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Abstract. In this article, we consider inference in the linear instrumental-
variables models with one or more endogenous variables and potentially weak
instruments. 1 developed a command, twostepweakiv, to implement the two-
step identification-robust confidence sets proposed by Andrews (2018, Review of
Economics and Statistics 100: 337-348) based on Wald tests and linear combi-
nation tests (Andrews, 2016, Econometrica 84: 2155-2182). Unlike popular pro-
cedures based on first-stage F' statistics (Stock and Yogo, 2005, Testing for weak
instruments in linear IV regression, in Identification and Inference for Economet-
ric Models: Essays in Honor of Thomas Rothenberg), the two-step identification-
robust confidence sets control coverage distortion without assuming the data are
homoskedastic. I demonstrate the use of twostepweakiv with an example of an-
alyzing the effect of wages on married female labor supply. For inference on sub-
sets of parameters, twostepweakiv also implements the refined projection method
(Chaudhuri and Zivot, 2011, Journal of Econometrics 164: 239-251). T illustrate
that this method is more powerful than the conventional projection method using
Monte Carlo simulations.

Keywords: st0541, twostepweakiv, coverage, first-stage F' statistic, pretesting,
weak instruments

1 Introduction

Linear instrumental-variables (IV) regression is commonly used to estimate the causal
effect of a potentially endogenous regressor, X, on an outcome variable, Y. For linear
IV estimators to be consistent, the instruments, Z, should be relevant for X and satisfy
the exclusion restriction. Weak identification arises when this relevance requirement is
close to being violated. One defining characteristic of weak instruments is that the con-
ventional level-o Wald tests (¢ tests) based on the IV estimates and their standard errors
have a true size larger than «. Thus, the usual (Wald) confidence sets (Css), formed
by adding and subtracting a multiple of the standard errors from the IV estimates, are
not robust to weak identification. When the instruments are weak, they may cover the
true parameter value less often than one intends. To conduct reliable inference, one can
always report robust CSs based on tests with correct sizes regardless of identification
strength. However, this method offers no formal assessment on identification strength.

© 2018 StataCorp LLC st0541
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To measure the identification strength, one commonly conducts a pretest based
on the first-stage F' statistic. Researchers compare their F' statistic with some critical
value to gauge the degree of weak identification. Stock and Yogo (2005) tabulate critical
values for a 5%-level pretest that ensure the actual coverage probability of a nominal 95%
Wald s is at least 90% under the assumption of homoskedastic data. The critical values
are a function of the number of endogenous regressors and the number of instruments. !

If the F' statistic is greater than the aforementioned critical value, the pretest rejects
the null of weak identification, and researchers report the usual Wald CS. Otherwise,
researchers report a robust CS. We can view this practice as constructing a CS in two
steps: the first step conducts a pretest, and the second step reports a CS based on the
result in the first step. To obtain the coverage probability of the resulting two-step CS,
we need to account for the type I error due to the pretest itself. Accounting for this
error via a Bonferroni correction gives an 85% lower bound on the coverage probability
of the two-step CS; error rate of the pretest (5%) plus the error rate of the Wald test
(10%) gives an 85% coverage probability overall.

While such two-step procedures are popular in practice, researchers commonly over-
look the homoskedasticity assumption in conducting the pretest based on the F' statistic.
When the data are heteroskedastic, clustered, or serially correlated, there is no formal
justification for comparing the F' statistic with critical values from Stock and Yogo
(2005). Two-step CSs based on such pretests can have severe coverage distortions. We
illustrate this coverage distortion using simulations in section 2.

To address this gap between empirical practice and the theoretical econometrics
literature, Andrews (2018) developed an alternative method to gauge identification
strength. I developed a command, twostepweakiv, to implement such a method for
linear IV models.” twostepweakiv allows the researchers to specify their desired level of
coverage distortion 7, which parameterizes their tolerance for weak identification. Re-
searchers can then compare v with a data-driven cutoff y—which we call the distortion
cutoff—returned by twostepweakiv to gauge identification strength. Based on such a
comparison, researchers can form two-step CSs with coverage level at least 1 — a — v,
even under heteroskedastic, clustered, or serially correlated data. The idea behind this
method is as follows: under strong identification, some robust test statistics and the
Wald statistic are equivalent local to the true parameter value. Using this equivalence,
the corresponding robust CS with coverage level 1 — o — v should be contained in the
Wald (nonrobust) CS with coverage level 1 — « when instruments are strong. We can
thus assess the strength of identification by checking how much larger v needs to be for

1. The commonly used critical value 10 is calculated by Stock and Yogo (2005) for a 5%-level pretest
that ensures the maximum bias of the two-stage least-squares (2SLS) estimator not to exceed 10%
of the bias of the ordinary least-squares estimator. This rule-of-thumb critical value applies to linear
IV models with one endogenous (instrumented) regressor under the assumption of homoskedastic
data.

2. To be exact, instead of a linear generalized method of moments (GMM) model, I implement this
valid two-step procedure using a classical minimum distance (MD) model in Stata following prior
work by Finlay and Magnusson (2009). I establish validity of the two-step procedure using the MD
approach in the online appendix.
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this containment to hold, and we can bound coverage distortions accordingly. I explain
this two-step procedure in more detail in section 2.

Building on the existing command weakiv (Finlay, Magnusson, and Schaffer 2014),
the new command twostepweakiv adds the following features: It first adds to weakiv
the linear combination (LC) test, which is used to form the robust CS mentioned in the
previous paragraph. The LC statistic is an LC of the S (that is, Anderson—Rubin [AR])
and K statistics that yields more powerful tests in some cases when identification is
weak. I discuss more of its properties in section 3.

twostepweakiv also supports multiple endogenous regressors and instruments. Cur-
rently available approaches to construct CSs for subsets of parameters when there are
multiple endogenous variables can be inefficient when identification is strong. The com-
mand twostepweakiv improves power of the robust CSs for subsets of parameters when
the model is well identified. It is also less computationally demanding than the existing
command weakiv. I describe the approach in section 3.1.

The next section illustrates the two-step procedures using simulations and shows how
the two-step procedure based on Andrews (2018) can bound coverage distortions. Sec-
tion 3 provides the details needed for implementing Andrews (2018) for linear IV models
for both the full set of parameters and for a single parameter. To learn how to imple-
ment the two-step CSs using twostepweakiv, readers can skip section 3 and proceed
directly to section 4, which describes the syntax of twostepweakiv and demonstrates
its usage with an example. Section 5 details the simulation design and presents addi-
tional simulation results to illustrate the improved performance of twostepweakiv. I
refer interested readers to the online appendix for more details and relevant proofs.?

2 Constructing valid two-step CSs

Validity of two-step CSs means bounded (asymptotic) coverage distortions. To develop
intuition, we first revisit the two-step procedure based on the first-stage F' statistic and
illustrate how it fails to bound coverage distortions when data are nonhomoskedastic
based on a simulation exercise.

We focus on constructing a two-stage least squares (2SLS) CSs for a linear IV model
with a single endogenous regressor and 10 instruments under heteroskedasticity.* In
each simulation, we vary the identification strength as measured by ||| in the following
linear IV model:

3. The relevant ado-file, proofs, and simulation replication do-files are available on https: //github.
com /lsun20 / TwoStep.

4. We replicate the simulation design for moderate endogeneity under heteroskedasticity with 1 en-
dogenous variable and 10 instruments presented in the supplementary appendix to Andrews (2018).
The results are based on 2,500 simulations, each with 10,000 observations.
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Y = XpBy+e
X = Zmy+V

Specifically, we fix m¢ /||| and Sy = 0 while varying ||7o|| € [0,0.11]. For each value
of ||mo||, we construct a nominal 95% Wald €S and a nominal 95% AR CS. The AR CS is
robust to weak identification, whereas the Wald CS is not. We also construct a nominal
95% two-step CS based on the F statistic with the critical value ¢ = 38.54. For the
F statistic, we use the Kleibergen and Paap (2006) rk Wald F' statistic returned by
ivreg2 (Baum, Schaffer, and Stillman 2002).” The critical value ¢ = 38.54 is tabulated
from Stock and Yogo (2005). If the first-stage F' statistic is less than ¢, then the results
of Stock and Yogo (2005) imply that we cannot reject the null of weak identification or,
more accurately, that the Wald €S has coverage less than 90% under homoskedasticity.
In this case, we use the AR CS for the two-step CS. If the first-stage F' statistic is larger
than ¢, then we reject the null and use the Wald CS. As a result, under homoskedasticity,
after we account for 5% errors due to the pretest itself, this choice of critical value ensures
coverage no less than 85% for a two-step CS with nominal coverage 95%.

Under nonhomoskedasticity, however, it is unclear whether the two-step CS based
on comparing the Kleibergen and Paap (2006) rk Wald F statistic with ¢ can control
coverage. While it is one option in ivreg2, Baum, Schaffer, and Stillman (2007) suggest
that users cautiously apply the critical values from Stock and Yogo (2005), which are
intended for homoskedastic data.

We study the coverage probability for each of the three CSs under heteroskedasticity
at different values of ||| by calculating the probability that the CS includes the true
parameter value 8 = 0 based on simulations. We expect the nonrobust Wald CS to have
poor coverage for small values of ||mg|| and the robust AR CS to have coverage at least
95% for all values of ||mg]|.

In figure 1, we plot the coverage of these CSs at each ||m¢|| against the mean of the
F statistic at the same ||7g]| as we vary ||mo|| € [0,0.11]. As expected, the nominal 95%
Wald CSs have actual coverage probability much smaller than 95% when identification
is weak, which corresponds to small values of ||my| and a small mean F statistic. In
contrast, the nominal 95% AR CS has coverage at 95% for all values of ||mo]|.

5. With one endogenous variable, the Kleibergen and Paap (2006) rk Wald F' statistic is equivalent
to the heteroskedasticity-robust F' statistic testing the null Hg: wg = 0.
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Figure 1. Coverage of two-step CS based on the F statistic

The coverage of the two-step CS (dashed line) drops quickly as |7 exceeds 0.06,
which corresponds to the mean of the F statistic exceeding c. Above this value, we are
very likely to reject the null of weak identification in the pretest and use the Wald CS
for the two-step CS. Therefore, the coverage of the Wald CS and the coverage of the
two-step CS gradually coincide. However, coverage of the two-step CS is far below 85%
above this value of ||mg]|.

The issue is that an F' statistic used with existing critical values is not a reliable
indicator of identification strength under heteroskedasticity: even when the mean F
statistic is greater than ¢ = 38.54, for example, at 90, many nominal 95% Wald CSs ex-
hibit coverage distortions exceeding 10%. The two-step CS thus has coverage distortion
larger than 15%. Our simulation results suggest that the critical value ¢ = 38.54 fails
to bound its coverage distortion at 15% with heteroskedastic data.

Because the pretest based on the F' statistic tests the null hypothesis that the nom-
inal Wald CS has actual coverage probability not less than 1 —a —~%, we can also form
pretest by directly comparing the Wald €S with a nominal 1 —a —~% robust CS because
the robust ¢S would have an actual coverage probability not less than 1 — a — v%.

This means that to construct a valid two-step CS, we need three inputs: a level 1 —«
nonrobust (Wald) CS CSy, a level 1 — « robust CS CSg, and a preliminary robust CS
CSp (7), where v is a specified maximal coverage distortion.
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Assumption 1 The preliminary robust CS CSp () needs to satisfy the following as-
sumptions:

CSp () has coverage at least 1 — a — v when identification is weak;

CSp () is contained in CSg with probability 1 regardless of identification strength;
and

CSp () is contained in CSy with probability tending to 1 when identification is
strong.

For a more formal discussion of the above assumptions, see assumption 1 of Andrews
(2018). While he shows how to construct CSg and CSp satisfying this assumption
in generalized method of moments (GMM) models, T extend his results to minimum
distance (MD) models; section 3 details the construction, and I provide proofs in the
online appendix.

Given such CSy, CSg, and CSp (), the indicator 1 {CS, () € CSy} is an indicator of
weak identification because when the identification is strong, the nonrobust CSy should
contain the robust CSp (7). We can construct a two-step CS CSa (y) accordingly by

CS2 (7) = (1)

csy if csp(y) C CSw

CcSg if CSp (y) € CSn
The two-step CS CS3 (y) is CSy when CSp () is contained in CSy, and CSg otherwise.
Furthermore, because CSp () C CSa (y) by construction, CSs () has coverage of at least
1 — a — v regardless of identification strength. Thus, the coverage distortion, which is
the difference between nominal coverage 1 — o and the true coverage of €Sy (7), is at
most 7.

2.1 Specify coverage distortion

The approach outlined above involves the maximal coverage distortion . While re-
searchers can specify a v in forming the CSg (y), different readers may prefer different
choices for the maximal coverage distortion. To avoid making a choice on =, I report
both CSg and CSy with some indication of the reliability of CSy, and readers can decide
which CSs to focus on based on their preference for coverage distortion.

Start with some y,i,. twostepweakiv allows several levels of vy, and I will discuss
the choice of iy later in this section. Note that we can construct robust CSs CSp (7)
that decrease in v in the sense that CSp (7) C CS, () for ¥ > v > Ymin. We can also
construct CSg such that CSp (Ymin) C CSg and thus CSp () C CSg for 4 > Ymin. Define
7 to be the smallest coverage distortion, ¥ > ymin, such that CSp () C CSy. Intuitively,
7 is the smallest distortion + such that we would report CSy for CSs (), and we can
use 7 to guide the choice of CS to focus on.
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If you prefer a maximal coverage distortion 7, then you can adopt the following
decision rule on which CS to focus on:

CS if v <
csy () =4 N =T 2)
CSp ify >«

We refer to 74 as the distortion cutoff. If you prefer a coverage distortion greater than
this cutoff v > 7, we have CSp () C CS, (7). Because CSp (7)) C CSn, this means that
CSp (y) C csy as well, and you should focus on CSy. If you instead prefer a coverage
distortion less than this cutoff v < 7, we have CSp (7) C CSp (7). Because 7 is the
smallest coverage distortion 7 such that CSp (7) C CSy, this means that CSp (7y) € CSn.
The decision rule in (2) is thus the same as the definition in (1), and the resulting CS, ()
has asymptotic coverage of at least 1 — a —~ under both weak and strong identification.
Thus, by reporting (CSy, CSg,7), we provide all the ingredients to construct two-step
CSs with any level of maximal coverage distortion « that the reader prefers.

To implement this decision rule, given ymin, we first construct CSg and CSp (Ymin)
based on the LC test such that CSp () decreases in «y for v > i and CSy, (Ymin) C CSk.
Then, we can calculate 5 by solving min,>,, . CSp(y) € CSy. So the only choice
researchers need to make is Yyin-

The choice of vy affects how we construct CSr. In particular, for vy, = 0, CSg
degenerates to a robust CS based on the K test, which has some undesirable properties
that we discuss in section 3. Thus, we impose that v, > 0. Because 7 > ~in, readers
who prefer a distortion smaller than ~.,;, would always focus on CSg. Thus, a larger
Ymin Would point readers more often to CSp. twostepweakiv pretabulates several vin
and sets the default v, to be 5%. However, we focus on these vy, not to endorse
these choices but rather to facilitate faster computing as explained in the next section.

Below we repeat the simulation exercise introduced at the beginning of this section
and study the performance of CSs (y) with v = 10% based on (2), where CSy is a
nominal 95% Wald CS and CSg is a nominal 95% LC CS. We set Yy, to be 5%. In
figure 2, we plot the coverage of these CSs against the mean of the F' statistic as we
vary the first-stage coefficients. Contrary to the simulation results shown in figure 1,
using the same simulation design, €Sy (10%) has coverage probability of at least 85%
regardless of the value of the F' statistic.
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Figure 2. Coverage of two-step CS based on whether distortion cutoff ¥ > 10%

3 Constructing (CSy, CSg,~) for linear IV

To form a two-step CS with bounded coverage distortion as discussed in the previous
section, we just need to construct (CSy, CSg,7). This section describes how we construct
them for linear IV models based on the MD approach. Specifically, we provide more
details on constructing CSi based on the LC test and calculating 7. Readers can proceed
directly to section 4 to learn how to implement the two-step CSs using twostepweakiv.

We start by considering a linear IV model

Y = X00+€
X Z7T0+V

which can equivalently be written as a reduced-form model

Y = Z§+U
X Z7T0+V

for Z, an N x k matrix of instruments; X, an N X m matrix of endogenous regressors;
and Y, an N x 1 vector of outcome variables. Assume that E(Z;U;) = E(Z;V;) = 0.
Note that g = wo8y. We also assume that any exogenous regressors have already been
partialled out.®

6. For exogenous regressors W and initial data (?, )2, ZW)7 we partial out W by letting

’

~ ~ ~ —1
Y = MpY, X = My X, and Z = My Z, where Myy = [ — W (w’w) w'.
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Suppose we are interested in a p-dimensional parameter (p < m) 8 = f(0). Here f is
a continuously differentiable function. If we are interested in 6, then let f be the identity
matrix. Denote 8/(80/)]” (6) = F(0). Assume F (6y) has full rank. For example, we
may be interested in constructing a CS for the jth coordinate of the parameter vector
and f (6) = 6;. We focus on constructing a CS for a single coordinate of the parameter
vector in section 3.1. Below, we discuss the general case where 3 is p-dimensional and
first define its MD estimators.

The reduced-form parameter vector is T = (8, ), and its estimator is 7 = (8, 7).
The structural parameter vector is 6. Instead of deriving GMM estimators based on
the moment function g(6) = (1/N)> ., Z; (Y; — X;600), the MD approach focuses on

the structural function, which is r (r,0) = & — w6. Note that r (7,68y) = & — 76
and r (79,00) = 09 — we0y = 0. If {9r(70,00)}/(00) does not have full rank, then
the model is underidentified. If {Or (70,00)}/(00) has full rank, then the model is
identified. Weak identification arises when {0r (7¢,800)}/(90) is very close to a reduced
rank matrix. Otherwise, the model is well (strongly) identified.

Assume we have some estimator 8 for 6 that under strong identification is first-
order equivalent to 8, which solves mingee r (7, 0)/ Q(8)r (7,0) for (), a symmetric
positive definite weighting matrix that converges uniformly to 2 (8) under strong identi-
fication.” Examples of such estimators include one-step MD, efficiently and inefficiently
weighted two-step MD, and continuously updating MD.

Next, we list assumptions for the asymptotic normality of f (FHV)7 the estimator for 3.

Assumption 2 Under both strong and weak identification, the estimators of reduced-
form parameter vector have the asymptotic distribution

5 — 8 s Sx
A(2e ) evpe (5 3

and we have consistent estimators g5, 3., and X5, for the asymptotic variance—
covariance matriz.

Then, by the delta method, we have v'N {r(7,8¢) — r (10,00)} —4 N (0,%,). Let
3, (8p) be a consistent estimator for X,.

Additionally, under strong identification and regularity conditions, 6 is consistent
and asymptotic normal, and the delta method implies

VN{£(8) =By} —=a N (0.V5)

7. By first-order asymptotic equivalence, we mean that \/N(a - 5) —p 0 under strong identification.
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where 8, = f (0o) and V3 = F(80)VeF(0y) . The asymptotic normality of £(6) under
strong identification means that the Wald statistic

W)= N {1 () -8} Vi {1 (0) -}
for \A/'/g, a consistent estimator of Vg, has an asymptotic distribution

W (Bo) —d X;Z)

under Hy: B = B, and strong identification. Collecting the set of values 3 such that
the Wald test does not reject it gives us a nonrobust Wald ¢ss for 3 = f (0),

csy ={B:W(B) < x’i_a}

In the online appendix, we prove that we can construct CSg based on the LC test,
which builds on the K and S test. We define the K statistic as

Koy (0) =N = (8" (0)~ 1 (0)) {M(0) S, 0) M (0)} {8 (0) -  (0)}

For more details on M (@), see Andrews (2018) and the online appendix. Also define
the § statistic as .
S(8)=Nxr(7,0) £.(0)"'r(7.0)

The LC statistic is defined as
LCq 1,0 (0) = Kq,7 (0) +a x S(0)

For a = 0, the LC statistic degenerates to the K statistic. However, the K statistic
has some undesirable properties. Kleibergen (2005) shows that the K statistic can
be interpreted as a score statistic based on the continuously updating GMM objective
function. This means that the CS based on the K statistic always contains all local
minimums and maximums of the continuously updating objective function. Thus, the
K test can have low power if the continuously updating GMM objective has multiple
local minimums or maximums. By combining the K statistic with the S statistic, the LC
statistic improves the power of the K test. In the online appendix, I show that under
both strong and weak identification, under Hy : @ = 6y, LCq s (@) has the following
asymptotic distribution:

LCq,f,a (B0) =4 (14 a) X X5 +a X Xi_,

To form CSg and CS), (y) based on LCq 5 (6), we let a be a function of . Specifically,
for a given value of v, define a () by

H71 {1 - 0‘—’%&(7)7/%}7} = X?},lfa
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where H™' {1 — o — v;a () , k, p} is the 1 —a — quantile of a {1 +a ()} X x5 +a (7) X
X%_p distribution and X;Q;,ka is the 1 — a quantile of a X;Q) distribution.® We can now
construct robust CSs for 3 = f (0). In particular, define

CSpe = [0: Ka,(0)+a(y)x5(0) < H! {1-asa(y),k p}]
CSp={f(0):0 € CSre}

= |8, min, Ko (0)+a()xSO) <H {1-aia(r).kp}| ()

where H™'{1 — a;a(v),k,p} is the 1 — a quantile of a {1 4a (v)} x xj +a () X xz_,
distribution. The initial CS, CSg.g, collects the set of values 8 where the LC statistic falls
below the critical value and so will cover 8 with probability tending to 1 —« under both
strong and weak identification. Similarly to the conventional projection method, CSgp
takes the image of the initial CS under f(-) to construct a CS for B = f (6). Unlike the
conventional projection method, we alter the test statistic (specifically the K statistic in
the LC) based on f(+). Thus, we refer to this method as the refined projection method.
I discuss this refinement more in section 3.1.

We can similarly define CSp (), where the critical value in (3) is replaced with
Xp1_o- We can show that the above CSg and CS, (), with the Wald CSy, satisfy
assumption 1 and thus can be used to construct CSs () with coverage probability of at
least 1 — o — 7.

I demonstrated in section 2 that by reporting (CSy,CSg,7), we provide all the
ingredients needed to construct CSs () with any level of maximal coverage distortion
~ that the reader prefers. Here we describe how to calculate the distortion cutoff 7.
Andrews (2018) shows that to find 7 that solves min,>~, .. CSp () C CSy, we first need
to find

~ Xp1-a — Koy (0)
a = sup

P S (9) x1 {WQJ (0) > Xfy,l—a}

and then calculate
y=1-a—-Pr{(1+a)x Xf,—l—Zix X%,‘fp < X?},lfa}

In practice, Pr {(1 +a) x X% +a x Xi_p < Xi,ka} is again calculated based on 100,000

independent simulation draws. The distortion cutoff is then 7 = max {7, v}.

8. By definition, a () solves
Pr [{1+a(7)} X Xpta(y) X xg_, < X;z;,lfa] =l-a-nv

To find this value in practice, we take 100,000 independent simulation draws from X;% and x%fp
distributions and solve numerically for the value a, which sets the 1 — a — « quantile of the corre-
sponding LC of these draws to X;lia. The simulation can be computationally intensive, and we
pretabulate a () for a few levels of 7 in twostepweakiv. For levels of 4 that are not pretabulated,
twostepweakiv solves for a () based on 10,000 simulations before it calculates CSs.
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3.1 Refined robust CSs for a single parameter

Let 8 = (B1,...,Bm) be the full-parameter vector. In this subsection, I discuss how
to construct a two-step CS for the jth coordinate ; because we are interested only in
the causal effect of its corresponding regressor. The remaining parameters are called
nuisance parameters because they are not of immediate interest. This can be achieved
by setting f(6) = e} x 6, where e; is the jth coordinate vector. Then, we have
f(0) =e; x8=p;and F(0) =0/(08)f (8) = €. Below, we derive test statistics for
a single element of the parameter vector.

It is straightforward to construct nonrobust Wald CS for 3;—simply its estimator
Bj plus and minus c, /o times its standard error, where ¢, /2 is the 1 — «/2 quantile of a
standard normal distribution. By contrast, most robust CSs are based on test inversion
on a fine grid of parameters. Namely, we test all potential hypotheses Hy: 8 = 8y and
define our CsS as the set of all 8 for which the hypothesis is accepted. As a result of such
an inversion, we would end up with a joint (multidimensional) ¢S for B and nuisance
parameters. If we assume the nuisance parameters are well identified, then by the
results of Kleibergen (2004), we can plug in the continuously updating estimator for the
nuisance parameters and construct robust CS for 8; based on test inversion on a grid of
values for the parameter of interest only. This option is supported by twostepweakiv—
see strong_options. If we do not want to assume the nuisance parameters are well
identified, the conventional method (the projection method) projects the original CS for
the full-parameter vector onto the jth dimension. The resulting CS for §; is typically
conservative, particularly when the nuisance parameters are actually well identified.

Originally proposed by Chaudhuri and Zivot (2011), the refined projection method
alters the K statistic to construct the joint CS and then project it onto the jth dimen-
sion to reduce the degree of conservativeness. This method is more powerful than the
conventional projection method in the well-identified case. Intuitively, one reason why
the projection method has low power is that it first tests all parameters simultaneously
and then projects the joint CSs onto 3;. By refining the K statistic, we can focus power
on testing the one-dimensional hypothesis Hy: §; = Sjo. Andrews (2018) generalizes
this method to allow for inefficient weighting matrices, which accommodates the inef-
ficiently weighted two-step estimators. Specifically, when constructing a robust CS for
B;j based on the K test, we refine the K statistic to be

Kaqpe, (0) = ;

If we further construct a robust CS for 3; based on the LC test, we define the LC
statistic as

LCqe;,a (0) = K, (0) +a x S(0)

where the S statistic remains the same as in the full-parameter case. This statistic is
used to form CSg in (3). In section 5, I present a simulation study that compares this
refined projection method with the conventional projection method.
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4 The twostepweakiv command
4.1 Syntax

The command syntax for twostepweakiv is

twostepweakiv estimator depvar [varlistl] (varlist2 = wvarlist_iv) [zf] [m]

[weight] [, test_options grid_options size_options strong,options]

With regard to estimator, all estimators are formulated as MD estimators following
weakiv and Finlay and Magnusson (2009).

estimator Description

2sls 2SLS estimator

liml limited-information maximum likelihood
md2s two-step MD estimator

cue continuous updating estimator (CUE)

NOTES: We drop the robust option because the choice of estimator implies the choice of weight matrix
(2s1s and 1iml for an inefficient weight matrix and md2s and cue for an efficient weight matrix). The
choice of variance—covariance estimators (VCE) is not necessarily the same as the choice of the weight
matrix. By default, we calculate VCEs robust to heteroskedasticity regardless of the choice of estimator,
so test statistics are robust to heteroskedasticity in all cases. Other types of VCEs can be specified in
cluster () for clustered VCE and in kernel () for kernel-based VCE. More details can be found in the
help file for ivreg2.

varlist! is the list of exogenous variables.

varlist2 is the list of endogenous variables. Users can specify up to five endogenous
variables without further calculation—see gammalevel (#).

varlist_iv is the list of instruments for varlist2. Users can specify up to 50 instruments
without further calculation—see gammalevel (#).

4.2 Options

Below, I describe the options for the command. For each option, I describe when
it should be used or adjusted. I also describe the default values for options when
applicable.

test_options

Users can specify which tests to use in constructing the confidence intervals. Note that
even though twostepweakiv can report robust CSs based on several test statistics, it
calculates the coverage distortion for the LC test only (that is, readers should form two-
step CSs based on the LC confidence interval). When there is more than one endogenous
variable, users can also specify for which parameter to construct the confidence interval
using the refined projection method.
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citestlist (testlist) constructs CSs for the full-parameter vector; several tests are in-
herited from the original weakiv command.

Table 1. Tests available for full-parameter vector

testlist Test Addition to weakiv
Wald nonrobust Wald test No
AR AR test No
K K test with the efficient weight matrix No
K 2sls K test with 2SLS inefficient weight matrix Yes
LC LC test with the efficient weight matrix Yes
LC_2sls LC test with 2SLS inefficient weight matrix Yes

NOTES: Default tests are Wald, AR, K_2sls, and LC_2sls when the estimator is 2sls or liml; default
tests are Wald, AR, K, and LC when the estimator is md2s or cue. Because Wald is always provided, you
do not need to specify this test.

project(wvarlist), when there is more than one weak endogenous variable and we are
interested in inference for one endogenous regressor f only, calculates CSs using the
“refined” projection method for 8 while treating the other endogenous regressors n
as free unknown parameters (nuisance parameters). See option strong() if you are
willing to make additional assumptions about 7.

ptestlist (project_testlist) allows the following tests for constructing CSs for 3 specified
in project () using the “refined” projection method.

Table 2. Tests available for scalar parameters using refined projection method

project_testlist Test

Wald nonrobust Wald test

K K test with the efficient weight matrix
K_2sls K test with 2SLS inefficient weight matrix
LC LC test with the efficient weight matrix
LC_2sls LC test with 2SLS inefficient weight matrix

NOTES: Default tests are Wald and LC_2sls when the estimator is 2sls or 1iml; default tests are Wald
and LC when the estimator is md2s or cue. Because Wald is always provided, you do not need to specify
this test.
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grid_options

Because we construct CSs based on test inversion, we need to specify grid points over
which to calculate the test statistics. If left unspecified, the default grid is centered
around the point estimate with a width equal to five times the Wald confidence interval.
The default number of grid points is 100 for one endogenous variable and 25 x 25 points
for two endogenous variables. With weak or strong instruments, this may often be too
small or large a grid to estimate the CSs. I recommend that users specify the grid using
the gridmin() and gridmax() options.

cuepoint adds the CUE estimator to the grid for calculating CSs. If CSs are nonempty,
they should contain the CUE estimator.

gridmin(numlist) sets the lower limit or limits for grid search (in dimensions corre-
sponding to endogenous regressors).

gridmax (numlist) sets the upper limit or limits for grid search (in dimensions corre-
sponding to endogenous regressors).

gridmult (#) specifies the multiplier of the Wald confidence interval for the grid. The
default is gridmult (5).

gridpoints(numlist) specifies the numbers of equally spaced grid points (in dimen-
sions corresponding to endogenous regressors) over which to calculate the CSs. The
default is gridpoints (100 25 11 7 5) for the cases of one, two, three, four, or five
endogenous regressors, respectively. For testing a point null hypothesis, for example,
0, set the grid point to 1 and gridmin() =gridmax ()=0.

size_options

Recall that to calculate the distortion cutoff 4 and to construct the two-step confidence
interval, we need to specify the nominal size of test a and an initial coverage distortion
Ymin as explained in section 2.1. If left unspecified, the default values are a = 95 and

Ymin = 5.

level (#) specifies the confidence level as a percentage (same for all tests performed).
The default is 1evel(95) for size 5% tests; if specified, level (#) with values 99,
95, or 90 allows for faster computation because weights used in LC and LC_2sls tests
are pretabulated only for these values. For other values, see gammalevel (#).

gammalevel (#) specifies ymin. Calculation is faster for ymin = 1, 2, 5, 10, 15, or 20.
For other values, additional calculation is needed. As explained in section 3, the
LC test requires that we use simulations to calculate the weights and critical values.
Because simulations are computationally intensive, we tabulate the weights a () and
critical values H= {1 — a;a (y),k,p} forp=1,...,5, k=1,...,50, a = 90, 95, or
99 and v = 1, 2, 5, 10, 15, or 20 in advance. For values not pretabulated, we
include simulation code to calculate the corresponding weights and critical values,
which can be slow.
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strong_options

When there is more than one endogenous variable, we can specify project (varlist) to
construct CSs for one endogenous regressor with coefficient 8 only. If we assume the coef-
ficients m on the other regressors are strongly identified as specified in strong(varlist),
then we can plug in their estimates and construct robust CSs for § based on a test
inversion on a grid of values for 8 only. The choice of the estimators is specified by
cuestrong.

strong(varlist) specifies strongly identified endogenous regressors with coefficients 1
when there is more than one weak endogenous variable and treats the coefficients
B on the rest of the endogenous regressors as potentially weakly identified. By
default, all endogenous regressors are assumed to be potentially weakly identified.
If strong() is specified and cuestrong is not evoked, then at each grid point 3,
for the potentially weakly identified parameters 3, we calculate md2s estimates for
strongly identified parameters n under the null hypothesis Hy: 3 = 3,. We then
evaluate test statistics for 3, plugging in the md2s estimates 7).

cuestrong uses CUE point estimates for strongly identified endogenous regressors (spec-
ified in strong(varlist)) and includes these point estimates in the grid. That is, at
each grid point B, for the potentially weakly identified parameter 3, we calculate
CUE for strongly identified parameters n under the null hypothesis Hy : B8 = 3.
We then evaluate test statistics for 3, plugging the CUE estimates 7} in the strongly
identified parameters. Note that this option may be computationally intensive.
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4.3 Stored results
twostepweakiv stores the following in e():

Scalars

e(N)
e(N_clust)
e(kwt)
e(endo_ct)
e(wendo_ct)
e(sendo_ct)
e(overid)
e(small)
e(ar_level)
e(k_level)
e(wald_level)
e(gamma_level)
e(gamma_hat)
e(points)
e(clrsims)

Macros

e(cmd)
e(ar_cset)
e(k_cset)
e(wald_cset)
e(lc_cset)
e(prz_yy-cset)
e(inexog)

e (exexog)
e(depvar)
e(endo)
e(wendo)
e(sendo)
e(pwendo)
e(pwendo nlist)

e(gridpoints)
e(model)
e(waldcmd)
e(level)

e (method)

Matrices

e(citable)

e(pzzcitable)

e(F)
e(wbeta)
e(var_wbeta)
e(sbeta)

e(ebeta)
e(cuebeta)

sample size

number of clusters (if cluster-robust VCE used)

weight on K in K — J test

number of endogenous regressors

number of weakly identified endogenous regressors
number of strongly identified endogenous regressors
degree of overidentification

1 if small-sample adjustments used, 0 otherwise

level in percent used for AR confidence interval

level in percent used for K confidence interval

level in percent used for Wald confidence interval
gamma_min used for LC_2sls confidence interval
distortion cutoff for LC_2sls confidence interval

number of points in grid used to estimate confidence sets
number of draws used in simulations to obtain p-values for con-
ditional likelihood-ratio test

twostepweakiv

confidence set based on AR test

confidence set based on K or K_2sls test

confidence set based on Wald test

confidence set based on LC or LC_2sls test

as above, projection-based confidence set for variable zz, test yy
list of exogenous regressors (excluding any included in the tests)
list of excluded instruments

dependent variable

endogenous variable or variables

weakly identified endogenous variable or variables

strongly identified endogenous variable or variables

endogenous variables with projection-based confidence sets
corresponding numbers for e(pwendo); wused to identify
projection-based confidence sets in e() (see above)

list of grid points in each dimension

linear IV

w_command estimator used to fit standard IV model: 2sls, md2s,
1liml, or cue

default confidence level in percent used for tests of null = 100 x
(1—a)

md

table with test statistics, p-values, and rejection indicators for
every grid point over which hypotheses are tested; if strong() is
used, the estimated coefficients for the strongly identified regres-
sors are also recorded

grid table with rejection indicators for projection-based inference;
zz will be one or two numbers corresponding to the endogenous
regressor Or regressors

first-stage F statistics for all endogenous regressors

weakly identified coefficients from IV model used for Wald tests
VCE from IV model used for Wald tests

if strong() is used, estimated strongly identified coefficients at
null

Wald point estimates for full set of endogenous regressors

if cuepoint is used, CUE point estimates for full set of endoge-
nous regressors
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4.4 Example: Married female labor market participation

We demonstrate the use of this command with data from Mroz (1987). In this example,
we are interested in the effect of wages on married female labor supply. We regress
working hours on the log wage. As instruments for the wage, we use labor market
experience and its square and father’s and mother’s years of education. We consider the
subsample of women who are participating in the labor market and have strictly positive
wages. This example is identical to the example considered in Finlay and Magnusson
(2009), implemented using ivreg2 and weakiv.

Here we use twostepweakiv to construct an identification-robust CS for the effect
of wages on labor supply based on the 2sls estimator. In the command, we specify the
estimator to be 2sls, followed by the regression specification. We let twostepweakiv
construct robust CSs based on its default test_options for a 2sls estimator, which are
K_2sls, LC_2sls, and AR. Instead of the K and LC test, we consider the K_2sls and
LC_2sls tests with an inefficient weight matrix because it is used by the 2sls estima-
tor. While only the LC_2s1ls CS (with the Wald CS) is needed to construct a two-step
identification robust CS, we report the other two CSs for reference.

Recall that these robust CSs are based on test inversion. Instead of letting the com-
mand twostepweakiv use the default grid_options, we specify the grid as [—1000, 8000].
While a fine grid takes longer to compute, to calculate the robust CSs and the distortion
cutoff 4, we need a rather fine and wide grid. We use the default size_options, which
sets the test size o = 5% and the initial coverage distortion vy, = 5%. Because there
is only one endogenous variable, there are no strong_options to specify.

. use http://www.stata.com/data/jwooldridge/eacsap/mroz.dta

. twostepweakiv 2sls hours nwifeinc educ age kidslt6 kidsge6
> (lwage = exper expersq fatheduc motheduc) if inlf==1,
> gridmin(-1000) gridmax(8000) gridpoints(901)
Estimating model using 2sls estimator ...
Obtaining 2SLS point estimates...
Estimating confidence sets over 901 grid points
T 1 T 2 T 3 T 4 T 5
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Weak instrument robust tests and confidence sets for linear IV
Confidence sets based on k_2sls lc_2sls ar tests are shown below.

Test Conf. level Conf. Set
K_2sls 95% [ -840, -680] U [ 710, 4070]
LC_2sls 95% [ 750, 4100]
AR 95% L 770, 6930]
Wald 95% [ 350.552, 2180.1]

Confidence sets (if calculated) based on 901 points in [ -1000, 8000].

LC test gamma_min is 5%; distortion cutoff is 33) based on the given grid,
obtained by 1076 simulation draws.

Number of obs N = 428.

Method = minimum distance/Wald.

Tests robust to heteroskedasticity.

Wald confidence set is based on 2sls estimates and is not robust to weak
instruments.

In the output, twostepweakiv first reports the robust CSs. The negative values of
the K_2sls CS are discarded in the LC_2sls confidence interval, indicating the spuri-
ous behavior of the K 2sls test in that part of the parameter space. twostepweakiv
also reports the nonrobust Wald ¢S. Compared with the results shown in Finlay and
Magnusson (2009), our Wald CS is slightly different. Even though 2sls point estimates
are the same under MD (returned by twostepweakiv in e(ebeta), not shown here) and
under GMM (returned by ivreg2, not shown here), their standard errors are slightly
different because of the MD approach we take.

Finally, we explain how to form a two-step identification robust CS based on the
above results. Recall that we need three ingredients: the distortion cutoff 7 that indi-
cates identification strength, the robust LC_2sls CS, and the nonrobust Wald Cs. The
last two are shown in the table, and the distortion cutoff is shown in the caption.

The distortion cutoff (33%) is rather large, indicating the instrument may be weak.
If a reader is willing to tolerate a coverage distortion of up to 10%, which is less than
the distortion cutoff, then to form a two-step identification-robust CS with coverage
distortion bounded by 10%, the reader should focus on the LC_2s1s confidence interval.
If a reader is willing to tolerate a coverage distortion of up to 50%, which is larger than
the distortion cutoff, then the reader should focus on the Wald Cs.

The rest of the caption reminds the readers that we calculate MD versions of robust
tests as well as the nonrobust Wald test, all test statistics use heteroskedasticity-robust
VCE estimators, and the Wald CS is not robust to weak identification.

The help file for twostepweakiv contains more examples using data from Mroz
(1987), including inference for a single regressor using the refined projection method
when there is more than one endogenous regressor.
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5 Linear IV simulation design

For inference on subsets of parameters, twostepweakiv also implements the refined pro-
jection method discussed in section 3.1, which alters the test statistics before projecting
the joint CS onto the subset. In this section, I illustrate that the refined projection
method is more powerful than the conventional projection method using Monte Carlo
simulations.

We simulate the following linear Iv model under heteroskedasticity, where any ex-
ogenous regressors have already been partialled out as in the main text. As before, the
model is

Y = X6@,+e
X = Zmy+V

which can equivalently be written as a reduced-form model

Y = Z&+U
X = Z7T0+V

for Z, an N X k matrix of instruments; X, an N X m vector of endogenous regressors; Y,
an N x 1 vector of outcome variables. We set k = 5. We take Z; ~ N(0,I). Because we
are interested in the performance of projection tests, we set m = 2. Let 8y = (9, 5o)-
We are interested in constructing CSs for the scalar coefficient 3, treating n as a nuisance
parameter. We set N = 500.

To simulate heteroskedastic data, we draw
0 1
(eVi)lZi~N o ) 2v xexp{(1/2)Z;}

where Z! is the first instrument and Xy = ( 015 Oi5 )

Because we are interested in the performance of projection tests in this section,
we set m = 2. Let Oyp = (no,00). We are interested in constructing CSs for the
scalar coefficient g, treating n as a nuisance parameter. For weak identification, we
sot 71! :< 01 02 03 04 05

0 0.25 0.25 0.25 0.25 0.25
, < 0.1 02 03 04 05

>. For strong identification, we set

To=\ 05 05 05 05 05
consider, the local rank reduction in the matrix of the first-stage coefficients 7 is just
from one first stage, w3, being close to zero, not from 7} and 73 being almost the same.
Thus, we report the mean heteroskedasticity-robust F' statistic for each of the first-

-1 P Nt .
stage regressions, F; = (N/k‘)?r;Z%j 7w for j=1,2,7; = (Z Z) Z'X7, the ordinary

). Note that in the weak identification case that we

least-squares estimator, for 71'6, and iﬁj, a heteroskedasticity-robust estimator, for the
variance of vV N (7?3- — ﬂ'f))
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We compare the power of the conventional projection method with the refined pro-
jection method. We calculate the probability of rejecting § = 0 when Sy = b using both
methods based on 500 simulations of the linear IV model, where we set b/||mz|| to be
51 equidistant points over [—3,3]. In all cases, g = 0. The grid consists of 101 x 1
equally spaced values: for the nuisance parameter 7, the grid is centered around 0 with
width equal to 12 times ||m2||; for 8, we include only one grid point at 0. We use 2sls
estimators for point estimates B and 7).

We simulate the performance of conventional and refined projection methods for the
LC_2s1s test. Recall that the LC_2s1s test is an LC test with inefficient weights. Because
the point estimates are estimated by 2sls estimators, we use the LC_2sls test because

it also uses ineficient weight matrices. We include the performance of the K_2sls test
to illustrate its spurious power losses.”

We scale b inversely by ||2|| for the power curves to be comparable.

Figures 3 and 4 report the powers of the LC_2sls test and K_2sls test coupled with
either conventional or refined projection methods under weak and strong identification,
respectively. For the LC_2sls test, the refined projection method yields higher power
than the conventional projection method in all cases. The K_2sls test is in general not
consistent, even under strong identification.

pr(reject []=0)

b 0 5 15 2 25 3
O/l
conventional Ic_2sls — — — conventional k_2sls
------- refined Ic_2sls —-—-=- refined k_2sls

Mean of first-stage F statistic: []: 52.25; []: 29.00

Figure 3. Comparison between conventional and refined projection methods under weak
identification

9. Even in strong identified models, CSs based on a K test are not necessarily consistent for 8. This

issue is more pronounced for the refined projection method than for the conventional projection
method. See section 3.2 of Andrews (2018) for more details.
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Figure 4. Comparison between conventional and refined projection methods under
strong identification
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