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Abstract.  Despite its well-known weaknesses, researchers continuously choose
the kappa coefficient (Cohen, 1960, Educational and Psychological Measurement
20: 37-46; Fleiss, 1971, Psychological Bulletin 76: 378-382) to quantify agreement
among raters. Part of kappa’s persistent popularity seems to arise from a lack of
available alternative agreement coefficients in statistical software packages such as
Stata. In this article, I review Gwet’s (2014, Handbook of Inter-Rater Reliability)
recently developed framework of interrater agreement coefficients. This framework
extends several agreement coefficients to handle any number of raters, any number
of rating categories, any level of measurement, and missing values. I introduce the
kappaetc command, which implements this framework in Stata.

Keywords: st0544, kappaetc, kappaetci, Cohen, Fleiss, Gwet, interrater agreement,
kappa, Krippendorff, reliability

1 Introduction

The kappa statistic (Cohen 1960; Fleiss 1971) is one of the most popular coefficients
to quantify agreement among raters. Researchers have also criticized kappa on vari-
ous grounds and proposed alternative agreement coeflicients (ACs) (Byrt, Bishop, and
Carlin 1993; Feinstein and Cicchetti 1990; Gwet 2008a; Warrens 2012). Recently, Gwet
(2014) developed a statistical framework that embraces several known ACs. Within this
framework, he extends all of these ACs to the case of multiple raters, multiple rating
categories, any level of measurement, and a varying number of ratings per subject. Gwet
(2014) also introduces a new approach to statistical inference and a probabilistic bench-
marking method for ACs. To date, none of these developments are readily available
in major statistical software packages such as Stata. In the remainder of this article,
I briefly summarize Gwet’s (2014) framework of interrater ACs. I then introduce the
kappaetc command, which implements this framework in Stata.

2 A general framework of ACs

Let us loosely define interrater agreement as the propensity for two or more raters
(coders, judges, observers, etc.) to independently classify a given subject (object, unit
of analysis, etc.) into the same predefined category (Gwet 2014, 14). In this section,
I discuss the concept of chance-corrected ACs to measure this propensity. All formulas
are as presented in Gwet (2014) except for slightly simplified notation.

© 2018 StataCorp LLC st0544
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2.1 A basic measure of agreement

Consider the simple case where r = 2 raters classify n subjects into one of ¢ predefined
categories. We record the resulting data in a ¢ X ¢ contingency table such as table 1.

Table 1. Distribution of n subjects by rating category and rater

Rater B
Rater A 1 2 ... qg Total
1 ni1 N9 .o Niq ni.
2 Nno1 29 N N2q n9.
q Mgl Nq2 Nqq Nq
Total ni N2 ... Ng n

The observed proportion of agreement between the two raters, denoted p,, is given

by
pozz%

where the numerator, ngg, is the number of subjects that both raters classified into
category k and the denominator, n, is the total number of subjects.

Although it satisfies our definition of interrater agreement, the observed proportion
of agreement might not accurately reflect what researchers are interested in: the relia-
bility of the classification process. The classification process is considered to be reliable
when raters classify a given subject into the same category with a high probability be-
cause of particular characteristics of that subject. However, raters might be uncertain
about the characteristics of some subjects and might therefore choose to classify those
subjects into a category randomly. Given the limited number of predefined categories,
the raters might still choose the same category by pure chance. This so-called chance
agreement is not related to the characteristics of the subjects and thus cannot be re-
garded as evidence of reliability. Because the observed proportion of agreement does not
differentiate between agreement due to the characteristics of the subjects and chance
agreement, it might overestimate reliability.

2.2 Chance-corrected agreement: Cohen’s kappa

Several researchers have proposed coefficients for measuring agreement beyond that ex-
pected by chance (Brennan and Prediger 1981; Cohen 1960; Fleiss 1971; Gwet 2008a;
Krippendorff 2013; Scott 1955). These coefficients differ mainly in their definition of
chance agreement, denoted p.. Cohen (1960), for example, adopts the concept of sta-




D. Klein 873

tistical independence and defines chance agreement as the sum of the products of the
marginal classification probabilities of both raters as follows:

Cohen (1960) proposes removing chance agreement from the observed proportion of
agreement to obtain his chance-corrected AC kappa (denoted by the Greek letter k).
Gwet (2014) gives the general form for chance-corrected ACs, including kappa, as

Po — De
.= 1
" ]-_pe (>

where k. is used as a generic symbol for various chance-corrected ACs. We discuss
alternative definitions of chance agreement and the resulting chance-corrected ACs in
section 2.6.

2.3 Partial agreement and weighted kappa

Suppose that we can order the ¢ rating categories in table 1 so that adjacent categories
imply a somehow less serious disagreement than nonadjacent categories. To reflect such
different degrees of agreement, Cohen (1968) proposed a weighted variant of kappa:
Define a set of weights, wg; € [0, 1], so that 1 indicates perfect agreement and 0 implies
complete disagreement; any weight in between reflects the extent of partial agreement.

Two sets of weights that are commonly applied are the linear and quadratic weights.
To fix ideas, suppose there are ¢ = 4 rating categories: 1, 2, 3, and 4. The corresponding
linear and quadratic weights are illustrated in table 2 and table 3.

Table 2. Linear weights Table 3. Quadratic weights
Rating Rating
Rating 1 2 3 4 Rating 1 2 3 4
1 1.00 1 1.00
2 0.67 1.00 2 0.89 1.00
3 0.33 0.67 1.00 3 0.56 0.89 1.00
4 0.00 0.33 0.67 1.00 4 0.00 0.56 0.89 1.00

Both linear and quadratic weights are special cases of so-called power weights (Warrens
2014). Formally, we obtain the off-diagonal weights as

ok = al® (2)

Wgl = 1—
|xmax - xmin|a
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where zj and x; refer to the kth and lth sorted ratings and x.x and xn,;, are the
maximum and minimum of all ratings.! All diagonal weights are set to 1, indicating
perfect agreement. Inserting different values for a into (2) gives linear weights (a = 1)
and quadratic weights (a = 2), respectively. It is obvious that setting a = 0 results in
the g x ¢ identity weighting matrix that yields the unweighted AC.

The weighted observed agreement is then obtained as

q q

_ Nkl
Po = E E Wk X ——
n

k=1 1=1
and Cohen’s (1968) weighted chance agreement is given by

q q

n. n.i
Pe = E Wgp X — X —
n n

k=1 1=1

Inserting both the weighted observed agreement and the weighted chance agreement
into (1) yields the weighted kappa coefficient.

Gwet (2014, 91-97) suggests additional sets of weights to account for partial agree-
ment that is implied by the data’s level of measurement. With a suitable set of weights,
any AC applies to any level of measurement, not just to the nominal scale.? Section 4.3
provides the formulas for the respective ordinal, radical, ratio, circular, and bipolar
weights.

2.4 Dealing with missing values

In real-world data, the presence of missing values is a common problem. The usual
approach for dealing with missing values is listwise deletion, where all subjects that
have not been rated by both raters are excluded from all calculations. While we can
naturally observe agreement between the raters only if both have classified a given
subject, Gwet (2014, 36) suggests using all subjects, including those classified only by
one rater, to estimate chance agreement. This increases the accuracy of the estimates
for the marginal probabilities.?

To include all subjects in the calculation of chance agreement, we add a category
(X) for missing values to the contingency table. This is illustrated in table 4.

1. Note the difference in notation between rating categories, which are always the integer sequence
1,2,...,k,l,...,q, and actual ratings =y and x;, which may take on any numeric value. Weights
are calculated based on the latter.

2. Krippendorff (2011, 2013) suggests essentially the same approach, calling the weights “metric dif-
ference functions”.

3. Krippendorff (2011, 2013) uses a similar approach for three or more raters. Zapf et al. (2016)
provide empirical evidence that, compared with listwise deletion, the approach produces less biased
results when ratings are missing completely at random. To the best of my knowledge, there are
no studies addressing the validity of the approach for other mechanisms leading to missing values,
such as missing at random or missing not at random.
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Table 4. Distribution of n subjects by rating category and rater; missing ratings

Rater B
Rater A 1 2 e q X Total
1 nii nio . Nigq nix ni.
2 no1 sy . N2q Nox nag.
q g1 Nga ... Ngg  NgX Ng.
X nxi nxsa AN Nxq 0 nx.
Total n.1 No ... ng N.Xx n

In cell (X,q) of table 4, nx, is the number of subjects that rater A did not classify
and that rater B classified into category q. Conversely, n,x is the number of subjects
not rated by rater B but classified into category ¢ by rater A. Subjects that are not
classified by either rater do not convey any information and are excluded so that nxx
is always 0.

We now obtain the observed proportion of agreement as
. Nkl
= Wiy X ———————— 3
Pe ;; n—(nx. +n.x) (3)

where the denominator in (3) is the number of subjects rated by both raters. Note
that weights for partial agreement, wg;, which were discussed in section 2.3, are easily
included. Cohen’s (1968) weighted chance agreement is calculated as

9 4
k. n.
pe:ZZwkz x x (4)
n—nx,. n—nx

respectively, and the kappa coefficient is still obtained by inserting (3) and (4) into (1).

2.5 Agreement among three or more raters

The concept of agreement between two raters that we have considered thus far is com-
paratively intuitive; defining agreement among three or more raters is not as straightfor-
ward. One possible way to define agreement among three or more raters is to consider
all  (r — 1) /2 possible pairs of the r raters (Gwet 2014, 48-52). Averaging the pair-
wise agreement given by (3) over all pairs of raters yields a measure for the observed
proportion of agreement among three or more raters.
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For three or more raters, it is no longer convenient to record the distribution of

subjects by rating category and raters. Instead, we record the distribution of raters by
subjects and rating category in an n X ¢ table such as table 5.

Table 5. Distribution of r raters by subject and rating category

Category
Subject 1 ... k... qg Total
1 11 Tk T1q T1
? Ti1 Tik Tiq T3
n Tnl <o Tpk ... Tng Tn
Average T Tk, Tq T

In the center cell of table 5, r;; is the number of raters who classified subject i into
category k. The row total, r;, represents the number of raters who classified subject
i. When there are no missing ratings, all row totals, rq, 7o, ..., 7,, are identical and
equal to the average number of raters per subject, denoted 7. We calculate the average
weighted pairwise agreement as

zq: ik (D [—q wrara — 1) 5)

Tri (’I“i — 1)

where n’ is the number of subjects that are classified by two or more raters.

Conger (1980) applies the idea of averaging over chance agreement, defined in (4), to
generalize Cohen’s kappa to three or more raters. The formulas are somewhat complex;
see Gwet (2014, 86) for more details.* The more popular generalization of Cohen’s kappa
to three or more raters, proposed by Fleiss (1971), is discussed in the next section.

2.6 Various definitions of chance agreement

Cohen’s (1960, 1968) kappa is probably the most frequently used coefficient to assess
agreement between two raters; for three or more raters, researchers usually apply Fleiss’s
(1971) generalization of Scott’s (1955) pi. Fleiss called his coefficient kappa, giving the
wrong impression that it is a generalized version of the coefficient proposed by Cohen
(1960, 1968) before. However, Fleiss’s kappa is based on a different concept of chance
agreement and reduces to Scott’s pi in the case of two raters. While the observed

4. Cohen’s kappa cannot be estimated based solely on a table of rating frequencies such as table 5.
For estimating kappa, the unique raters must be identified, which is not possible in tables of rating
frequencies.
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proportion of agreement for Fleiss’s kappa is still given by (5), Gwet (2014, 87) gives
the respective weighted chance agreement as

a q
De = Zzwklﬂ'km (6)

with

= (7)

Brennan and Prediger (1981), following Bennett, Alpert, and Goldstein (1954), sug-
gest another chance-corrected AC. Their concept of chance agreement is one of the
simplest and adjusts merely for the number of possible rating categories, denoted gq.
Brennan and Prediger’s weighted chance agreement is given by

1 4.
Pe=3> > Wk
==
and boils down to p. = 1/q¢ in the unweighted case. The resulting coefficient is equiv-
alent to the prevalence-adjusted and bias-adjusted kappa, also known as the PABAK
(Byrt, Bishop, and Carlin 1993).

More recently, Gwet (2008a, 2014) proposes his AC that incorporates both the num-
ber of rating categories and the frequency with which they are used by the raters. The
weighted chance agreement is given by

q q q
PIPILEPBLACLD
k=1

q—l k=1 1=1

where the term 7y is defined in (7). A thorough theoretical discussion and formal
derivation of his coefficient is given in Gwet (2014, chap. 4).

The last coefficient that we will briefly discuss is Krippendorff’s (1970, 2011, 2013)
alpha. Although the original author’s notation might imply otherwise, Gwet (2014)
shows that this coefficient can be obtained using the concepts defined so far. In fact,
Krippendorff’s alpha is similar to Fleiss’s kappa with four slight modifications. The
weighted chance agreement is basically calculated using (6). However, in (7) n is re-
placed with n/, and r; in the denominator is replaced with 7. Further, the formula for
observed agreement, given in (5), is modified by replacing the first occurrence of r; in
the denominator with 7. Notice that all three changes so far are relevant only in the
presence of missing ratings.” Finally, the observed proportion of agreement is adjusted
for small samples to obtain

5. This is because when all subjects are classified by all raters, n = n’ and r; = 7. What is implied here
is that all subjects classified by only one rater are excluded from the analysis before Krippendorff’s
alpha is computed.
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which is then inserted into (1) in place of p, to calculate Krippendorfl’s alpha.

2.7 Statistical inference

Gwet (2014) distinguishes broadly between a model-based and a design-based approach
to statistical inference for ACs. The former is more common in the literature and
relies on a hypothetical distribution of ratings under Hy to obtain an approximate
standard error for testing the coefficient against 0 (compare Fleiss, Cohen, and Everitt
[1969] and Fleiss [1971]). Although Gwet (2014, 21) explicitly states that this ap-
proach is valid, it has problems. The obtained standard errors might be invalid for
testing coefficients against nonzero values or for estimating confidence intervals (com-
pare Reichenheim [2004]). Further, the distribution of some coefficients (for example,
Krippendorff’s alpha) remains unknown, and analytical standard errors are not available
(Hayes and Krippendorff 2007). Considering the goal of statistical inference, which is
generalizing results to a larger population, this larger population is not clearly defined
within the model-based approach.

Gwet (2014, chap. 5), therefore, proposes a design-based approach to statistical
inference that relies on the principles of finite populations. He argues that statistical
inference for ACs should account for two sources of variance: Subjects might be sampled
from a subject universe, and raters might be drawn from a larger rater population.
Previous literature on ACs has especially neglected the sampling of raters.

Let S,, denote a specific sample of subjects, and let S, denote a specific sample of
raters.® The variance due to the sampling process of subjects, given a specific set of

raters, is
n

V (k.| S,) = i > (ki =) (8)

n(n—1) =
where f, is the sampling fraction of subjects. Further, k.; is defined as

pOi — De

K)pei — DPe
]-7pe V

( ]-7pe

n

KR.; = — X

n

where n’ is the number of subjects that are classified by two or more raters and p,, and
De, are the subject-level observed and expected proportions of agreement. The formulas
for the subject-level observed and expected proportions of agreement are similar to those
discussed in sections 2.5 and 2.6. For example, the subject-level observed proportion of
agreement is basically given by

_ zq: i (0011 wrara — 1)

Po;, =
=1 T (7’1' — ].)

6. Gwet (2014) discusses only the case of simple random sampling with equal selection probabilities.
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where all terms are the same as those in (5).” See Gwet (2014, 147-149) for a detailed
description of the different subject-level proportions of chance agreement.

Conditional on the sample of subjects, Gwet (2014, 153) suggests the following
jackknife approach to estimate the variance due to the sampling of raters:

r

V (k.| S,) = WZ (kg — ) (9)

g=1

In (9), f, is the sampling fraction of raters, x.(y) is the AC when rater g is omitted, and
F- is the mean of all k.¢;) ACs.®

Depending on the target population of interest, the variance estimator in (8) may
be used to generalize results to the subject universe conditional on the specific raters.
Conversely, results may be projected to the population of raters given the specific sample
of subjects using the jackknife estimator in (9). To generalize results to both the subject
universe and the population of raters, Gwet (2014, 155-158) proposes the unconditional
variance estimator given by

V(k)=V (k|S)+V(k|Sn) (10)

Gwet (2008a,b) proves that standard errors derived from (8), (9), and (10) are
valid for testing against 0 or any other value of interest and for confidence interval
construction. Confidence intervals are based on the ¢ distribution with n — 1 degrees of
freedom for standard errors obtained from (8), and the standard normal distribution is
used as an approximation otherwise.

2.8 A probabilistic benchmarking method

Once the extent of agreement among raters is quantified using one of the chance-
corrected ACs, researchers are usually keen to interpret and communicate the results.
For this purpose, they often rely on some benchmarking scale. Table 6 shows one of
the most popular benchmarking scales suggested by Landis and Koch (1977). Similar
scales have been proposed by Fleiss, Levin, and Paik (2003) and Altman (1991).

7. The subject-level observed proportion of agreement is set to p,, = 0 for all subjects that are rated
by only one of the raters.

8. Note that three or more raters are required for the jackknife estimator. There is currently no
alternative approach for estimating the variance due to the sampling of (two) raters.
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Table 6. Benchmark scale by Landis and Koch (1977)

Coefficient Interpretation
below 0.00 Poor
0.00 to 0.20 Slight
0.21 to 0.40 Fair

0.41 to 0.60 Moderate
0.61 to 0.80 Substantial
0.81 to 1.00 Almost Perfect

Gwet (2014, chap. 6) points out a fundamental flaw in the current practice of inter-
preting the extent of interrater agreement: Recall that ACs are point estimates; as such,
they have a probability distribution and an error margin associated with them. The
probability distribution and the error margin of an AC depend on the number of sub-
jects, the number of raters, and the number of rating categories in the study. Current
practice is to compare the estimated coefficient with predetermined benchmark thresh-
olds without recognizing the variance due to subjects, raters, and rating categories. In
other words, current practice ignores any uncertainty associated with the estimated AC.

Gwet criticizes current practice for being “deterministic” when benchmarking should
be probabilistic in nature. As an alternative, he proposes a statistical approach that
consists of the following three steps:

1. Compute the probability for a coefficient to fall into each of the benchmark inter-
vals.

2. Compute the cumulative probability, starting from the highest benchmark level.

3. Select the first benchmark interval for which the cumulative probability exceeds
a given threshold (95% by convention).

To elaborate on these three steps, let us assume that we have estimated an AC, k.,
and its variance, V (k.). Given these two quantities, we start with step 1 and compute
the probability for our estimated coefficient to fall into each of the benchmark intervals
of the Landis and Koch (1977) benchmark scale, shown in table 6. For example, the
probability that k. falls into the highest benchmark interval, from 0.81 to 1.00, is given

by
P(0.81 < k. < 1.00) = & (’*_081> 3 <m>
V(k.) V(k.)

where ® denotes the cumulative standard normal distribution. Gwet (2014) calls this
probability an interval membership probability (IMP). The IMPs for each remaining
interval of the benchmarking scale are computed accordingly.
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Given all IMPs from step 1, we turn to step 2. Starting from the highest benchmark
interval, we compute the cumulative membership probabilities for each benchmark in-
terval. The cumulative membership probability for a given benchmark interval is simply
the (running) sum of the IMPs down to the respective benchmark interval.

Given the cumulative probabilities from step 2, we can finally turn to step 3 and se-
lect the benchmark interval that is associated with the smallest cumulative membership
probability that exceeds 95%. We can then claim with 95% confidence that the extent
of agreement corresponds to the selected benchmark interval.

3 Stata commands to assess interrater agreement

Before I introduce the new kappaetc command that implements the concepts discussed
so far, I will give a short overview of existing Stata commands that address the issue of
interrater agreement.”

3.1 Official Stata commands

Official Stata capabilities for assessing interrater agreement are limited to Cohen’s (1960,
1968) and Fleiss’s (1971) variants of kappa. For two raters, the kap command (see
[R] kappa) estimates the former. It requires that each observation represent one subject
and that variables record the ratings. Linear and quadratic weights for partial agreement
are available, and users may define their own set of custom weights with the kapwgt
command.'® Subjects that are rated by only one of the raters are excluded from the
analysis.

For three or more raters, kap estimates Fleiss’s kappa for each rating category against
all remaining categories; the overall kappa is estimated as well. Weights for partial
disagreement cannot be used for three or more raters, but subjects are included in
the analysis when at least one rater has classified them. The implemented method for
dealing with missing ratings differs from the one discussed in section 2.4 and leads to
slightly different results.

The kappa command requires data in the form of rating frequencies as shown in
table 5. It always calculates Fleiss’s unweighted kappa coefficient. Note that for two
raters, kappa may be used to obtain Scott’s (1955) pi.

9. Note that I do not discuss the intraclass correlation coefficient as a measure of interrater reliability
here. This approach may be used with interval level data, and it is implemented in the icc command
(see [R] icc).

10. Note that Stata’s implementation of weights differs from that discussed in section 2.3. kap bases
the weights on the integer sequence 1,2, ..., q of rating categories, not the actual ratings.
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Both official Stata commands provide a test of kappa against zero, using a model-
based standard error, but neither estimates confidence intervals. Stata also lacks com-
mands for estimating any other ACs that we have discussed. Several community-
contributed additions address some of these shortcomings.!*

3.2 Community-contributed commands

For two raters and two rating categories, kapci (Reichenheim 2004) calculates ana-
lytic (that is, model-based) standard errors and corresponding confidence intervals for
Cohen’s weighted kappa. For more than two raters, it calculates Fleiss’s unweighted
kappa. For three or more raters or when there are more than two rating categories,
the command uses Stata’s bootstrap (see [R] bootstrap) capabilities to obtain stan-
dard errors and confidence intervals. The two related commands kappci and kappaci
(Harrison 2004) are restricted to binary ratings and do not support weighted disagree-
ment in the first place. Because all three commands are based on kap and kappa, they
treat missing values in the same way that Stata’s native commands do.

Lazaro et al. (2013) are the first to implement Conger’s (1980) kappa for three or
more raters in Stata. Their kappa2 command supports all weights used with kap and
applies them to any number of raters.'? It also includes all subjects rated by one or more
raters, although it uses yet another approach than the one discussed in section 2.4 or
the one implemented in kap.'® Standard errors and confidence intervals are optionally
obtained using Stata’s jackknife (see [R]| jackknife) procedure.

Krippendorff’s (1970, 2011, 2013) alpha was first implemented in the krippalpha
command (Staudt and Krewel 2013). The command handles any number of raters, any
number of rating categories, and missing values. Partial agreement may be weighted
with ordinal, quadratic, or ratio weights by specifying the respective data metric. Stan-
dard errors and confidence intervals are not currently calculated, but they may be ob-
tained using Stata’s jackknife or bootstrap prefix. The kalpha command (Klein 2014)
adds circular and bipolar weights for partial agreement and implements a bootstrap al-
gorithm, described by Hayes and Krippendorff (2007), to obtain confidence intervals.
However, Gwet (2015) has severely criticized this algorithm and Zapf et al. (2016) pro-
vide empirical evidence for its poor performance. Therefore, the bootstrap algorithm
implemented in kalpha should not be used to obtain confidence intervals. Finally,
the kanom command (Mitnik 2016; Mitnik and Cumberworth 2016) is restricted to two
raters and nominal ratings but provides a standard error and confidence interval-based
on the delta method. Its ability to cope with complex sample designs is unique.

11. My discussion of community-contributed commands is not an exhaustive list of available software
in this area, but a subjective selection of a few commands that I found useful.

12. A unique feature of kappa2 is its support for an alternative definition of observed agreement, so-
called majority agreement. It is beyond the scope of this article to discuss the concept of major
agreement; the relevant references are given in the help file for kappa2.

13. It is beyond the scope of this article to systematically compare the three approaches. Basic simu-
lations (not reported here) suggest that all three approaches yield similar answers if one assumes
the ratings to be missing completely at random.
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Currently, no community-contributed command implements the remaining two ACs
proposed by Brennan and Prediger (1981) and Gwet (2008a, 2014).

3 Technical note

When Stata’s bootstrap or jackknife prefix is used to obtain standard errors and
confidence intervals for weighted ACs, the same set of weights should be used in each
replicated sample. Recall that the weights are usually based on the rating categories and
that the latter are technically obtained from the observed data. Even if all conceivable
ratings are observed in the full data, there is no guarantee that the same is true for
each replicated sample of observations. Therefore, I recommend specifying a fixed set
of custom weights when resampling methods are used even if prerecorded weights are
available.

2

4 The kappaetc command

4.1 Description

The new kappaetc (read: “kappa, etc.”'?) command estimates all ACs discussed in

section 2 along with their standard errors and confidence intervals. It handles missing
ratings and supports a variety of prerecorded weights for disagreement and user-defined
weights.!®

14. The name kappaetc is borrowed from entropyetc (Cox 2016) with approval from Nicholas Cox.

15. The kappaetc command has more capabilities: it performs paired t tests of correlated ACs
(compare Gwet [2016]), estimates the limits of agreement and produces Bland-Altman plots
(Bland and Altman 1986), and estimates intraclass correlation coefficients (for repeatedly mea-
sured subjects). The latter approaches are appropriate with interval-level ratings that are not
predetermined. Because we have confined ourselves to ACs for predetermined categories, a fur-
ther discussion of these capabilities is beyond the scope of this article. Gwet (2014) discusses the
respective concepts in length.
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4.2 Syntax

Interrater agreement, variables record raw ratings:

kappaetc wvarnamel varname?2 [vamameé’ ] [zf] [m} [weight]
[, wgt (wgtid [, wgt,optz'ons]) se(se_type) frequency categories(numlist)
listwise level(#) showweights
Mmark[ ([benchmark,method] [ s benchmark,aptions]) } showscale
testvalue([relop]#) nociclipped noheader notable cformat (%fmt)

pformat (%fmt) sformat(%fmt) nsubjects(#) nraters(#) largesample }

Immediate command, interrater agreement, two raters, contingency table:

kappaetci #11 #12 [] \ #21 #22 [] [\ ]
[ , wgt(wgtid [ , wgt,options]) se(se_type) categories(numlist) listwise
level(#) showweights
Mmark[ ([benchmark,method] [ , benchmark,options]) } showscale
testvalue([relop]#) nociclipped noheader notable cformat (%fmt)
pformat (%fmt) sformat(%fmt) nsubjects(#) nraters(#) largesample ;ab]

fweights and iweights are allowed; see [U] 11.1.6 weight.

by is allowed only with kappaetc; see [D] by.

4.3 Options
Main options

wgt (wgtid [ , wgt,options}) specifies that wgtid be used to weight disagreements. The
available weights and wgt_options are described below.

identity weights are the g x ¢ identity matrix, where ¢ is the number of cate-
gories used to rate subjects. Identity weights are the default and result in the
unweighted analysis.

ordinal weights are defined as

wp =1— <|ké|+1>/<g) Vk#1

where k and [ represent the ranked categories 1,2,...,q and ¢ is the number
of rating categories. The wgt_option krippendorff is allowed and specifies that

ordinal weights suggested by Krippendorff (2011) be used instead. Note that
standard errors are not available with Krippendorff’s ordinal weights.




D. Klein 885

linear, quadratic, and radical weights are special cases of power weights, dis-
cussed in section 2.3 and obtained by inserting a = 1, a = 2, or a = 0.5 into (2).
The wgt_option noabsolute is allowed and specifies that weights be based on
the rating categories 1,2,...,q instead of the actual ratings. w and w2 are syn-
onyms for linear and quadratic weights with wgt_option noabsolute. These
two weights are the same as those used by kap (see [R] kappa).

ratio weights are defined as

{(zr — @) / (wi + 2)}°

{(xmax - xmin) / (Imax + zmin)}

wkl:1— QVk#l

where z and x; refer to the observed ratings. The wgt_option noabsolute is al-
lowed and specifies that weights be based on the rating categories k,l = 1,2,...,¢q
instead of the actual ratings.

circular [pi|180|# | weights are defined as

sin {angle (x5 — 1) / (Zmax — Tmin + 1)}

wir =1-—
max (wkl)

Vk#£1

where angle is 7 radians if pi was specified or 180° if 180 was specified and
where xy, and z; refer to the observed ratings and max (wy;) is the maximum of
all weights. When # € [0, 1] is specified, circular weights proposed by Warrens
and Pratiwi (2016) are used instead. The latter are defined as

# Vk-I=1)Vv(k-1l=q-1)
WE = 1 Vk=1
0 otherwise

When # is specified, the wgt_option noabsolute is required and specifies that
weights be based on the rating categories k,l =1,2,...,q.

bipolar weights are defined as

(z1, — )
max (wi) (Tr + 1 — 2ZTmin) (2Zmax — Tk — 1)

wkl:].*

power # weights are discussed in section 2.3 and defined in (2), where a = #. The
wgt_option noabsolute is allowed and specifies that weights be based on the
rating categories k,l = 1,2,...,q instead of the actual ratings.

kapwgt and matname are weights defined by the kapwgt command (see [R] kappa) or
in a Stata matrix. The wgt_options kapwgt and matrix are allowed and must be
used if kapwgt or matname has the same name as any of the prerecorded weights
(or their abbreviations) discussed above.




886 Assessing interrater agreement

se(se_type) specifies how standard errors are estimated. Standard errors may be esti-
mated conditional upon the samples of raters and the sample of subjects, or uncon-
ditional, accounting for the two respective sampling errors. Their appropriateness
depends on the research questions. Available se_types were discussed in section 2.7
and are described below.

conditional [ ;aters] are the default standard errors and are estimated condi-
tionally upon the sample of raters as the square root of (8). These standard
errors are appropriate when results are to be generalized to the subject universe,
given the specific raters.

conditional subjects requests that standard errors be estimated conditionally
upon the sample of subjects. The extent of agreement among all but one rater is
obtained for each of the r raters in the sample. Technically, these standard errors
are implemented using the jackknife approach in (9). These standard errors allow
projection of results to the rater population, given the rated subjects.

unconditional standard errors are appropriate if the results are to be projected to
the universe of subjects and the rater population. They are estimated according
to (10).

frequency specifies that variables represent rating categories. The first variable records
the frequency of the first rating category, the second variable records the frequency
of the second rating category, and so on. Rating categories are assumed to be
the integer sequence 1,2,...,q (but see the option categories()). Note that all
possible ratings must be represented by one variable even if the frequency is 0 for
all subjects. Cohen’s (1960, 1968) and Conger’s (1980) kappa cannot be calculated
from recorded rating frequencies, and only the default standard errors, conditional
on the rater sample, are available.

categories (numlist) specifies the predetermined rating categories. By default, the set
of ratings is obtained from the data. There are two situations where this option
should be used.

When variables contain ratings (the default), the full set of possible rating cate-
gories must be specified if not all of them are observed in the data. Failing to do
so may lead to incorrect results. The order in which rating categories are spec-
ified does not matter; categories are sorted internally. Note that noninteger val-
ues are processed in double precision. To convert them to float precision, specify
categories(float (numlist)).

With the frequency option, the ratings are assumed to be the integer sequence
1,2,...,q that corresponds to the specified variables. Likewise, with the immediate
form of the command, the ratings are assumed to be the integer sequence 1,2,...,¢q
of rows and columns entered. In both cases, the categories() option may be used
to specify alternative rating categories, including noninteger, negative, and even
missing values. Also in both cases, the order in which the ratings are specified
matters and corresponds to the respective variables or sorted values underlying the
table.
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listwise specifies that subjects with missing ratings be excluded from the analysis. By
default, all subjects that are rated by at least one (two, for Krippendorff’s alpha)
rater or raters are used to estimate expected agreement. Observed agreement is
based only on those subjects that are rated by two or more raters. casewise is a
synonym for listwise.

Reporting options

level (#) specifies the confidence level, as a percentage, for confidence and benchmark
intervals. The default is level(95).

showweights additionally displays the weighting matrix below the coefficient table. For
the unweighted analysis, the identity matrix is shown.

benchmark[( [ benchmark,method] [ , benchmark,options] )] benchmarks the estimated
interrater ACs using the Landis and Koch (1977) scale and the method discussed
in section 2.8. When specified, kappaetc displays the estimated coefficients and
their standard errors. It reports the probability for each coefficient to fall into the
selected benchmark interval along with the cumulative probability exceeding the
predetermined threshold associated with this benchmark interval. The benchmark
interval limits are shown as well.

The two available benchmark_-methods are described below.

probabilistic is the default method and selects the benchmark interval associated
with the smallest cumulative membership probability exceeding c(level). The
threshold is controlled by the level () option.

deterministic selects the benchmark interval associated with the estimated AC.
This method is deterministic in that the chosen interval is determined solely by
the point estimate, ignoring any uncertainty associated with its estimation.

With both benchmark_methods, the following benchmark_option is allowed.

scale(spec) specifies the benchmark scale. spec is usually one of 1landis (or koch),
fleiss, or altman. The default is scale(landis) (or scale(koch)) and re-
sults in the Landis and Koch scale. fleiss requests a three-level scale suggested
by Fleiss, Levin, and Paik (2003), and altman collapses the first two levels of
the default scale into one category yielding the Altman (1991) scale. Alterna-
tively, spec explicitly specifies the (upper-limit) benchmarks as a numlist. The
Landis and Koch scale could be obtained as scale(0(.2)1).

showscale additionally displays the benchmark scale for interpreting coefficients. This
option is ignored when benchmark is not specified.

testvalue([relop] #) tests whether the estimated ACs equal #. The default is
testvalue(0). relop is one of the relational operators >[=] or <[=} and performs
one-sided tests.
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nociclipped reports confidence intervals as estimated. The default is to restrict confi-
dence limits to fall into the range of —1 <#< 1.

noheader suppresses the report about the number of subjects, ratings per subject, and
rating categories. Only the coefficient table is displayed.

notable suppresses the display of the coefficient table.

cformat (%fmt) specifies how to format coefficients, standard errors, and confidence
limits. The maximum format width is 8.

pformat (%fmt) specifies how to format p-values. The maximum format width is 5.

sformat (%fmt) specifies how to format test statistics. The maximum format width is 6.

Advanced options

nsubjects (#) specifies the size of the subject universe to be used for the finite sample
correction. The default is nsubjects(.), leading to a sampling fraction of 0 that is
assumed to be negligible. This option is seldom used.

nraters(#) specifies the size of the rater population to be used for the finite sample
correction. The default is nraters(.), leading to a sampling fraction of 0 that
is assumed to be negligible. This option is relevant only for standard errors that
are conditional on the sample of subjects or unconditional standard errors. It is
seldom used, although the default might overestimate the variance for small rater
populations.

largesample specifies that the calculation of p-values and intervals be based on the
standard normal distribution rather than the ¢ distribution. This is the default for
unconditional standard errors. largesample is a reporting option and it is seldom
used.

Immediate command

tab displays the two-way table of cell frequencies. The option is useful for data entry
verification.

5 Examples of the kappaetc command

In this section, I demonstrate how to use the kappaetc command to estimate the inter-
rater agreement. Starting with a simple example, I will also cover known paradoxes with
the kappa coefficient and discuss how the two newly implemented coefficients provide
more robust estimates. Throughout this section, we use our generic symbol, k., to refer
to different ACs. To be more specific, we denote Cohen’s and Conger’s kappa k., Fleiss’s
kappa ,, Brennan and Prediger’s coefficient x4, Gwet’s AC k-, and Krippendorfl’s al-
pha k.
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5.1 Kappa and other chance-corrected ACs

b Example 1

889

We consider two radiologists who classify 85 xeromammograms into one of four
categories (see also example 1 in [R] kappa).

. webuse rate2

(Altman p. 403)
. tabulate rada radb
Radiologis
t A’s Radiologist B"s assessment
assessment Normal benign suspect cancer Total
Normal 21 12 0 0 33
benign 4 17 1 0 22
suspect 3 9 15 2 29
cancer 0 0 0 1 1
Total 28 38 16 3 85

The two radiologists’ ratings are recorded in the two variables rada and
of the 85 observations represents one xeromammogram.

radb, and each

We can estimate agreement between the two radiologists with the kappaetc com-

mand as follows:

. kappaetc rada radb
Interrater agreement Number of subjects = 85
Ratings per subject = 2
Number of rating categories = 4
Coef. Std. Err. t P>|t] [95% Conf. Interval]
Percent Agreement 0.6353 0.0525 12.10 0.000 0.5309 0.7397
Brennan and Prediger 0.5137 0.0700 7.34 0.000 0.3745 0.6530
Cohen/Conger “s Kappa 0.4728 0.0731 6.46 0.000 0.3273 0.6182
Scott/Fleiss” Pi 0.4605 0.0781 5.89 0.000 0.3051 0.6159
Gwet s AC 0.5292 0.0679 7.80 0.000 0.3942 0.6642
Krippendorff“s Alpha 0.4637 0.0781 5.93 0.000 0.3083 0.6191

The output header summarizes the study parameters: there are 85 subjects, each
of which received 2 ratings from a set of 4 possible rating categories. The first row of
the coefficient table, labeled Percent Agreement, contains the observed proportion of
agreement. We find that the two radiologists agree on 63.5% of the subjects (that is, the
xeromammograms) that they have classified. Cohen’s kappa coefficient, reported in the
third row, corrects observed agreement for chance and is estimated as x, = 0.473. Both
Fleiss’s extension of Scott’s pi (kr = 0.461) and Krippendorff’s alpha (k, = 0.464) yield
results that are similar to kappa. Moreover, the pi coefficient and Krippendorff’s alpha
are almost identical to each other; this should not be surprising given their near-identical
mathematical formulation discussed in section 2.6. Slightly higher values are obtained
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for the Brennan and Prediger coefficient (kg = 0.514) and Gwet’s AC (k, = 0.529). The
observed differences should not be surprising either; while the coefficients by Cohen,
Fleiss, Scott, and Krippendorff all calculate chance agreement based on the marginal
distributions, both Brennan and Prediger’s coefficient and Gwet’s coefficient account
for the number of rating categories.

The standard errors, reported by kappaetc, are estimated conditional on the two
radiologists according to (8). Like the chance-corrected ACs, all standard errors are
highly similar. According to the corresponding p-values, all coefficients are statistically
significant at any level. Altogether, all chance-corrected ACs yield quite similar answers
as will usually be the case (compare Feng [2013]). We will discuss some known exceptions
in the next examples.

d

5.2 Problems with the kappa coefficient

b Example 2

Example 1 showed only minor differences between the various chance-corrected ACs.
Although this will often be the case, the differences between chance-corrected ACs can
become quite large in certain situations. Consider the rating frequencies of two raters
who classify 125 subjects into one of two categories (compare Gwet [2008a]). The
fictional data are shown in table 7.

Table 7. Distribution of 125 subjects by rating category and rater

Rater B
Rater A 1 2  Total
1 118 5 123
2 2 0 2
Total 120 5 125
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To estimate interrater agreement, we use the immediate form of kappaetc (see
[U] 19 Immediate commands). We specify the tab option to verify that we have
entered the data correctly:

. kappaetci 118 5 \ 2 0, tab

col

row 1 2 Total

1 118 5 123

94.40 4.00 98.40

2 2 0 2

1.60 0.00 1.60

Total 120 5 125

96.00 4.00 100.00
Interrater agreement Number of subjects = 125
Ratings per subject = 2
Number of rating categories = 2
Coef. Std. Err. t P>t [95% Conf. Interval]
Percent Agreement 0.9440 0.0206 45.72  0.000 0.9031 0.9849
Brennan and Prediger 0.8880 0.0413 21.50 0.000 0.8063 0.9697
Cohen/Conger s Kappa | -0.0234 0.0123 -1.90 0.060 -0.0478 0.0010
Scott/Fleiss” Pi | -0.0288 0.0109 -2.64 0.009 -0.0504 -0.0072
Gwet s AC 0.9408 0.0231 40.80 0.000 0.8951 0.9864
Krippendorff s Alpha | -0.0247 0.0109 -2.26 0.026 -0.0463 -0.0031

The two raters agree on 94.4% of the subjects that they have classified. Despite
this high-observed proportion of agreement, Cohen’s kappa coefficient is an estimated
negative value of k, = —0.023, indicating that the agreement between the two raters
is worse than would have been expected by chance. Clearly, this result is counter-
intuitive. Feinstein and Cicchetti (1990) discuss this situation as the so-called high-
agreement but low-kappa paradox. Note that both Fleiss and Scott’s pi (k, = —0.029)
and Krippendorfl’s alpha (k, = —0.025) yield similar results; their respective 95%
confidence intervals do not even include 0, meaning that the estimated negative values
are statistically significant at the 5% level. Notably higher estimates are obtained for
the Brennan and Prediger coefficient (k, = 0.888) and Gwet’s AC (k, = 0.941). The
last two results are more in line with the observed proportion of agreement and arguably
represent the data more accurately.

N

b Example 3

A second paradox pointed out by Feinstein and Cicchetti (1990) is kappa’s depen-
dency on the marginal distribution. The authors compare two sets of results to illustrate
the problem. In both cases, two raters classify 100 subjects into one of two categories.
Table 8 illustrates the resulting distributions of subjects by raters and rating category.
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Table 8. Two distributions of 100 subjects by rating category and rater

Rater B Rater B
Rater A 1 2  Total Rater A 1 2  Total
1 45 15 60 1 25 35 60
2 25 15 40 2 5 35 40
Total 70 30 100 Total 30 70 100

Before we evoke kappaetc, let us compare the two marginal distributions. In the
left panel of table 8, the marginal counts are close, that is, balanced, while in the right
panel, the raters agree less on the marginal counts. Now let us estimate chance-corrected
agreement for the two contingency tables with kappaetc. To save space, we specify the
noheader option.

. kappaetci 45 15 \ 25 15, noheader

Coef. Std. Err. t P>|t| [95% Conf. Intervall

Percent Agreement 0.6000 0.0492 12.19  0.000 0.5023 0.6977
Brennan and Prediger 0.2000 0.0985 2.03 0.045 0.0046 0.3954
Cohen/Conger“s Kappa 0.1304 0.0992 1.32 0.191 -0.0663 0.3272
Scott/Fleiss” Pi 0.1209 0.1017 1.19 0.238 -0.0810 0.3228
Gwet s AC 0.2661 0.1039 2.56 0.012 0.0599 0.4723
Krippendorff s Alpha 0.1253 0.1017 1.23 0.221 -0.0766 0.3272

. kappaetci 25 35 \ 5 35, noheader

Coef. Std. Err. t P>t [95% Conf. Interval]

Percent Agreement 0.6000 0.0492 12.19  0.000 0.5023 0.6977
Brennan and Prediger 0.2000 0.0985 2.03 0.045 0.0046 0.3954
Cohen/Conger “s Kappa 0.2593 0.0775 3.34 0.001 0.1054 0.4131
Scott/Fleiss” Pi 0.1919 0.0989 1.94 0.055 -0.0044 0.3882
Gwet s AC 0.2079 0.0995 2.09 0.039 0.0105 0.4054
Krippendorff s Alpha 0.1960 0.0989 1.98 0.050 -0.0003 0.3922

Notice that the observed proportion of agreement is the same for both tables:
po = 0.60. Notice also that the kappa coefficient for the left panel of table 8 (k, = 0.130)
is only half the size of the kappa coefficient for the right panel (k. = 0.259). Given the
same observed proportion of agreement, it appears as if the kappa coefficient punishes
raters for agreeing on the marginal distribution. The differences between the respec-
tive coefficients proposed by Scott and Fleiss, Krippendorff, and Gwet are slightly less
sensitive to shifts in the marginal distribution;' the Brennan and Prediger coefficient
is not affected at all.

N

16. Gwet’s coefficient actually yields a higher value when the marginal distributions are balanced. See
Feng (2013) for a mathematical explanation.
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b Example 4

A third, less well-known paradox of kappa has recently been pointed out by Warrens
(2012). In section 2.3, we discussed quadratic weights to account for partial agreement
among raters. Warrens (2012) identifies a severe problem in certain situations when
the quadratic weighted kappa is applied. Consider the following data, where 2 raters
classify 30 subjects into 1 of 3 predetermined categories.

Table 9. Distribution of 30 subjects by rating category and rater

Rater B
Rater A 1 2 3 Total
1 1 15 1 17
2 3 0 3 6
3 2 3 2 7
Total 6 18 6 30

From table 9, we can tell that the two raters agreed on the classification of 3 out
of 30 subjects, leading to an (unweighted) observed proportion of agreement of 10%.
The count of 0 in the center cell of table 9 indicates that the raters did not agree to
classify any subjects into category 2. Now, assume that the three rating categories in
table 9 are ordered so that adjacent categories imply a less serious disagreement than
nonadjacent categories. Suppose further that we wish to reflect the partial agreement
between the two raters that is implied by the ordered nature of the rating categories.
Therefore, we decide to apply quadratic weights. We request quadratic weights with
kappaetc’s wgt () option. To inspect the weighting matrix that kappaetc uses, we also
specify the showweights option.

. kappaetci 1 156 1 \ 3 0 3 \ 2 3 2, wgt(quadratic) showweights

Interrater agreement Number of subjects = 30
(weighted analysis) Ratings per subject = 2
Number of rating categories = 3

Coef. Std. Err. t P>|t| [95% Conf. Intervall

Percent Agreement 0.7000 0.0455 15.39  0.000 0.6070 0.7930
Brennan and Prediger 0.1000 0.1365 0.73 0.470 -0.1791 0.3791
Cohen/Conger”s Kappa | -0.0000 0.1663 -0.00 1.000 -0.3402 0.3402
Scott/Fleiss” Pi | -0.0485 0.1648 -0.29 0.770 -0.3855 0.2884
Gwet s AC 0.1523 0.1437 1.06 0.298 -0.1416 0.4461
Krippendorff~ s Alpha | -0.0311 0.1648 -0.19 0.852 -0.3680 0.3059

Weighting matrix (quadratic weights)
1.0000 0.7500 0.0000
0.7500 1.0000 0.7500
0.0000 0.7500 1.0000
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The output header confirms that we look at weighted analysis, and kappaetc has
printed the quadratic weighting matrix below the coefficient table as requested. The
quadratic weighted observed agreement, denoted p,,,,, is po,, = 0.70, and the weighted
kappa coeflicient is x,, = —0.00.

Compare the above results with the situation illustrated in table 10.

Table 10. Distribution of 30 subjects by rating category and rater

Rater B
Rater A 1 2 3 Total
1 1 1 1 3
2 3 17 3 23
3 2 0 2 4
Total 6 18 6 30

Here the two raters agree on the classification of 20 out of 30 subjects, yielding an
(unweighted) observed agreement of 66.67%. Focusing on the center cell of table 10,
we see that 17 subjects were classified into category 2 by both raters. These numbers
suggest a much higher agreement than table 9.

. kappaetci 1 1 1 \ 3 17 3 \ 2 0 2, wgt(quadratic) noheader

Coef. Std. Err. t P>|t] [95% Conf. Interval]

Percent Agreement 0.8417 0.0556 15.15  0.000 0.7280 0.9553
Brennan and Prediger 0.5250 0.1667 3.15 0.004 0.1841 0.8659
Cohen/Conger“s Kappa | -0.0000 0.2596 -0.00 1.000 -0.5310 0.5310
Scott/Fleiss” Pi | -0.0009 0.2611 -0.00 0.997 -0.5350 0.5332
Gwet s AC 0.6939 0.1421 4.88 0.000 0.4032 0.9845
Krippendorff s Alpha 0.0158 0.2611 0.06 0.952 -0.5183 0.5499

As expected, the weighted agreement increases to p,,, = 0.84. Yet the quadratic
weighted kappa is exactly the same as before, k,,, = —0.00. This paradox turns out
to be systematic; Warrens (2012) proves that, under certain conditions, the quadratic
weighted kappa does not depend on the center cell or middle column and row of the
contingency table. Note that neither Fleiss and Scott’s pi nor Krippendorff’s alpha accu-
rately reflects the increase in observed agreement. In contrast, Brennan and Prediger’s
coefficient and Gwet’s AC seem to capture the differences much better.

N
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5.3 Multiple raters, missing values, and benchmarking coefficients

b Example 5

For the next example, suppose that 5 raters classify 10 subjects into 1 of 3 rating
categories (see also example 9 in [R] kappa).

. webuse rvary2, clear

. list, separator(0) noobs

subject raterl rater2 rater3 rater4 raterb
1 1 2 2 . 2
2 1 1 3 3 3
3 3 3 3 3 3
4 1 1 1 1 3
5 1 1 1 3 3
6 1 2 2 2 2
7 1 1 1 1 1
8 2 2 2 2 3
9 1 3 . . 3
10 1 1 1 3 3

Note that raters 3 and 4 did not classify all subjects. We can still estimate the
agreement among multiple raters in the presence of missing values with kappaetc.

. kappaetc raterl-raterb

Interrater agreement Number of subjects = 10

Ratings per subject: min = 3

avg = 4.7

max = 5

Number of rating categories = 3

Coef. Std. Err. t P>|t| [95% Conf. Intervall

Percent Agreement 0.5833 0.0759 7.69  0.000 0.4117 0.7550

Brennan and Prediger 0.3750 0.1138 3.29 0.009 0.1175 0.6325

Cohen/Conger “s Kappa 0.3854 0.1047 3.68 0.005 0.1485 0.6224

Scott/Fleiss” Kappa 0.3586 0.1207 2.97 0.016 0.0856 0.6316

Gwet s AC 0.3829 0.1145 3.34 0.009 0.1238 0.6420

Krippendorff s Alpha 0.3897 0.1226 3.18 0.011 0.1122 0.6671
The output header provides essentially the same information that we have seen

before. Note that the number of subjects is 10, meaning that all observations are used
in the analysis. The ratings per subject now vary between 3 and 5 with an average
of 4.7. The observed proportion of agreement is estimated as 58.3%, while the different
chance-corrected ACs range from 0.359 for Fleiss’s kappa to 0.390 for Krippendorff’s
alpha. All coefficients are statistically significant at the 5% level.

Using the Landis and Koch (1977) scale, discussed in section 2.8, we would be
tempted to conclude that the chance-corrected coefficients all indicate a Fair amount of
agreement because they all fall into the interval 0.2 < k. < 0.4. However, the confidence
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intervals associated with the respective point estimates tell a quite different story. The
upper and lower limits span almost over the entire scale, ranging from Substantial
agreement all the way down to Slight agreement. When we decide to take the point
estimates as fixed and compare them with a given threshold, we are ignoring a large
amount of uncertainty. The kappaetc command implements the probabilistic bench-
marking approach, discussed in section 2.8, which accounts for this uncertainty. Let us
determine the benchmark level for our estimated coefficients.

. kappaetc, benchmark showscale noheader

P cum. Probabilistic
Coef. Std. Err. P in. >95Y% [Benchmark Interval]
Percent Agreement 0.5833 0.0759 0.57 0.980 0.4000 0.6000
Brennan and Prediger 0.3750 0.1138 0.07 0.995 0.0000 0.2000
Cohen/Conger“s Kappa 0.3854 0.1047 0.05 0.997 0.0000 0.2000
Scott/Fleiss” Kappa 0.3586 0.1207 0.10 0.992 0.0000 0.2000
Gwet“s AC 0.3829 0.1145 0.07 0.995 0.0000 0.2000
Krippendorff s Alpha 0.3897 0.1226 0.07 0.994 0.0000 0.2000
Benchmark scale
<0.0000 Poor
0.0000-0.2000 Slight
0.2000-0.4000 Fair
0.4000-0.6000 Moderate
0.6000-0.8000 Substantial
0.8000-1.0000 Almost Perfect

Note that we did not specify a variable list in the above code. Although kappaetc
is an r-class program (see [P| return), it mimics some of the features that are typical
for estimation commands (see [U] 20 Estimation and postestimation commands).
We can retype kappaetc without arguments to redisplay its latest results, and we can
add reporting options to modify the output. Here we specified the benchmark option
to determine the probabilistic benchmark level for our coefficients. We also specified
showscale, so the benchmarking scale will be printed below the coefficient table.

The first two columns of the coefficient table are just the same as before. The
remaining columns correspond to steps 1 to 3 of the algorithm described in section 2.8.
The third column, labeled P in., corresponds to step 1 and holds the estimated IMPs,
that is, the probability for the respective coefficient to fall into the selected interval.
The column P cum. >95% represents step 2 and shows the cumulative IMP, starting
from the highest benchmark level, that exceeds 95%. Finally, the last two columns
show the selected benchmark intervals from step 3. Here we can claim with 99.7%
certainty that Conger’s kappa indicates (at least) a Slight extent of agreement.

Notice that for all chance-corrected coefficients, except Fleiss’s kappa, the probability
to fall into the selected interval is below 0.1. It would be interesting to know the
confidence level associated with the more traditional, “deterministic” benchmarking
approach. Let us find out.
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. kappaetc, benchmark(deterministic) noheader

Deterministic
Coef. Std. Err. P in. P cum. [Benchmark Intervall]
Percent Agreement 0.5833 0.0759 0.57  0.980 0.4000 0.6000
Brennan and Prediger 0.3750 0.1138 0.51 0.921 0.2000 0.4000
Cohen/Conger"s Kappa 0.3854 0.1047 0.50 0.945 0.2000 0.4000
Scott/Fleiss” Kappa 0.3586 0.1207 0.52 0.889 0.2000 0.4000
Gwet s AC 0.3829 0.1145 0.49 0.927 0.2000 0.4000
Krippendorff“s Alpha 0.3897 0.1226 0.45 0.921 0.2000 0.4000

Above, we have requested the deterministic benchmarking method. We see that
all coefficients are now placed into the benchmark interval that encloses the respective
point estimate, ignoring any uncertainty associated with its estimation. Looking at the
cumulative probabilities for the chance-corrected coefficients, we find that, except for
Fleiss’s kappa, we could claim with 90% certainty or more that the extent of agreement
is Fair.

Some researchers (for example, Hayes and Krippendorff [2007]) have suggested com-
puting the probability that an AC fails to reach some required minimum level. This
approach seems most popular when Krippendorff’s alpha is estimated. Typically, a
minimum of kK, > 0.8 or at least kK, > 0.67 is recommended. We can modify the
t test that kappaetc reports by default to reflect the corresponding null hypothesis
Hy: k. <0.67.

. kappaetc, testvalue(< 0.67) noheader

Coef. Std. Err. t P>t [95% Conf. Intervall
Percent Agreement 0.5833 0.0759 -1.14 0.859 0.4117 0.7550
Brennan and Prediger 0.3750 0.1138 -2.59 0.985 0.1175 0.6325
Cohen/Conger “s Kappa 0.3854 0.1047 -2.72 0.988 0.1485 0.6224
Scott/Fleiss”~ Kappa 0.3586 0.1207 -2.58 0.985 0.0856 0.6316
Gwet s AC 0.3829 0.1145 -2.51  0.983 0.1238 0.6420
Krippendorff“s Alpha 0.3897 0.1226 -2.29 0.976 0.1122 0.6671
t test Ho: Coef. <= 0.6700 Ha: Coef. > 0.6700

Below the coefficient table, kappaetc now displays the null hypothesis and the al-
ternative. The reported t statistics are calculated as

K. — /@.HU

VV (k.| Sy)

where 0 is the coefficient under Hy and V (k.| S,) is defined in (8). The associated
p-values for the one-sided tests indicate that we cannot reject the null hypothesis at any
conventional level.

d
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5.4 Unconditional standard errors

b Example 6

The standard errors that we have estimated throughout examples 1 to 5 were condi-
tional upon the specific sample of raters, as is usually the case in the interrater agreement
literature. Thus, we can project our results only to a larger subject universe. We may
also wish to generalize our findings to the population of raters. Therefore, we estimate
unconditional standard errors, defined in (10).

. kappaetc raterl-rater5, se(unconditional) noheader

Unconditional
Coef. Std. Err. z P>|z| [95% Conf. Intervall
Percent Agreement 0.5833 0.1738 3.36 0.001 0.2427 0.9240
Brennan and Prediger 0.3750 0.2607 1.44 0.150 -0.1359 0.8859
Cohen/Conger “s Kappa 0.3854 0.2428 1.59 0.112 -0.0904 0.8613
Scott/Fleiss” Kappa 0.3586 0.2717 1.32 0.187 -0.1740 0.8911
Gwet"s AC 0.3829 0.2576 1.49 0.137 -0.1219 0.8877
Krippendorff“s Alpha 0.3897 0.2381 1.64 0.102 -0.0769 0.8563

Note that the estimated standard errors are much larger than before, and none of
the chance-corrected ACs is statistically significant at the conventional 5% level.
d

6 Conclusion

In this article, I discussed Gwet’s (2014) recently developed general framework for as-
sessing interrater agreement and introduced the kappaetc command, which implements
it in Stata. All discussed ACs apply to the case of multiple raters, multiple rating cate-
gories, any level of measurement, and in the presence of missing values. Standard errors
are estimated based on concepts for finite population inference, and the uncertainty as-
sociated with the estimated coeflicients is accounted for by a probabilistic benchmarking
method.

Examples of paradoxes, observed with kappa, have shown that different ACs might
yield different results for the same underlying data. Although a more systematic eval-
uation of these differences is beyond the scope of this article (see Feng [2013] and
Wongpakaran et al. [2013] for examples), the kappaetc command is a useful tool for
such investigations. Researchers with a substantial interest in interrater agreement
should check the robustness of their findings with respect to the AC of their choice.
kappaetc provides an easy way of doing just that and, additionally, makes this choice
independent of study parameters such as the number of raters or the data’s level of
measurement.
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