
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
h-p://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including pos;ng to another Internet site, is permi=ed without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising ac;vi;es by the author(s) of the following work or their
employer(s) is intended or implied.

http://ageconsearch.umn.edu
mailto:aesearch@umn.edu
https://makingagift.umn.edu/give/yourgift.html?&cart=2313

The Stata Journal (2018)
18, Number 4, pp. 902–923

Cointegration testing and dynamic simulations
of autoregressive distributed lag models

Soren Jordan
Department of Political Science

Auburn University
Auburn, AL

sorenjordanpols@gmail.com

Andrew Q. Philips
Department of Political Science
University of Colorado Boulder

Boulder, CO

andrew.philips@colorado.edu

Abstract. In this article, we introduce dynamac, a suite of commands designed to
assist users in modeling and visualizing the effects of autoregressive distributed lag
models and in testing for cointegration. We discuss the bounds cointegration test
proposed by Pesaran, Shin, and Smith (2001, Journal of Applied Econometrics 16:
289–326), which we have adapted into a command. Because the resulting models
can be dynamically complex, we follow the advice of Philips (2018, American Jour-
nal of Political Science 62: 230–244) by introducing a flexible command designed
to dynamically simulate and plot a variety of types of autoregressive distributed
lag models, including error-correction models.

Keywords: st0545, dynamac, pssbounds, dynardl, cointegration, dynamic model-
ing, autoregressive distributed lag, error correction

1 Introduction

Time-series models using an autoregressive distributed lag (ARDL) are common in the
social sciences. Whether the dependent variable is estimated in levels (for example, yt =
α0+· · ·) or in first differences (for example, Δyt = α0+· · ·), these models can test a host
of theoretically important theories such as the effect of public opinion on government
response (Jennings and John 2009), the effect of domestic and international factors on
defense expenditures (Whitten and Williams 2011) or tax rates (Swank and Steinmo
2002), or analyzing dynamic changes in partisan responsiveness over time (Ura and Ellis
2008).

When one uses an error-correction-style ARDL model, it becomes necessary to test
for cointegration.1 Philips (2018) shows that in small samples that are common in
the social sciences—typically, when the number of time points is 80 or less—the ARDL

bounds test for cointegration proposed by Pesaran, Shin, and Smith (2001) tends to
be more conservative (that is, does not conclude cointegration when it does not exist)
than either the popular Engle–Granger “two-step” approach (Engle and Granger 1987)
or the Johansen (1991, 1995) approach to cointegration testing. However, there is no
standard implementation of this cointegration test in common statistical software.

1. In general, error-correction models regress the first difference of the dependent variable on a con-
stant, its own lag in levels, and the contemporaneous first difference and lagged levels of each of
the independent variables. For instance, in a model with a single independent variable x, we might
estimate Δyt = α0 + θ0yt−1 + θ1xt−1 + β1Δxt.

c© 2018 StataCorp LLC st0545

mailto:sorenjordanpols@gmail.com
mailto:andrew.philips@colorado.edu
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1536867X1801800409&domain=pdf&date_stamp=2018-12-01

S. Jordan and A. Q. Philips 903

In addition to its error-correction form, ARDL models in general may have com-
plex dynamic specifications, including multiple lags, first differences, and lagged first
differences. This makes it more difficult to interpret the effects of changes—especially
short- and long-run changes—in the independent variable. To mitigate this, we intro-
duce a flexible command that allows users to dynamically simulate a variety of ARDL

models, including the error-correction model. Dynamic simulations offer an alternative
to hypothesis testing of model coefficients by instead conveying the substantive signifi-
cance of the results through meaningful counterfactual scenarios. Such an approach has
been gaining popularity in the social sciences (for example, Tomz, Wittenberg, and King
[2003]; Choirat et al. [2018]; Williams and Whitten [2011, 2012]; Philips, Rutherford,
and Whitten [2016a]).

Below, we briefly discuss the ARDL-bounds approach to cointegration testing. We
then present dynamac,2 a suite of two commands for dynamic ARDL modeling and coin-
tegration testing. dynamac includes pssbounds, which provides the necessary critical
values for the Pesaran, Shin, and Smith (2001) cointegration test, and dynardl, which
produces dynamic simulations of a multitude of ARDL-style models.

2 The ARDL-bounds cointegration test

The concept of cointegration has been around for several decades. To understand coin-
tegration, we briefly discuss integrated versus stationary series. Time series may have
“full memory” such that current realizations are fully a function of all previous stochas-
tic shocks, plus some new innovation. Such series are said to be integrated of order
one [or I(1)], a form of nonstationarity.3 For instance, the series in (1) is I(1) because
values at time t are a function of the prior value of y at time t− 1, plus innovation εt.

4

yt = yt−1 + εt (1)

Most of the time, I(1) series cannot be included in standard regression models, be-
cause the nature of these data makes it more likely that we find statistically significant
relationships simply because of random chance alone; this is often referred to as the
“spurious regression problem in time series” (Yule 1926; Grant and Lebo 2016). De-
spite this, two or more I(1) series may still have short-run, long-run, or equilibrium
relationships between one another. That is to say, while short-run perturbations may
move the series apart, over time this disequilibrium is corrected because the series move
back toward a stable long-run relationship. Such series are said to be cointegrating.

Because not all relationships between I(1) series are cointegrating, it becomes neces-
sary to test for cointegration. The earliest test comes from Engle and Granger (1987),
who show that cointegration between k I(1) regressors, x1t, x2t, . . . , xkt, and an I(1)

2. Users can find and download the most up-to-date version of this package at http://andyphilips.
github.io/dynamac/.

3. Another term for an I(1) series is that it contains a unit root. Series that are stationary are said
to be I(0).

4. This is commonly rewritten as (yt − yt−1) = Δyt = εt.

http://andyphilips.github.io/dynamac/
http://andyphilips.github.io/dynamac/

904 Cointegration testing and dynamic simulations

regressand, yt, exists if the resulting residuals—from a regression of these variables
entering into the equation in levels—are stationary:

yt = κ0 + κ1x1t + κ2x2t + · · ·+ κkxkt + zt

Several other cointegration tests have since been proposed. Philips (2018) offers an
in-depth discussion of how to apply the Pesaran, Shin, and Smith (2001) ARDL-bounds
test for cointegration. Others include tests by Johansen (1991) and Phillips and Ouliaris
(1990). However, the ARDL-bounds test offers several advantages. Chief among them
is that users do not have to make the sharp I(0)/I(1) distinction for the regressors.5

Below, we briefly summarize this approach.6

First, the analyst must ensure that the dependent variable is I(1). Many unit-root
tests can be used to determine the order of integration of a series, including the Dickey–
Fuller, Phillips–Perron, Elliott–Rothenberg–Stock, and Kwiatkowski–Phillips–Schmidt–
Shin tests. Only an I(1) dependent variable is a potential candidate for cointegration.

Second, the analyst must ensure that the regressors are not of integration higher
than I(1). While this means that the analyst does not have to make the potentially
difficult I(0)/I(1) decision, he or she must ensure that all regressors are not explosive
or contain seasonal unit roots.

Third, the analyst fits an ARDL model in error-correction form. The model is

Δyt = α0 + θ0yt−1 + θ1x1,t−1 + · · ·+ θkxk,t−1 +

p∑
i=1

αiΔyt−1

+

q1∑
j=0

β1jΔx1,t−j + · · ·+
qk∑
j=0

βkjΔxk,t−j + εt (2)

where the change in the dependent variable is a function of a constant, its value at
t − 1 (appearing in levels), values at t − 1 of all regressors appearing in levels, and
up to p and qk lags of the first difference of the dependent variable and regressors,
respectively. These may enter into (2) for theoretical reasons but also have the added
benefit of helping to ensure white-noise residuals. While it is ideal to have well-behaved
residuals in all models, this is a crucial step before running the ARDL-bounds test for
cointegration. Information criteria such as Schwarz’s Bayesian information criterion,
the Akaike information criterion, and autocorrelation and heteroskedasticity tests (for
example, Breusch–Godfrey, Durbin’s Alternative, Cook–Weisberg, or Cumby–Huizinga
tests) can be used to check for white-noise residuals. Many of these are available as
canned Stata procedures.

5. However, users must ensure that regressors are not of order I(2) or more and that seasonality has
been removed from the series.

6. A more in-depth discussion can be found in Philips (2018).

S. Jordan and A. Q. Philips 905

While the ARDL-bounds test may be relatively easy to implement, the test uses
special critical values. These critical values are available but cumbersome for users to
map onto the test; Pesaran, Shin, and Smith (2001) provide asymptotic critical values,
and Narayan (2005) provides finite sample critical values. To make the bounds test
more accessible to users, we introduce pssbounds below, which provides the necessary
critical values through an easy-to-use command.

2.1 The pssbounds command

Syntax

pssbounds, observations(#) fstat(#) k(#) case(#)
[
tstat(#)

]
Options

observations(#) is the number of observations from the fitted ARDL model in error-
correction form. observations() is required.7

fstat(#) is the value of the F statistic from the test that all parameters on the
regressors appearing in levels plus the coefficient on the lagged dependent variable
are jointly equal to 0: H0 = θ0 + θ1 + · · ·+ θk = 0. After running the ARDL model
in error-correction form, users should use Stata’s test command to obtain the F
statistic.8 fstat() is required.

k(#) is the number of regressors, k, modeled in levels in the fitted ARDL model not
including the lagged dependent variable.9 The bounds F test is a test that the k
parameters on the regressors appearing in levels (plus the coefficient on the lagged
dependent variable, θ0) are jointly equal to 0: H0 = θ0 + θ1 + · · · + θk = 0. k() is
required because critical values associated with the test differ based on the number
of regressors.

case(#) identifies the type of case of the restrictions on the intercept, trend term,
or both. The case type can be given in Roman numerals (I, II, III, IV, V) or
numerically (1, 2, 3, 4, 5). Because the critical values of the bounds test depend
on the assumptions placed on the intercept and trend, this option is required. See
Pesaran, Shin, and Smith (2001) for more details; case 3 is the most common. The
following five cases are possible:

7. As discussed below, if first using dynardl in error-correction form, users can simply run pssbounds

afterward without having to specify the required options, because the latter command obtains the
necessary stored values from the former.

8. For example, test l.y l.x1 l.x2 . . . = 0.
9. The lagged dependent variable is not included in the count of k even though it is included in the

restriction tested, because the lagged dependent variable is always present in the ARDL-bounds
procedure. This is why special critical values are required. For instance, if the ARDL model was
Δyt = β0−θ0yt−1+β1Δx1t+θ1x1,t−1+β2Δx2t+θ3x2,t−1, then k = 2 because x1,t−1 and x2,t−1

appear in lagged levels.

906 Cointegration testing and dynamic simulations

• Case 1: No intercept and no trend, case(1).

• Case 2: Restricted intercept and no trend, case(2).

• Case 3: Unrestricted intercept and no trend, case(3).

• Case 4: Unrestricted intercept and restricted trend, case(4).

• Case 5: Unrestricted intercept and unrestricted trend, case(5).

tstat(#) is the value of the t statistic for the coefficient on the lagged dependent
variable. This serves as a one-sided auxiliary test to the bounds F test and should
supplement—but not replace—the conclusions offered by the F statistic test above.
If the tests are in conflict or are inconclusive, users should follow the full procedure
outlined in Philips (2018, 235). Only asymptotic critical values are available for the
t statistic, so this option is not required. Note that critical values do not currently
exist for this test for cases 2 and 4 (see below).

Examples

Two examples of pssbounds are shown below. For the first example, we will use the
Lutkepohl West German quarterly macroeconomic dataset available in Stata:

. webuse lutkepohl2
(Quarterly SA West German macro data, Bil DM, from Lutkepohl 1993 Table E.1)

. tsset
time variable: qtr, 1960q1 to 1982q4

delta: 1 quarter

Following Philips (2018), the first step is to assess whether any of the three vari-
ables—log investment, log income, and log consumption—contain a unit root. Both the
Phillips–Perron and Dickey–Fuller generalized least-squares unit-root tests (pperron
and dfgls, respectively) fail to reject the null hypothesis of a unit root for all series, as
shown in table 1:

. pperron ln_inv, lags(3)

. dfgls ln_inv, maxlag(4)

. pperron ln_inc, lags(3)

. dfgls ln_inc, maxlag(4)

. pperron ln_consump, lags(3)

. dfgls ln_consump, maxlag(4)

S. Jordan and A. Q. Philips 907

Table 1. Unit-root tests indicate I(1) series

ln(Investment) ln(Income) ln(Consumption)

Phillips–Perron −1.25 −2.01 −1.54

Dickey–Fuller generalized
least-squares −2.05 −1.29 −1.60

note: Three augmenting lags are included for all tests.
* p < 0.05

Next, we fit the following ARDL-bounds model in error-correction form:10

Δln(Investment)t = α0 + θ0ln(Investment)t−1 + β1Δln(Income)t + θ1ln(Income)t−1

+ β2Δln(Consumption)t + θ2ln(Consumption)t−1

In other words, we believe that investment is a function of income and consumption
and that there is a cointegrating relationship between investment and the two regressors.
The results are shown in model 1 in table 2.

. regress d.ln_inv l.ln_inv d.ln_inc l.ln_inc d.ln_consump l.ln_consump

10. Estimation is not the first step of the ARDL-bounds approach; we would need to conduct a unit-
root test on the dependent variable and ensure that the independent variables were I(1) or less
(Philips 2018). We would also need to ensure that the resulting residuals from the model are white
noise. This is simply a stylized example used to showcase the command using readily available
Stata datasets.

908 Cointegration testing and dynamic simulations

Table 2. Lutkepohl example

(1) (2)
Δln invt Δln invt

ln invt−1 −0.140∗ −0.152∗∗

(0.059) (0.056)

Δln inct −0.201 −0.0985
(0.459) (0.423)

ln inct−1 −0.209
(0.334)

Δln consumpt 1.548∗∗ 1.395∗∗

(0.538) (0.459)

ln consumpt−1 0.336 0.131∗∗

(0.333) (0.048)

Constant −0.008
(0.071)

N 91 91
R2 0.17 0.27

note: The dependent variable is Δln invt, and
standard errors are in parentheses.
* p < 0.05, ** p < 0.01, *** p < 0.001

We then run an F test that the coefficients on the variables appearing in lagged
levels (that is, ln invt−1, ln inct−1, and ln consumpt−1) are jointly equal to 0:

. test l.ln_inv l.ln_inc l.ln_consump

(1) L.ln_inv = 0
(2) L.ln_inc = 0
(3) L.ln_consump = 0

F(3, 85) = 2.60
Prob > F = 0.0573

S. Jordan and A. Q. Philips 909

Recall that the critical values are nonstandard, so we need only the value of the F
statistic, which is 2.60. To test for cointegration, we use pssbounds. For the required
option fstat(), we input the F statistic from above. From the fitted model, we tell
pssbounds that the number of observations is 91, that the case is case 3 (that is,
unrestricted intercept with no trend, as shown in model 1), and that two regressors
appear in levels (k(2)). The resulting output appears as follows:

. pssbounds, fstat(2.60) observations(91) case(3) k(2)

PESARAN, SHIN AND SMITH (2001) COINTEGRATION TEST
Obs: 91
No. Regressors (k): 2
Case: 3

F-test

< I(0) I(1) >
10% critical value 3.170 4.140
5% critical value 3.790 4.850
1% critical value 5.150 6.360

F-stat. = 2.600

F-statistic note: Asymptotic critical values used.

For this model, because the F statistic of 2.60 is below the I(0) critical value—even at
the 10% level—we can conclude that there is no cointegration and that all regressors
appearing in levels are stationary. As discussed in Philips (2018), we would next want
to exclude one of the regressors from appearing in lagged levels—thus removing it from
the potentially cointegrating equation—to see whether either ln inc or ln consump on
its own was in a cointegrating relationship with ln inv.

Purely for illustrative purposes, let us now assume that we wanted to fit a model
without a constant. These results are shown in model 2 in table 2. As with model 1,
we next run an F test of all variables appearing in levels. For this example, note that
the model also has ln inc appearing in first differences but not in levels; thus, k = 1:

. regress d.ln_inv l.ln_inv d.ln_inc d.ln_consump l.ln_consump, noconstant

(output omitted)

. test l.ln_inv l.ln_consump

(1) L.ln_inv = 0
(2) L.ln_consump = 0

F(2, 87) = 3.83
Prob > F = 0.0254

We can account for a restricted constant by specifying the case(1) option (that is, no
intercept and no trend). As an additional option, we add tstat(-2.73), which is the
t statistic on the coefficient on the lagged dependent variable.

910 Cointegration testing and dynamic simulations

. pssbounds, fstat(3.83) observations(91) case(1) k(1) tstat(-2.73)

PESARAN, SHIN AND SMITH (2001) COINTEGRATION TEST
Obs: 91
No. Regressors (k): 1
Case: 1

F-test

< I(0) I(1) >
10% critical value 2.440 3.280
5% critical value 3.150 4.110
1% critical value 4.810 6.020

F-stat. = 3.830

t-test

< I(0) I(1) >
10% critical value -1.620 -2.280
5% critical value -1.950 -2.600
1% critical value -2.580 -3.220

t-stat. = -2.730

F-statistic note: Asymptotic critical values used.

t-statistic note: Asymptotic critical values used.

The output of pssbounds now contains critical values for both the F test and one-sided t
test. Based on the F statistic, we can conclude cointegration at the 10% level because the
F statistic of 3.83 is above the I(1) critical threshold of 3.28. However, there is not strong
enough evidence to support cointegration at the five percent level. For the t test, the t
statistic of −2.73 falls below the critical I(1) threshold of −2.60, supporting the earlier
conclusion of cointegration. Also note that for both tests, pssbounds issued a warning
that asymptotic critical values are used. For all cases, only asymptotic critical values
from Pesaran, Shin, and Smith (2001) are provided for the t statistic test.11 Thus,
interpreting the results of this test should be done with caution in small samples. Small-
sample critical values for the F statistic are not available for case 1. Recall, though,
that pssbounds implements only the test; when the results are inconclusive, users are
encouraged to follow the process outlined in Philips (2018).

As a second example, we use data from Ura (2014), who examines public mood
liberalism in the United States. Ura argues that in the short run, there will be a public
“backlash” in response to liberal Supreme Court decisions, but that in the long run,
the sentiments of the public tend to follow closely to those of the Court. Using the
same dataset, Philips (2018, see supplemental materials page 110) finds that the de-
pendent variable, public mood liberalism, is I(1) and that Ura’s ARDL model fit in
error-correction form with an additional lagged first difference of unemployment pro-
duces the white-noise residuals needed to conduct the ARDL-bounds test. The model is
shown in table 3.

11. Nor do critical values for the t statistic test exist for cases 2 and 4.

S. Jordan and A. Q. Philips 911

. use "supreme court mood replication.dta", clear

. tsset
time variable: year, 1955 to 2009

delta: 1 unit

. regress d.mood l.mood d.policy l.policy d.unemployment dl.unemployment
> l.unemployment d.inflation l.inflation d.caselaw l.caselaw

(output omitted)

Table 3. Ura (2014) example

(1)
Δmoodt

moodt−1 −0.241∗∗

(0.076)

Δpolicyt 0.051
(0.069)

policyt−1 −0.073∗∗∗

(0.020)

Δunemploymentt −0.106
(0.265)

Δunemploymentt−1 −0.538∗

(0.242)

unemploymentt−1 −0.024
(0.198)

Δinflationt −0.306∗

(0.123)

inflationt−1 −0.299∗

(0.120)

Δcaselawt −0.093∗

(0.037)

caselawt−1 0.027∗

(0.011)

Constant 15.65∗∗

(5.050)

N 53
R2 0.47

note: The dependent variable is
Δmoodt, and standard errors in parenthe-
ses.
* p < 0.05, ** p < 0.01, *** p < 0.001

912 Cointegration testing and dynamic simulations

Next, we run an F test that all variables appearing in lagged levels (moodt−1,
policyt−1, unemploymentt−1, inflationt−1, and caselawt−1) are jointly equal to 0:

. test l.mood l.policy l.unemployment l.inflation l.caselaw

(1) L.mood = 0
(2) L.policy = 0
(3) L.unemployment = 0
(4) L.inflation = 0
(5) L.caselaw = 0

F(5, 42) = 5.15
Prob > F = 0.0009

We then run pssbounds on the resulting F statistic of 5.15, where k = 4 (that is, 4
regressors: policy, unemployment, inflation, and caselaw) and where the value of
the t statistic of the lagged dependent variable is −3.19:

. pssbounds, fstat(5.15) observations(53) case(3) k(4) tstat(-3.19)

PESARAN, SHIN AND SMITH (2001) COINTEGRATION TEST
Obs: 53
No. Regressors (k): 4
Case: 3

F-test

< I(0) I(1) >
10% critical value 2.578 3.710
5% critical value 3.068 4.334
1% critical value 4.244 5.726

F-stat. = 5.150

t-test

< I(0) I(1) >
10% critical value -2.570 -3.660
5% critical value -2.860 -3.990
1% critical value -3.430 -4.600

t-stat. = -3.190

F-statistic note:

t-statistic note: Small-sample critical values not provided
for Case III. Asymptotic critical values used.

We can conclude evidence of cointegration at the 5% level for the F test because the F
statistic of 5.15 is above the I(1) critical value of 4.334. However, note that we fail to
clear the critical I(1) threshold for the ARDL-bounds t test. However, the t-test values
of this auxiliary test are asymptotic (pssbounds issues a note at the bottom of the
output that warns the user of this) and not precisely tailored to small samples. Based
on the small-sample F statistics, we have relatively strong evidence of cointegration.

S. Jordan and A. Q. Philips 913

3 Dynamic simulations of ARDL models

ARDL models may have a fairly complex lag structure, with lags, contemporaneous val-
ues, first differences, and lagged first differences of the independent (and sometimes
the dependent) variable appearing in the model specification. While interpreting short-
and long-run effects may be simple in something like an ARDL(1,1) model (that is, one
lag of the dependent variable and contemporaneous and one-period lags of all indepen-
dent variables), understanding the short-, medium-, and long-run effects becomes more
difficult as the model specification grows in complexity.

To better interpret the substantive significance of our results, we introduce dynardl
below, which is a command to dynamically simulate a variety of ARDL models. dynardl
estimates, simulates, stores the results from, and automatically plots substantively in-
teresting predictions from ARDL models. Users can even run pssbounds afterward as a
postestimation command if simulating an error-correction model.

The output in dynardl helps us visualize the effect of a counterfactual change in
one regressor at a single point in time, holding all else equal, using stochastic simulation
techniques. Dynamic simulation approaches are gaining in popularity as a straightfor-
ward way to show the substantive results of time-series models, whose coefficients often
have nonintuitive or “hidden” interpretations (Breunig and Busemeyer 2012; Williams
and Whitten 2011; Philips, Rutherford, and Whitten 2016a,b; Gandrud, Williams, and
Whitten 2016).12 Before one uses the command, it is assumed that one has already de-
termined the order of integration of the variables through unit-root testing, diagnosed
and addressed other issues such as seasonal unit roots, and used information criteria
(and theory) to identify the best-fitting lagged-difference structure, which is used to
purge autocorrelation and to ensure the residuals are white noise. If an error-correction
model is fit, users should use the ARDL-bounds test to determine whether there is coin-
tegration and adjust the model accordingly if there is not.13

dynardl first runs a regression using ordinary least squares. Then, using a self-
contained procedure similar to the popular clarify command for Stata (Tomz, Witten-
berg, and King 2003), it takes 1,000 draws (or however many simulations a user desires)
of the vector of parameters from a multivariate normal distribution. These distributions
are assumed to have means equal to the estimated parameters from the regression. The
variance of these distributions is equal to the estimated variance–covariance matrix from
the regression. To reintroduce stochastic uncertainty back into the model when creat-
ing predicted values, dynardl simulates σ̂2∗ by taking draws from a scaled inverse χ2

distribution. The distribution is scaled by the residual degrees of freedom (n − k) and
the estimated σ̂2 from the regression (Gelman et al. 2013, 37, 582), which ensures that
draws of σ̂2∗ are bounded by zero and one. Simulated parameters and sigma-squared

12. For instance, regressors in a stationary ARDL(1, 0) model have both a contemporaneous effect
(given by the coefficient on the regressor, β) and a long-run or cumulative effect, given by β/(1−θ0).

13. If the test is inconclusive, “[e]ach regressor should be tested for a unit root. Only I(1) variables
can appear in levels in the error-correction model. Stationary variables may still appear in first
differences If the resulting statistic is still inconclusive, combinations of variables appearing in
levels may need to be tested” (Philips 2018, 13–14). See Philips (2018) for a step-by-step example
of this process for the ARDL model in general.

914 Cointegration testing and dynamic simulations

values are then used to create predicted values of the dependent variable over time,
Ŷt, for each of the simulations, by setting all covariates to certain values (typically
means). Stochastic uncertainty is introduced into the prediction by taking a draw from
a multivariate normal distribution with mean zero and variance σ̂2∗. The command
then averages across the simulations, creating Ŷ ∗

t (the predicted values plus stochastic
uncertainty) and percentile confidence intervals of the distribution of simulated values
at a particular point in time. These are then saved, allowing a user to make a table or
(more commonly) a graph of the results over time.

3.1 The dynardl command

Syntax

dynardl depvar indepvars, lags(numlist) shockvar(varname) shockval(#)[
diffs(numlist) lagdiffs(numlist) levels(numlist) ec trend noconstant

range(#) sig(#) time(#) saving(filename) forceset(numlist) sims(#)

burnin(#)
[
graph | graph rarea | graph change

]
expectedval

]
Options

lags(numlist) is a numeric list of the number of lags to include for each variable,
separated by a comma. The number of desired lags is listed in exactly the same
order in which the variables depvar and indepvars appear. lags() is required. For
instance, the command

dynardl y x1 x2, lags(1, 2, 3) ...

would lag y by t−1, x1 by t−2, and x2 by t−3. Note that the lag on depvar (always
the first entry in lags()) must always be specified. To fit a model without a lag for
a particular variable, simply replace the number with a .; for instance, if we did not
want a lag on the first regressor and wanted a lag of t−1 on the second regressor, we
type lags(1, ., 1). dynardl can accommodate consecutive lags by specifying the
minimum lag, a forward slash, and then the maximum lag. For instance, lags(1/3,
., .) will introduce lags of yt at t−1, t−2, and t−3 into the model. The command
can also add nonconsecutive lags. For instance, to add a single lag of yt at t− 1 and
t− 3, specify lags(1 3, ., .).

shockvar(varname) is a single independent variable from the list of indepvars that is to
be shocked. It will experience a counterfactual shock of size shockval(#) at time
time(#). shockvar() is required.

shockval(#) is the amount to shock shockvar(varname) by. A common shock value
is a +/- one standard-deviation shock, although any shock value can be used.
shockval() is required.

S. Jordan and A. Q. Philips 915

diffs(numlist) is a numeric list of the number of contemporaneous first differences
to include for each variable, separated by a comma. Note that the first entry (the
placeholder for the depvar) will always be empty (denoted by .) because the first
difference of the dependent variable cannot appear on the right-hand side of the
model.14 Only first differences can be taken using this option; for instance, diffs(.,
1, .) would first difference only the first regressor in the equation.

lagdiffs(numlist) is a numeric list of the number of lagged first differences to include
for each variable, separated by a comma. The syntax is similar to that of lags().
For instance, to include a lagged first difference at t−2 for depvar (that is, Δyt−2 =
yt−2− yt−3), a lagged first difference at t− 1 for the first regressor, and none for the
second, specify lagdiffs(2, 1, .). To include an additional lagged first difference
for both the first and second lags of depvar, specify lagdiffs(1/2, 1, .). Users
can also include nonconsecutive lagged first differences.15

levels(numlist) is a numeric list of variables to appear in levels (that is, not lagged or
differenced but appearing contemporaneously at time t), separated by a comma.16

For example, levels(., 1, .) tells dynardl to include the first regressor contem-
poraneously at time t.

ec specifies that depvar will be estimated in first differences. If fitting an error-correction
model, users will need to use this option.

trend specifies that the command will add a deterministic linear trend to the model.

noconstant specifies that the constant will be suppressed.

range(#) is the length of the scenario to simulate. The default is range(20). Note
that the range must be larger than time().

sig(#) specifies the significance level for the percentile confidence intervals. The default
is sig(95).

time(#) is the scenario time in which the shock occurs to shockvar(). The default is
time(10).

saving(filename) specifies the name of the output file where the means of the pre-
dicted values and user-specified confidence intervals will be saved. The default is
saving(dynardl results.dta).

forceset(numlist) allows the user to change the setting of the lagged (or unlagged
if using levels()) levels of the variables. This could be useful when estimating a
dummy variable, for instance, when we wish to see the effect of a movement from
zero to one. By default, the command will fit the ARDL model in equilibrium; all
lagged variables and variables appearing in levels are set to their sample means. All

14. However, it can appear in lagged first differences, as shown below.
15. For instance, lagdiffs(1 3/4, ., .) would add a first difference at t− 1, t− 3, and t− 4 for the

dependent variable.
16. If both levels() and ec are specified, dynardl will issue a warning message. Of course, users may

have a valid reason to include a variable in levels, for instance, a dummy variable.

916 Cointegration testing and dynamic simulations

first differences and any lagged first differences are set to zero. For instance, to set
the value of the first regressor to 5, specify forceset(., 5, .).

sims(#) is the number of simulations. The default is sims(1000). If confidence inter-
vals are particularly noisy, it may help to increase this number. Note that you may
also need to increase the matsize in Stata.

burnin(#) allows dynardl to run a number of early simulations that are dropped,
resulting in more stable starting values. This option is rarely used. However, if
using the option forceset(), the predicted values will not be in equilibrium at the
start of the simulation and will take some time to converge on stable values. To get
around this, one can use the burnin() option to specify a number of simulations to
“throw away” at the start. The default is burnin(20). Setting a burn-in does not
change the simulation range or time; to simulate a range of 25 with a shock time at
10 and a burn-in of 30, specify burnin(30) range(25) time(10).

graph can be specified to automatically plot the dynamic results using a spike plot.
Two alternative plots are possible:

rarea creates an area plot. Predicted means and 75%, 90%, and 95% confidence
intervals are shown with this option.

change shows predicted changes (from the sample mean) across time, starting with
the time at which the shock occurs, similar to an impulse–response function.

expectedval calculates expected values of the dependent variable such that the average
of 1,000 stochastic draws now becomes the estimate of the stochastic component for
each of the simulations. This effectively removes stochastic uncertainty introduced in
calculating Ŷ ∗

t (Tomz, Wittenberg, and King 2003). Predicted values are more con-
servative than expected values. By default, dynardl will calculate predicted values
of the dependent variable for a given number of simulations. For every simulation,
the predicted value comes from a systematic component—which contains uncertainty
surrounding the parameter estimates from the model—and a single draw from the
stochastic component. Note that dynardl takes longer to run if calculating expected
values. We recommend that unless users have a specific theoretical or substantive
justification for using expected values, they instead use the default predicted values
that account for the random uncertainty surrounding the predictions.

Examples

For the first example, we will once again use the results from model 1 in table 2 using
the Lutkepohl data. We fit the following model:

Δln invt = ln invt−1 +Δln inct + ln inct−1 +Δln consumpt

+ ln consumpt−1 (3)

S. Jordan and A. Q. Philips 917

Because dynardl uses Stata’s matrix capabilities, we will also increase the maximum
matrix size:

. set matsize 5000

. webuse lutkepohl2
(Quarterly SA West German macro data, Bil DM, from Lutkepohl 1993 Table E.1)

. tsset
time variable: qtr, 1960q1 to 1982q4

delta: 1 quarter

To fit the model shown in (3) using dynardl and see the effect of a −1 shock to ln inc

(about two standard deviations), we specify the command below. In (3) we have two
regressors and the lagged dependent variable, all of which are lagged one period. There-
fore, we specify lags(1, 1, 1). The first differences of all regressors appear, so we add
diff(., 1, 1). There are no lagged differences appearing in (3).

. dynardl ln_inv ln_inc ln_consump, lags(1, 1, 1) diffs(., 1, 1)
> shockvar(ln_inc) shockval(-1) time(10) range(30) graph ec

In the command, lags(1, 1, 1) tells dynardl to add lags (of t− 1) for each of the
variables, while diffs(., 1, 1) means that the second and third variables (ln inc and
ln consump) also enter into the model as first differences. In shockvar(), we include
the variable to be shocked and specify the amount to shock it by using shockval().
Additional options include time(10) to specify the time at which the shock occurs,
range(30) to specify the total range of the simulations, and ec to include the dependent
variable in first differences. Finally, because we specified the graph option, dynardl will
produce a plot, which is shown in figure 1. As is clear from the figure, a −1 shock at
t = 10 produces a small increase that is not statistically significant in the short run,
which eventually increases to a predicted value of about 7.5 over the long run. This
increase is statistically significant.

918 Cointegration testing and dynamic simulations

5
6

7
8

9
P

re
di

ct
ed

 V
al

ue

0 10 20 30
Time

Figure 1. Plot produced from dynardl using the graph option. Dots show the average
predicted value; shaded lines show (from darkest to lightest) the 75%, 90%, and 95%
confidence intervals.

In addition to producing figures, dynardl also saves the prediction output, which
can be used to create more customizable figures (for example, colors, lines, or labels) if
users desire. Because we did not specify a filename to save using the saving() option,
the results are automatically saved as dynardl results.dta.

More complex dynamic specifications are possible using dynardl. For instance,
perhaps we wanted to estimate the following equation:

Δln invt = ln invt−1 +Δln invt−1 + ln inct−1 + ln inct−2 + ln inct−3

+Δln consumpt + ln consumpt−1 (4)

Now the dependent variable appears not only in lagged-level form at t − 1 but also
as a lagged first difference. ln inc no longer appears contemporaneously but at the
first, second, and third lags, while ln consump continues to appear in lagged and first-
differenced forms. Equation (4) would appear as the following in dynardl:

. dynardl ln_inv ln_inc ln_consump, lags(1, 1/3, 1) diffs(., ., 1)
> lagdiffs(1, ., .) shockvar(ln_inc) shockval(-1) time(10) range(30)
> graph ec rarea sims(5000)

Note that, because the first through third lag of ln inc are desired, we specify
lags(1, 1/3, 1).17 Because there is a lagged first difference included for the dependent
variable, we add lagdiffs(1, ., .). The . is a placeholder for the other variables
and must be included. Finally, we add the rarea option to produce an area plot, and

17. Equivalently, we could specify lags(1, 1 2 3, 1) instead of lags(1, 1/3, 1).

S. Jordan and A. Q. Philips 919

we increase the number of simulations to 5,000 with sims(5000). The resulting plot
is shown in figure 2. As is clear from the figure, as a result of a negative shock to
ln(Income) at time t = 10, investment decreases over the next few periods, though this
does not appear to be statistically significantly lower than the average predicted value
(shown when t < 10). After about three periods, investment increases in response to the
negative income shock, resulting in a new equilibrium prediction just above 10. Figure 2
is appealing because it shows 75%, 90%, and 95% confidence intervals. Because it is
an area plot, its continuous style may allow users to see changes slightly easier than
the plot style in figure 1. Note that because we increased the number of simulations to
5,000, the confidence intervals in figure 2 are smoother from time point to time point
than in figure 1.

4
6

8
10

12
P

re
di

ct
ed

 V
al

ue

0 10 20 30
Time

Figure 2. Plot produced from dynardl using the graph and rarea options. The black-
dotted line shows the average predicted value; the shaded area shows (from darkest to
lightest) the 75%, 90%, and 95% confidence intervals.

dynardl can also be used with pssbounds when fitting an error-correction model.
For instance, directly after estimating (3), we can run pssbounds as a postestimation
command to test for cointegration without having to specify any additional options;
the program automatically obtains the necessary values for the F and t statistics, the
number of observations, the case, and the number of regressors, k:

920 Cointegration testing and dynamic simulations

. dynardl ln_inv ln_inc ln_consump, lags(1, 1, 1) diffs(., 1, 1)
> shockvar(ln_inc) shockval(-1) time(10) range(30) ec

(output omitted)

. pssbounds

PESARAN, SHIN AND SMITH (2001) COINTEGRATION TEST
Obs: 91
No. Regressors (k): 2
Case: 3

F-test

< I(0) I(1) >
10% critical value 3.170 4.140
5% critical value 3.790 4.850
1% critical value 5.150 6.360

F-stat. = 2.602

t-test

< I(0) I(1) >
10% critical value -2.570 -3.210
5% critical value -2.860 -3.530
1% critical value -3.430 -4.100

t-stat. = -2.372

F-statistic note: Asymptotic critical values used.

t-statistic note: Asymptotic critical values used.

In addition to error-correction style models, dynardl can handle ARDL models where
the dependent variable is estimated in levels.18 For instance, suppose we want to fit the
following ARDL(1,1) model:

ln invt = ln invt−1 + ln inct + ln inct−1 + ln consumpt + ln consumpt−1

In dynardl, we add the levels(., 1, 1) to let the program know that the two
independent variables are to appear contemporaneously in levels. If we wanted to see
the effect of a change from ln inc = 6 to ln inc = 5, while holding ln consump

constant at 7, we can also use the forceset() option to force the program to evaluate
the simulations at these values, not the sample means (by default).19

. dynardl ln_inv ln_inc ln_consump, lags(1, 1, 1) levels(., 1, 1) forceset(., 6, 7)
> shockvar(ln_inc) shockval(-1) time(10) range(30) graph change sims(5000)

Because we added the change option, the resulting plot is akin to an impulse–
response function as shown in figure 3. In other words, we are looking not at the level
of the predicted value but at the difference between the predictions at each point in time
relative to the average predicted value before the shock. Figure 3 shows the change in

18. Although this is a stylized example, users should always first perform unit-root tests to determine
the most appropriate model specification.

19. Note that while we can set some or all of the independent variables using forceset(), the lagged
dependent variable cannot be forced to a fixed value.

S. Jordan and A. Q. Philips 921

predicted value, starting when the shock occurs.20 As is clear from the figure, there is
no statistically significant change in the predicted value in the short run as a result of
the shock. However, over the long run, the change is statistically significant at the 90%
level of confidence.

−
1

0
1

2
3

C
ha

ng
e

in
 P

re
di

ct
ed

 V
al

ue

0 5 10 15 20
Time

Figure 3. Plot produced from dynardl using the graph and change options. Dots show
the mean change in predicted value from sample mean; the shaded area shows (from
darkest to lightest) the 75%, 90%, and 95% confidence intervals.

4 Conclusion

In this article, we have introduced dynamac, a suite of commands for dynamic ARDL

modeling and cointegration testing. dynamac consists of two commands designed to
assist time-series analysts. pssbounds helps users test for cointegration by providing
critical values from Pesaran, Shin, and Smith (2001) and Narayan (2005) automatically
in a tabular format. The command dynardl helps users dynamically simulate a variety
of ARDL models to gain a better understanding of the substantive significance of their
results. Users can then graph or save their simulated predicted values for use elsewhere.
Both commands make it easier for users to test and interpret their dynamic models.

20. In other words, an analyst might want to show the effect of a shock without showing the periods
preceding it (like the first 10 periods of figure 2). In figure 3, because the shock occurred at t = 10
and the total range of the simulation was t = 30, the graph shows a total range of t = 20.

922 Cointegration testing and dynamic simulations

5 Acknowledgments

We thank Lorena Barberia, Natália Moreira, Paul Kellstedt, Guy Whitten, Joe Ura,
Eric Guntermann, the editor, and a reviewer for thoughtful comments and suggestions
on various versions of these commands. Of course, any errors remain our own.

6 References
Breunig, C., and M. R. Busemeyer. 2012. Fiscal austerity and the trade-off between
public investment and social spending. Journal of European Public Policy 19: 921–
938.

Choirat, C., C. Gandrud, J. Honaker, K. Imai, G. King, and O. Lau. 2018. Zelig:
Everyone’s statistical software. R package version 5.1.6. https://cran.r-project.org/
web/packages/Zelig/ .

Engle, R. F., and C. W. J. Granger. 1987. Co-integration and error correction: Repre-
sentation, estimation, and testing. Econometrica 55: 251–276.

Gandrud, C., L. K. Williams, and G. D. Whitten. 2016. dynsim: Dynamic simulations
of autoregressive relationships. R package version 1.2.1. https://cran.r-project.org/
web/packages/dynsim/.

Gelman, A., J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin, eds.
2013. Bayesian Data Analysis. 3rd ed. Boca Raton, FL: CRC Press.

Grant, T., and M. J. Lebo. 2016. Error correction methods with political time series.
Political Analysis 24: 3–30.

Jennings, W., and P. John. 2009. The dynamics of political attention: Public opinion
and the Queen’s Speech in the United Kingdom. American Journal of Political Science
53: 838–854.

Johansen, S. 1991. Estimation and hypothesis testing of cointegration vectors in Gaus-
sian vector autoregressive models. Econometrica 59: 1551–1580.

. 1995. Likelihood-Based Inference in Cointegrated Vector Autoregressive Models.
Oxford: Oxford University Press.

Narayan, P. K. 2005. The saving and investment nexus for China: Evidence from
cointegration tests. Applied Economics 37: 1979–1990.

Pesaran, M. H., Y. Shin, and R. J. Smith. 2001. Bounds testing approaches to the
analysis of level relationships. Journal of Applied Econometrics 16: 289–326.

Philips, A. Q. 2018. Have your cake and eat it too? Cointegration and dynamic inference
from autoregressive distributed lag models. American Journal of Political Science 62:
230–244.

https://cran.r-project.org/web/packages/Zelig/
https://cran.r-project.org/web/packages/Zelig/
https://cran.r-project.org/web/packages/dynsim/
https://cran.r-project.org/web/packages/dynsim/

S. Jordan and A. Q. Philips 923

Philips, A. Q., A. Rutherford, and G. D. Whitten. 2016a. dynsimpie: A command to
examine dynamic compositional dependent variables. Stata Journal 16: 662–677.

. 2016b. Dynamic pie: A strategy for modeling trade-offs in compositional vari-
ables over time. American Journal of Political Science 60: 268–283.

Phillips, P. C. B., and S. Ouliaris. 1990. Asymptotic properties of residual based tests
for cointegration. Econometrica 58: 165–193.

Swank, D., and S. Steinmo. 2002. The new political economy of taxation in advanced
capitalist democracies. American Journal of Political Science 46: 642–655.

Tomz, M., J. Wittenberg, and G. King. 2003. clarify: Software for interpreting and
presenting statistical results. Journal of Statistical Software 8(1): 1–30.

Ura, J. D. 2014. Backlash and legitimation: Macro political responses to Supreme Court
decisions. American Journal of Political Science 58: 110–126.

Ura, J. D., and C. R. Ellis. 2008. Income, preferences, and the dynamics of policy
responsiveness. PS: Political Science & Politics 41: 785–794.

Whitten, G. D., and L. K. Williams. 2011. Buttery guns and welfare hawks: The politics
of defense spending in advanced industrial democracies. American Journal of Political
Science 55: 117–134.

Williams, L. K., and G. D. Whitten. 2011. Dynamic simulations of autoregressive
relationships. Stata Journal 11: 577–588.

. 2012. But wait, there’s more! Maximizing substantive inferences from TSCS

models. Journal of Politics 74: 685–693.

Yule, G. U. 1926. Why do we sometimes get nonsense-correlations between time-series?
A study in sampling and the nature of time-series. Journal of the Royal Statistical
Society 89: 1–63.

About the authors

Soren Jordan is an assistant professor in the Department of Political Science at Auburn Uni-
versity.

Andrew Q. Philips is an assistant professor in the Department of Political Science at the
University of Colorado, Boulder.

