag: 13 Prob > F = 0.0549

HAR
usr Coef. Std.Err. t df P>|t| [99% Conf. Interval]

idle .0186886 .0101968 1.83 5 0.126 -.0224265 .0598037
wio .2759991 .0954198 2.89 5 0.034 -.1087473 .6607454

Case 3: Nonparametric Parzen kernel approach, confidence level 95%, testing-opti-
mal automatic bandwidth selection:

. webuse idle2

. tsset time
time variable: time, 1 to 30

delta: 1 unit

. har usr idle wio, kernel(parzen)
Regression with HAR standard errors Number of obs = 30
Kernel: Parzen F( 2, 4) = 50.87
Data-driven optimal lag: 10 Prob > F = 0.0014

HAR
usr Coef. Std.Err. t df P>|t| [95% Conf. Interval]

idle -.6670978 .071317 -9.35 15 0.000 -.8191065 -.5150892
wio -.7792461 .1143269 -6.82 12 0.000 -1.028343 -.5301492

_cons 66.21805 6.922399 9.57 14 0.000 51.37099 81.06512
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Case 4: Nonparametric QS kernel approach, confidence level 95%, testing-optimal
automatic bandwidth selection:

. webuse idle2

. tsset time
time variable: time, 1 to 30

delta: 1 unit

. har usr idle wio, kernel(quadratic)
Regression with HAR standard errors Number of obs = 30
Kernel: Quadratic Spectral F( 2, 4) = 46.84
Data-driven optimal lag: 5 Prob > F = 0.0017

HAR
usr Coef. Std.Err. t df P>|t| [95% Conf. Interval]

idle -.6670978 .0697384 -9.57 16 0.000 -.8149366 -.5192591
wio -.7792461 .1131035 -6.89 13 0.000 -1.023591 -.5349009

_cons 66.21805 6.834698 9.69 15 0.000 51.65024 80.78587

Case 5: Nonparametric OS approach, confidence level 95%, testing-optimal auto-
matic bandwidth selection:

. webuse idle2

. tsset time
time variable: time, 1 to 30

delta: 1 unit

. har usr idle wio, kernel(orthoseries)
Regression with HAR standard errors Number of obs = 30
Kernel: Orthonormal Series F( 2, 5) = 43.17
Data-driven optimal K: 6 Prob > F = 0.0007

HAR
usr Coef. Std.Err. t df P>|t| [95% Conf. Interval]

idle -.6670978 .0706388 -9.44 14 0.000 -.8186029 -.5155927
wio -.7792461 .1122118 -6.94 12 0.000 -1.023735 -.5347576

_cons 66.21805 6.838414 9.68 14 0.000 51.55111 80.88499

In this case, the header reports data-driven testing-optimal K. This is different from
the nonparametric kernel approach.

5 The gmmhar command

5.1 Syntax

gmmhar depvar
[
varlist1

]
(varlist2 = varlist iv)

[
if
] [

in
] [

, noconstant

level(#)
]

You must tsset your data before using gmmhar; see [TS] tsset.

Time-series operators are allowed.
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5.2 Options

noconstant suppresses the constant term.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The
default is level(95).

5.3 Stored results

The gmmhar command uses ivregress to get the column name in e(b) for the output
table in gmmhar tab.ado. In addition to the standard stored results from ivregress,
gmmhar also stores the following results in e():

Scalars
e(N) number of observations
e(sF) adjusted F statistic
e(sfdf) first degrees of freedom
e(ssdf) second degrees of freedom
e(kopt) data-driven optimal K for the OS variance estimator
e(J) J statistic for testing the overidentification

Macros
e(cmd) gmmhar
e(cmdline) command as typed
e(depvar) name of the dependent variable
e(title) title in estimation output
e(vcetype) orthonormal series
e(varline) variable line as typed
e(carg) nocons or "" if specified
e(exog) exogenous variables
e(endog) endogenous variables
e(inst) instrument variables

Matrices
e(betahat) two-step GMM coefficient vector
e(sstderr) adjusted standard error for each individual coefficient
e(sdf) degrees of freedom of the t statistic
e(st) t statistic

Functions
e(sample) marks estimation sample

5.4 Examples

To illustrate the use of gmmhar in the two-step GMM framework, we fit a quarterly time-
series model relating the change in the U.S. inflation rate (D.inf) to the unemployment
rate (UR) for 1959q1–2000q4. As instruments, we use the second lag of quarterly gross
domestic product growth, the lagged values of the Treasury bill rate, the trade-weighted
exchange rate, and the Treasury medium-term bond rate. We fit our model using the
two-step efficient GMM method.
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Case 6: Nonparametric OS approach, confidence level 95%, AMSE automatic band-
width selection:

. use http://fmwww.bc.edu/ec-p/data/stockwatson/macrodat

. generate inf =100 * log( CPI / L4.CPI )
(4 missing values generated)

. generate ggdp=100 * log( GDP / L4.GDP )
(10 missing values generated)

. gmmhar D.inf (UR=L2.ggdp L.TBILL L.ER L.TBON)
Two-step Efficient GMM Estimation Number of obs = 158
Data-driven optimal K: 46 F( 1, 43) = 2.05

Prob > F = 0.1597

HAR
D.inf Coef. std.Err. t df P>|t| [95% Conf. Interval]

UR -.0971458 .067901 -1.43 43 0.160 -.2340812 .0397895
_cons .5631061 .3936908 1.43 43 0.160 -.2308471 1.357059

HAR J statistic = .92614349
Reference Dist for the J test: F( 3, 44)
P-value of the J test = 0.4361
Instrumented: UR
Instruments: L2.ggdp L.TBILL L.ER L.TBON

In this case, the header reports the data-driven K value by the AMSE method. In
the above table, the negative coefficient on the unemployment rate (UR) is consistent
with the basic macroeconomic theory: lowering unemployment below the natural rate
will cause an acceleration of price inflation. The fixed-smoothing J test is now far from
rejecting the null, giving us greater confidence that our instrument set is appropriate.

Case 7: Nonparametric OS approach, noconstant, confidence level 99%, AMSE au-
tomatic bandwidth selection:

. use http://fmwww.bc.edu/ec-p/data/stockwatson/macrodat, clear

. generate inf =100 * log( CPI / L4.CPI )
(4 missing values generated)

. generate ggdp=100 * log( GDP / L4.GDP )
(10 missing values generated)

. gmmhar D.inf (UR=L2.ggdp L.TBILL L.ER L.TBON),nocons l(99)
Two-step Efficient GMM Estimation Number of obs = 158
Data-driven optimal K: 40 F( 1, 37) = 0.01

Prob > F = 0.9119

HAR
D.inf Coef. std.Err. t df P>|t| [99% Conf. Interval]

UR .0014583 .0130865 0.11 37 0.912 -.0340768 .0369934

HAR J statistic = .95768181
Reference Dist for the J test: F( 3, 38)
P-value of the J test = 0.4226
Instrumented: UR
Instruments: L2.ggdp L.TBILL L.ER L.TBON
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6 Monte Carlo evidence

In this section, we use the commands har and gmmhar to evaluate the coverage accuracy
of the 95% confidence intervals based on the fixed-smoothing asymptotic approxima-
tions. If the coverage rate (the percentage of confidence intervals in repeated experi-
ments that contain the true value) is close to 95% (the nominal coverage probability),
then the confidence intervals so constructed have accurate coverage, and the asymptotic
approximations are reliable in finite samples. For comparison, we include the results
from the commands newey and ivregress in our report.

6.1 Specifications

Data-generating process for har

We consider the data-generating process

yt = x0,tγ + x1,tβ1 + x2,tβ2 + εt (10)

where x0,t ≡ 1 and x1,t, x2,t, and εt follow independent first-order autoregressive [AR(1)]
processes,

xj,t = ρxj,t−1 +
√

1− ρ2ej,t, j = 1, 2; εt = ρεt−1 +
√

1− ρ2e0,t

or first-order moving-average [MA(1)] processes,

xj,t = ρej,t−1 +
√

1− ρ2ej,t, j = 1, 2; εt = ρet−1,0 +
√

1− ρ2et,0

The error term ej,t ∼ i.i.d. N(0, 1) across j and t. In the AR case, the processes are
initialized at zero. We consider ρ = 0.25, 0.5, 0.75.

Data-generating process for gmmhar

We follow Hwang and Sun (2017) and consider a linear model of the form

yt = x0,tγ + x1,tβ1 + x2,tβ2 + εy,t (11)

where x0,t ≡ 1 and x1,t, x2,t are scalar endogenous regressors. The unknown parameter
vector is θ = (γ, β1, β2)

′ ∈ R
3. We have m instruments z0,t, z1,t, z2,t, . . . , zm−1,t with

z0,t ≡ 1. The reduced-form equations for x1,t and x2,t are given by

xj,t = zj,t +

m−1∑
i=d

zi,t + εxj ,t, j = 1, 2

We consider the AR design here. Ye and Sun (2018), the working paper version of
this article, contains more designs. In the AR design, each zi,t follows an AR(1) process
of the form

zi,t = ρzi,t−1 +
√

1− ρ2ezi,t for i = 1, 2, . . . ,m
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where ezi,t =
(
eizt + e0zt

)
/
√
2 and et = (e0zt, e

1
zt, . . . , e

m−1
zt )′ ∼ i.i.d.N(0, Im). By con-

struction, each nonconstant zit has unit variance and the correlation coefficient be-
tween the nonconstant zi,t and zj,t for i �= j is 0.5. The gross domestic product for
εt = (εy,t, εx1,t, εx2,t) is the same as that for (z1,t, . . . , zm−1,t) except for the dimen-
sional difference. We take ρ = −0.5, 0.5, 0.8. We let γ = 1, β1 = 3, and β2 = 2 without
loss of generality.

The number of moment conditions is set to be m = 3, 4, 5 with the corresponding
degrees of overidentification being q = 0, 1, 2. We consider the sample size T = 100
and the significance level 5%. Throughout, we are concerned with testing the slope
coefficients β1 and β2. We use HAR variance estimators based on the Bartlett, Parzen,
and QS kernels, as well as the orthonormal Fourier series. The number of simulation
replications is 1,000.

6.2 Results

Figures 1 and 2 report the empirical coverage rates of the 95% confidence intervals for
β1 and β2, respectively. The results are based on the command har applied to the data
generated by the model in (10). It is clear from these two figures that confidence intervals
based on the fixed-smoothing approximations have more accurate coverage than those
based on the normal approximation, which is adopted in the command newey. As ρ
increases, coverage accuracy deteriorates in each case. When ρ is equal to 0.75, the
confidence intervals based on the fixed-smoothing asymptotic approximations are still
reasonably accurate. In contrast, confidence intervals produced by newey undercover
the true value substantially.
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Figure 1. Empirical coverage rates of 95% confidence intervals of β1 in model (10): the
y labels 0.25, 0.5, and 0.75 indicate the AR or MA parameter
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Figure 2. Empirical coverage rates of 95% confidence intervals of β2 in model (10): the
y labels 0.25, 0.5, and 0.75 denote the AR or MA parameter
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Figures 3 and 4 report the simulation results based on gmmhar and ivregress gmm

for the IV regression. For the ivregress command, the weighting matrix is based on
the option wmatrix(hac kernel opt

[
#
]
); that is, the weighting matrix is based on

a kernel heteroskedasticity- and autocorrelation-consistent estimator using the data-
driven truncation lag proposed by Newey and West (1994).
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Figure 3. Empirical coverage rates of 95% confidence intervals of β1 in model (11): the
y labels −0.5, 0.5, and 0.8 indicate the values of the AR parameter, and the y sublabels
3, 4, and 5 indicate the number of instruments used (P = Parzen, B = Bartlett, and
QS = kernels)
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Figure 4. Empirical coverage rates of 95% confidence intervals of β2 in model (11): the
y labels −0.5, 0.5,, and 0.8 indicate the values of the AR parameter, and the y sublabels
3, 4, and 5 indicate the number of instruments used (P = Parzen, B = Bartlett, and
QS = kernels)

As demonstrated by the two figures, the confidence intervals based on gmmhar, which
uses the fixed-smoothing t approximations, are more accurate than those based on
ivregress gmm, which uses the normal approximation. Under both designs, the coverage
accuracy of the confidence intervals produced by ivregress gmm deteriorates quickly
as the number of instruments increases. In contrast, the coverage accuracy of the
confidence intervals produced by gmmhar does not appear to be affected by the number
of instruments.

7 The hart and gmmhart commands

hart and gmmhart are the postestimation commands that should be used immediately
after the respective estimation commands har and gmmhar. These two commands
perform the Wald type of tests but use more accurate fixed-smoothing critical values.
The test statistics are given in (2) and (9), respectively.
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7.1 Syntax

The syntaxes of hart and gmmhart are as follows:

Tests that the listed coefficient are jointly 0:

hart coeflist, kernel(string)
[
accumulate level(#)

]
gmmhart coeflist

[
, accumulate

]
Tests a single or multiple linear restrictions:

hart exp = exp
[
= ...

]
, kernel(string)

[
accumulate level(#)

]
gmmhart exp = exp

[
= ...

] [
, accumulate

]
hart implements the test described in section 2 for testing the null H0 : Rθ0 = r

against the alternative H1 : Rθ0 �= r. The options kernel(string) and level(#) in
hart must be consistent with those in har.

gmmhart implements the test described in section 3 for the same null and alternative
hypotheses.

7.2 Options

kernel(string) sets the type of kernel. For the Bartlett kernel, any of the four usages—
kernel(bartlett), kernel(BARTLETT), kernel(B), or kernel(b)—produce the
same results. Similarly, for the Parzen, QS, and OS LRV estimators, we can use
any of the respective choices: (PARZEN, parzen, P, p), (QUADRATIC, quadratic, Q,
q), and (ORTHOSERIES, orthoseries, O, o). kernel() is required.

accumulate tests the hypothesis jointly with previously tested hypotheses.

level(#) sets the confidence level 1 − α (or the significance level α). The default is
level(95), which corresponds to confidence level 95% and significance level 5%.
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7.3 Stored results

hart and gmmhart store the following in r():

Scalars
†∗ r(firdf) first degrees of freedom
†∗ r(secdf) second degrees of freedom
†∗ r(kopt) data-driven optimal K
∗ r(lag) data-driven optimal truncation lag
†∗ r(F) adjusted F statistic

Matrices
∗ r(thetaiv) IV coefficient vector
† r(thetagmm) two-step GMM coefficient vector

notes: ∗ for hart; † for gmmhart.

7.4 Examples

We provide some examples to illustrate the use of hart and gmmhart. We will use the
data in section 4 for hart and the data in section 5 for gmmhart.

Case 8: We use hart to test different null hypotheses based on the Bartlett kernel.
The first two commands test that the coefficients on idle and wio are jointly zero.
These two commands produce numerically identical results. The last command tests
the null that the coefficient for wio is equal to 1.168 times the coefficient for idle.

. webuse idle2

. tsset time
time variable: time, 1 to 30

delta: 1 unit

. har usr idle wio, kernel(bartlett)
Regression with HAR standard errors Number of obs = 30
Kernel: Bartlett F( 2, 17) = 47.66
Data-driven optimal lag: 2 Prob > F = 0.0000

HAR
usr Coef. Std.Err. t df P>|t| [95% Conf. Interval]

idle -.6670978 .0715786 -9.32 22 0.000 -.8155428 -.5186529
wio -.7792461 .11897 -6.55 13 0.000 -1.036265 -.522227

_cons 66.21805 6.984346 9.48 19 0.000 51.59965 80.83646

. hart idle=wio=0, kernel(bartlett)
F( 2, 17) = 47.6645

Prob > F = 0.0000

. quietly hart idle=0, kernel(bartlett)

. hart idle=wio, kernel(bartlett) acc
F( 2, 17) = 47.6645

Prob > F = 0.0000

. hart 1.168*idle=wio, kernel(bartlett)
F( 1, 14) = 0.0000

Prob > F = 0.9989
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Case 9: We use hart to test that the coefficients on idle and wio are jointly zero
again, but now we use the OS LRV estimator:

. webuse idle2

. tsset time
time variable: time, 1 to 30

delta: 1 unit

. har usr idle wio, kernel(O)
Regression with HAR standard errors Number of obs = 30
Kernel: Orthonormal Series F( 2, 5) = 43.17
Data-driven optimal K: 6 Prob > F = 0.0007

HAR
usr Coef. Std.Err. t df P>|t| [95% Conf. Interval]

idle -.6670978 .0706388 -9.44 14 0.000 -.8186029 -.5155927
wio -.7792461 .1122118 -6.94 12 0.000 -1.023735 -.5347576

_cons 66.21805 6.838414 9.68 14 0.000 51.55111 80.88499

. hart (idle=0) (wio=0), kernel(O)
F( 2, 5) = 43.1681

Prob > F = 0.0007

Case 10: The case is the same as case 9, but no constant is included in the har

regression:

. webuse idle2

. tsset time
time variable: time, 1 to 30

delta: 1 unit

. har usr idle wio, kernel(o) nocons
Regression with HAR standard errors Number of obs = 30
Kernel: Orthonormal Series F( 2, 5) = 12.00
Data-driven optimal K: 6 Prob > F = 0.0123

HAR
usr Coef. Std.Err. t df P>|t| [95% Conf. Interval]

idle .0186886 .0084701 2.21 8 0.058 -.0008434 .0382206
wio .2759991 .1206479 2.29 8 0.051 -.0022156 .5542137

. hart idle wio, kernel(o)
F( 2, 5) = 11.9994

Prob > F = 0.0123

Case 11: We use gmmhart to test three hypotheses based on the two-step GMM

estimator with the (inverse) weighting matrix estimated by the OS approach:

1. Test that the coefficient on UR is 0.

2. Test that the coefficient on UR is 0 again but with a shorter command.

3. Test that the coefficient on UR is −0.09715.
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. use http://fmwww.bc.edu/ec-p/data/stockwatson/macrodat

. generate inf =100 * log( CPI / L4.CPI )
(4 missing values generated)

. generate ggdp=100 * log( GDP / L4.GDP )
(10 missing values generated)

. gmmhar D.inf (UR=L2.ggdp L.TBILL L.ER L.TBON)
Two-step Efficient GMM Estimation Number of obs = 158
Data-driven optimal K: 46 F( 1, 43) = 2.05

Prob > F = 0.1597

HAR
D.inf Coef. std.Err. t df P>|t| [95% Conf. Interval]

UR -.0971458 .067901 -1.43 43 0.160 -.2340812 .0397895
_cons .5631061 .3936908 1.43 43 0.160 -.2308471 1.357059

HAR J statistic = .92614349
Reference Dist for the J test: F( 3, 44)
P-value of the J test = 0.4361
Instrumented: UR
Instruments: L2.ggdp L.TBILL L.ER L.TBON

. gmmhart UR=0
(10 missing values generated)

F( 1, 43) = 2.05
Prob > F = 0.1597

. gmmhart UR
(10 missing values generated)

F( 1, 43) = 2.05
Prob > F = 0.1597

. gmmhart UR=-0.09715
(10 missing values generated)

F( 1, 43) = 0.00
Prob > F = 1.0000

8 Conclusion

In this article, we presented the new estimation command har and the new postesti-
mation test command hart in Stata. These commands extend the existing commands
for linear regression models with time-series data. We used the more accurate fixed-
smoothing asymptotic approximations to construct the confidence intervals and conduct
various tests. For the OLS and IV regressions, there are two main differences between
the tests based on har and hart and the tests based on the Stata commands newey and
test. First, the bandwidth parameter is selected differently. While newey and test

use a single data-driven smoothing parameter for all tests, har and hart use different
smoothing parameters for different tests. The smoothing parameter behind har and
hart is tailored toward each test or parameter under consideration. Second, for the
case with a single restriction, newey uses the standard normal approximation, while har
uses a t approximation. For joint tests with more than one restriction, newey and test

use a chi-squared approximation, while har and hart use an F approximation.
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We also introduced another pair of commands, gmmhar and gmmhart, to be used
in an overidentified linear IV regression. In this case, the efficient estimator minimizes
a GMM criterion function that uses an LRV estimator as the weighting matrix. Thus,
the underlying nonparametric LRV estimator plays two different roles: it is a part of
the GMM criterion function and a part of the asymptotic variance estimator. Recent
research has established more accurate distributional approximations that account for
the estimation uncertainty in the LRV estimator in both occurrences. Given that the new
approximations are less convenient when a kernel LRV estimator is used, we recommend
using an OS LRV estimator, in which case the modified F and t statistics converge to
standard F and t distributions, respectively.

The Monte Carlo evidence shows that the fixed-smoothing confidence intervals are
more accurate than the conventional confidence intervals. The simulation results pro-
duced by har and gmmhar are consistent with those produced by the authors using
Matlab.
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