
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


The Stata Journal (2018)
18, Number 4, pp. 981–994

Speaking Stata: Seven steps for vexatious
string variables

Nicholas J. Cox
Department of Geography

Durham University
Durham, UK

n.j.cox@durham.ac.uk

Clyde B. Schechter
Albert Einstein College of Medicine

Bronx, NY

clyde.schechter@einstein.yu.edu

Abstract. String variables that seemingly should be numeric require some care.
The column provides a step-by-step guide explaining how to convert them or—as
the case may merit—to leave them as they are. Dates in string form, identifiers
and categorical variables, and pure numeric content trapped in string form need
different actions. Practical advice on good and not so good technique is sprinkled
throughout.

Keywords: dm0098, string variables, numeric variables, dates, encode, egen, de-
string

1 Introduction

Here is a common Stata user experience. After opening a data file, you realize—or
at least suspect—that you have string variables that should be converted or otherwise
mapped into numeric variables. Usually, you are right. Often, however, people get
confused about precisely how they should achieve that in Stata. The possibilities and
the pitfalls are both numerous. The aim of this column is to provide a brief seven-step
survival guide that—even if it does not guarantee to solve all of your problems—will
give you a sketch map of the territory. We flag commands and functions that can help
and signal where to learn more.

If this is your first introduction to the subject, you may be starting in the wrong
place. You could go first to [U] 12 Data to get an overview of data in Stata and the
different kinds of variables possible.

If you think you are starting in a good place, the following summary should make
sense.

The difference between numeric and string variables in Stata is a big deal. A numeric
value like 42 within a numeric variable and a string value like "42" within a string
variable are quite different. The double quotation marks (" ") are to Stata and to readers
alike a signal that what they contain is a character string and will be treated as such. A
numeric value like 42 and a string value like "Stata user" are even more different, as
should be clear. The more subtle territory is for cases like the first example whenever
values like "42" should be treated as numeric because the numeric interpretation is
essential. Perhaps, Stata misread your data so far as you are concerned. Or, perhaps,

c© 2018 StataCorp LLC dm0098

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1536867X1801800413&domain=pdf&date_stamp=2018-12-01


982 Speaking Stata: Seven steps for vexatious string variables

you knew that a variable would be read in as string and are not surprised that you need
to convert it.

2 Seven steps

2.1 Keep copies

Always keep copies of original data.

Keep copies of the dataset you start with as (say) a .dta file using save (see
[D] save). Further, what may be as or more pertinent, do not discard any original
data file, say, a text or spreadsheet file, that you used to import (see [D] import) the
data. Sometimes, you may need to go back and start again.

Also, within a Stata session, keep the original string variables. Even if a command
offers a replace option to overwrite the original variables, use its generate() option
instead—unless and until you know exactly what you are doing, or you are not averse
to the risk of making a mess and having to try again. This is always good advice, but
because string conversions can easily go wrong, you should have a line of retreat so that
you can pull back and try again.

2.2 Dates within strings usually require date-time functions

Does any string variable contain a date or date-time string? If so, a date-time function
is usually needed to convert it to numeric.

This is usually easy to answer. You look inside the string variable using, say, list or
edit (see [D] list or [D] edit), and see values like "July 4, 1776" or "28 March 1952"

or anything that smacks of a half-yearly, quarterly, monthly, weekly, or daily date. Or
you look inside and see a date-time, such as "28 March 1952 02:00:00", which was
2 a.m. or 02:00 on 28 March 1952.

However, if the variable is just calendar years held as strings, with values like "1984"
or "2018", the solution will usually be to use destring (see [D] destring).

Otherwise, if the string variable holds a date or time, you almost always need to use
date-time functions to convert it to a numeric date or time variable. In this circum-
stance, do not ever attempt to use encode or destring. (Later, we will say more on
why not.)

The conversion is usually a two-step process.

First, find a conversion function. Consult help datetime to find the function you
need. So daily date strings can be converted to Stata numeric dates with date() or
daily(). We prefer to use daily() to set a good example to ourselves and others. The
date() function was introduced in Stata when daily dates were the only kind of date
receiving special support. (Years like 1984 or 2018 can usually be treated as they come



N. J. Cox and C. B. Schechter 983

in statistics, graphics, and data management alike.) However, it is too easy to guess
that date() is a generic date conversion function. On the contrary, it does one thing
only, yield numeric daily dates. The two functions date() and daily() share the same
code, but daily() is the precise name, which we therefore recommend.

So given some string variable, strdate, say, your first step will be something like

. generate numdate = daily(strdate, "MDY")

if you have dates like "July 4, 1776". It will be something like

. generate numdate = daily(strdate, "DMY")

if you have dates like "28 March 1952".

We are not going to go into much more detail on the date functions you might need.
The main point for now is that a date conversion function will map string dates such
as "July 4, 1776" and "28 March 1952" to numeric values, here −67019 and −2835.
These can be explained as daily dates on a scale on which 1 January 1960 is 0 or the
origin 0. More generally, Stata’s origin for any kind of date or date-time (other than
yearly dates) is 0 for the first possible date in 1960, and so for the first half year, quarter,
month, week, day, or millisecond, as the case may be.

We said conversion function, but sometimes you need something more complicated
than a single function. Here is one twist we have often seen: data are quarterly but
arrive with string dates indexed by the last day in each quarter: 31 March, 30 June,
and so forth. Here a daily date is not what you really need, because to Stata that would
imply that you have 4 observations with nonmissing values out of 365 or 366 possible
within each year, so your dataset is implied to be mostly gaps. Rather, what you need is
to map these dates into quarterly dates using qofd(daily()). As in elementary algebra,
the function on the inside, daily(), is implemented first, followed by qofd(), which,
as you may well have guessed, maps daily dates to quarterly dates. (Think: quarter of
daily date.)

We now should have a numeric variable. If the result is something unintelligible,
what have we really gained? The answer lies in the second step of the process.

Second, assign the display format you want. If we now apply a date display format,
then Stata knows to use that where relevant, especially in listings or on graphs. The
command

. format numdate %td

assigns the default daily date format to a numeric daily date variable. The default is
naturally just the default. For other possibilities, see

. help datetime display formats

There is one awkward exception to the rule of using date-time functions to convert
date strings. Sometimes, your strings such as "12:34:56.78" or "25:14:36" indicate
durations or elapsed times, so times from some start or stage or state to another. Fans of



984 Speaking Stata: Seven steps for vexatious string variables

various sports in which people, vehicles, or animals race each other should immediately
be at home here.

Sometimes, such durations can be held as Stata date-times, in which the only allowed
unit is milliseconds. If so, then the implication that the clock started at 00:00:00.000 on
1 January 1960 must usually be ignored as incorrect and irrelevant. More commonly,
it may be a better strategy to decide which numeric units you want to work in—
commonly, minutes or seconds—and then use split (see [D] split) first and set up
your own conversion to a numeric variable with those convenient units. Using Stata’s
msofseconds(), msofminutes(), and msofhours() functions to convert units would
relieve you of the burden of a few multiplications and make your code more transparent
and readable.

2.3 Identifiers and categorical variables may be mapped to numeric

If the string variable holds identifiers or categorical values, and you need a numeric
variable to use in modeling or other statistical analysis, then you should map it to a
numeric variable using encode (see [D] encode). egen’s (see [D] egen) group() function
is another possibility.

Identifiers can be informative. People working in economics, business, finance, ge-
ography, or various other social sciences will be familiar with the use of company or
country or regional names as identifiers. Here, typically, such string identifiers are
informative. You (should) care about which observation is which. You should know
something about Alabama or Albania or Aberdeen or Azerbaijan or Apple that informs
your interpretation of your statistical work.

Identifiers might be uninformative. Conversely, people working in medicine or epi-
demiology or other health sciences will be familiar with patient, practitioner, or other
identifiers that are deliberately anonymous. They may still be informative, in this sense.
If the results for patient "XYZ123" look really odd, there may be scope to check back
on, if not the original records, then some data source upstream of your Stata dataset.

Either way, in Stata numeric identifiers indicating panels are required before you
can identify your dataset to Stata as such using tsset or xtset (see [TS] tsset or
[XT] xtset).

Categorical variables may arrive as strings. If different strings are also different levels
of a categorical variable, say, "male" or "female", or "Democrat" or "Republican", you
will also need a numeric representation for most statistical purposes. Numeric variables
are also often needed, or at least more widely usable, for graphical analysis.

The purpose of encode is to map identifiers or categories arriving as strings to
numeric variables. That is also what egen, group() does, although the latter can be
used in other ways too. We will look at these commands in turn after considering what
kind of numeric representation is most helpful.



N. J. Cox and C. B. Schechter 985

A common and excellent convention is to use successive integers from 1 up as numeric
identifiers. There is no compelling logic behind this convention except simplicity and
convenience. For example, you just need to know the highest numerical code to be
able to loop easily over such categories. Typically, that means use of forvalues (see
[P] forvalues).

Another common and even more excellent convention is to code binary states as 1
and 0. That leads directly to useful statistics. Three examples now follow making that
point, but skip them if you know this well already.

• The mean of a binary variable coded 0 and 1 is the fraction, proportion, or prob-
ability of whichever state is coded as 1. Think of 7 females coded 1, 1, 1, 1, 1, 1, 1
and 3 males coded 0, 0, 0. The total of those codes is 7 and the mean is 7/10 = 0.7,
which is just the proportion of females out of your group of people. Coded the
other way, with male coded 1 and female coded 0, then 0.3 is the proportion of
males and 0.7 is easily found by subtraction. Either way, coding with 0 and 1 is
not completely arbitrary because each coding comes with an interpretation as an
indicator variable.

• Binary response variables (dependent variables) in models such as logit and probit
regression should be coded 0 and 1 for the same reason. The aim of such modeling
is prediction of the probability of the state coded 1, survival or success or whatever
it may be.

• Dummy or indicator variables for binary states are used commonly as predictors
in regression-type models.

Let’s create a silly sandbox, three distinct names held in a string variable:

. input str4 name

name
1. frog
2. toad
3. newt
4. end

You can just ask for a numeric variable that is equivalent with encode:

. encode name, gen(num_name)

. list

name num_name

1. frog frog
2. toad toad
3. newt newt

With list, the result looks just the same, but that is illusory. You are seeing value
labels created by encode. Let’s drill down to see the correspondence.



986 Speaking Stata: Seven steps for vexatious string variables

. label list
num_name:

1 frog
2 newt
3 toad

Note the very simple rule, which should not surprise you. Unless instructed otherwise,
encode uses the distinct string values of the variable it is fed and maps them in alpha-
betical (more generally, alphanumeric) order to integers 1 up. Here the order in the
data was first "frog", then "toad", and last "newt", but Stata ignored that.

Here it is obvious from a quick inspection that sorting to alphabetical order yields
"frog", "newt", and "toad". But what order is produced if leading characters include
uppercase characters, numeric characters, or punctuation characters (including spaces)?
A not quite tautological answer is that the order is precisely the order that the sort

command would yield. If in doubt, be aware that Mata will also give you an answer
using the corresponding sort() function:

. mata: sort(tokens("frog toad newt")´, 1)
1

1 frog
2 newt
3 toad

. mata: sort(tokens(`" " frog" "frog" "frog " "´)´, 1)
1

1 frog
2 frog
3 frog

. mata: sort(tokens(`" "| frog|" "|frog|" "|frog |" "´)´, 1)
1

1 | frog|
2 |frog |
3 |frog|

A key detail there is that sort() sorts columns, so row input needs to be transposed to
column input, which is what the prime (’) does. Note the small trick of using pipe or
conditional symbols (|) to make clear how spaces are handled. Many other characters
would work as well.

A small but often irritating problem touched on in that example is the occurrence
of leading or trailing spaces, which in our experience are always accidental and never
informative. Usually, when found, they should just be removed with trim(). Not illus-
trated here, but usually also worthwhile, is standardizing internal spaces with itrim().
Help on such functions can be found under help string functions.

A glance at the help for encode shows that this default of assigning value labels
automatically is not the only game in town. You can have any other preferred mapping



N. J. Cox and C. B. Schechter 987

to integers with value labels you like (a few details aside), but you must first tell Stata
what that preferred mapping is. That means defining a set of value labels before you
encode, or at least having one already in the dataset that some previous user put there.

A simple example: If you have a bundle of string variables all with values "Yes",
"No", "Don’t know" (and other similar responses), it will certainly make sense to have
the resulting set of numeric variables share the same set of value labels. If you use the
alphabetical default, then the coding will be 1 for "Don’t know", 2 for "No", and 3 for
"Yes", which is unlikely to be the order you want to see in tables or graphs. So that is
a case for defining labels carefully in advance.

If you do not think up all the possibilities in advance, encode will extend the set
of value labels if it meets a string that you have not included in the definition of value
labels. Sometimes, that is fine, and sometimes, it means some work cleaning up. So, if
someone typed "Dont know", omitting the apostrophe, Stata will not be smart on your
behalf and realize that this really means the same as "Don’t know". But let’s not look
further down that side street. We cannot cover all the difficulties of data management
in one column. We are not gonna (and dont wanna) get into all the strange spellings
people might use.

For yet further tips on encode, see Schechter (2011).

In some circumstances, the group() function of egen is a more flexible alternative
to encode. By default, it does not create value labels. That can be really useful. Note
that at the time of writing (Stata 15.1), encode has a limit of 65,536 distinct values of
the variable, which may make it unsuitable for use with identifiers in large datasets.

In a program, you may just want to cycle over the distinct groups, and you do not
immediately care which is which. Or you do not care to keep hold of the names or other
identifiers underlying the many panels or groups you might have. Other way round,
this function does allow you to ask for value labels to be attached, but it does not offer
any alternative to the default of using sort order to define those value labels. So, unlike
with encode, you cannot insist on egen using a prespecified set of value labels.

For more in this territory of identifiers and categorical variables, see Cox (2007).

2.4 Some string identifiers can be left as they come

Sometimes, however, there is little or no gain in converting a string variable to numeric.

Sometimes, you have identifiers that identify individual observations but that you
are not going to use in any graphical or statistical analysis. That is especially likely
if you have many such identifiers and perhaps only a few observations for each (quite
possibly, just one). The identifiers might be personal identifiers, even entirely numeric,
such as nine-digit (contractions of) Social Security Numbers in the United States.



988 Speaking Stata: Seven steps for vexatious string variables

For whatever reason, suppose that you are not going to be using such variables in
calculations. Sometimes, you will save some storage by making them numeric with value
labels, but unless memory is short, they can often be left as they came.

It is tempting to say that such identifiers have no use, yet it is always prudent to leave
identifiers in a dataset. As already mentioned, sometimes you need to check individual
cases against other records. Another example is that you need identifiers to merge (see
[D] merge) with other datasets. Yet another example is that unique identifiers provide
a standard, repeatable way to get a dataset in a particular order. (When that matters,
you really want it.)

2.5 Do not try to import metadata

Sometimes, your data have been read in as string because metadata have been included
by mistake. That needs to be fixed before you can do anything very productive with
the data.

Spreadsheet data files—and many other data files—often include metadata, com-
monly but not only as header lines. Even a minimal, Spartan dataset in a worksheet
may include one line of column headers explaining what is in each column.

Here “metadata” refers to information about the data that may include definitions,
explanations, or comments. In Stata, such information may belong in the dataset as
variable names, variable labels, value labels, or notes or other characteristics. Or meta-
data indicate how missing or other exceptional values arose or are coded. Sometimes,
the information is interesting or useful and contributes to interpretation, but you do
not need to include it all in a dataset.

The dilemma is simple. Because Stata permits string variables, it will not exclude
columns or fields in a dataset that appear to be string or that include some values that
can be treated only as string. But it cannot decide on your behalf what should and
should not be part of the data. It can even make sense to have legitimate variable
names, variable labels, and value labels as values of string variables.

If you read in metadata by mistake, you can try dropping the problematic obser-
vations and then seeing what else is needed, typically an application of destring (see
section 2.6). However, often it is best to go back and import the data again. Commands
such as import excel and import delimited (see [D] import excel and [D] import
delimited) have key options to allow skipping of rows and columns in the data file.
Diehard devotees of the command language who prefer to avoid menus or user interfaces
may still want to experiment with these commands called up with dialog boxes. Typing
(say)

. db import excel

has the very helpful side effect that the dialog shows you how Stata “sees” the file.
Often, it then becomes obvious that there are lines of stuff that you do not want as
data.



N. J. Cox and C. B. Schechter 989

Commands such as import excel called up through dialog boxes echo to the Com-
mand window (and thus any open log files) the command syntax that you could have
typed. That can be especially helpful when you have several files with the same format
or layout and wish to loop over those.

The problem can be worse than so far explained. Text that prevents Stata from
reading in columns as numeric variables could occur anywhere in a data file. In a large
file, that could mean problematic material in unpredictable places that thus can be hard
to find, except that section 2.6 offers advice that can help.

We have collaborated with keen spreadsheet users who sometimes remember, but
often forget, that they sprinkled comments capriciously but with good intentions in odd
corners of their worksheets. However, no homunculus inside Stata can be smart on your
behalf to work out what should be ignored and what should be included in the dataset.

2.6 destring is your friend

If you have got to here, you have ruled out your string variable as being a date; or as
being an identifier or categorical variable to be encoded; or as being contaminated by
metadata. Then your best guess is that destring is what you need, but there is still a
question of why Stata read in your data as string, when on your story they should be
numeric.

The key lies in exploiting the options of destring to the full. It can happen that
once you have (say) removed metadata, then all of what remains in a variable may allow
interpretation as numeric, but you will not always be so fortunate.

Do familiarize yourself with the options ignore(), percent, and dpcomma.

Researchers can be tempted to try destring, force to fast forward the otherwise
tedious task of data management. But, as in the rest of life, force is the choice of
despair when all else has failed and you know that a small degree of force will get the
result you need.

The most common easy problems for destring to solve are

• non-Stata codes (which may make perfect sense otherwise) for missing or otherwise
intractable values. For example, the data source may have used "NA" to code
missings. In that latter case,

. destring whatever, generate(wanted) ignore("NA")

will remove such codes; that will typically leave empty strings, which destring

will regard as implying numeric missing values.

• punctuation in the widest sense, say, commas used as decimal points (say, 12,3
for 12.3) or % signs to indicate percents.



990 Speaking Stata: Seven steps for vexatious string variables

2.7 Find out what cannot be converted

A short glance at your dataset or long experience with Stata or particular kinds of
dataset may allow a quick guess at what is wrong, as just explained. Often, you need
something more systematic to look at all the values that cannot automatically be han-
dled by destring.

Consider the following code:

. tabulate whatever if missing(real(whatever))

Let’s spell that out. You are asking to tabulate a problematic string variable whenever
(i) you try to convert it to numeric using the function real() and (ii) it is true that
the result is missing.

Let’s take that even more slowly. real() is the brute-force function underlying (and
predating) destring. If in doubt, it returns missing. So consider these examples using
display:

. display real("42")
42

. display real("42%")

.

. display real("12O")

.

The function real() is not especially smart. It gives up at the slightest kind of difficulty,
shrugging its shoulders and emitting numeric missing. So the percent sign % is beyond
its understanding. The letter "O" in the last example is a problem too far (did you
spot it?). Sometimes, however, a researcher knows enough to be confident to guess that
characters have been mistyped; perhaps, the letter “O” should be the number 0, and
the letter “I” should be the number 1.

It is because real() is not smart enough to convert numeric content trapped inside
string containers that we need destring, which has extra bells and whistles attached
to cope with most difficulties.

Now that we have explained what real() is doing, we can focus on the missing()

function. It has just one job and one aim in life, to return 1 if you feed it something
that is missing and 0 otherwise. Thus, how does that work with our little examples?

. display missing(real("42"))
0

. display missing(real("42%"))
1

. display missing(real("12O"))
1

So our handle for looking at what real() cannot convert to numeric is the qualifier

... if missing(real(whatever))



N. J. Cox and C. B. Schechter 991

Notice that we do not need to type

... if missing(real(whatever)) == 1

because there is no need to test whether missing() returns 1 or 0: the function is doing
that any way.

We have emphasized the scope for

. tabulate whatever if missing(real(whatever))

which ideally will show the kinds of strings that destring will struggle with—unless we
fix the problem first or identify an appropriate option of destring to fix the problem
directly. Other commands can be useful with the same qualifier, such as

. list whatever if missing(real(whatever))

. browse whatever if missing(real(whatever))

. edit whatever if missing(real(whatever))

Although this is a simple device, it will sometimes produce puzzling output whenever
the problem is control characters that cannot be displayed. Your strings will then look
fine but will not be. Nor can they be removed through, say, trim(). We will just
flag this as an extra problem that deserves discussion at length, while hinting that the
char() and uchar() functions provide ways of identifying awkward characters. Again,
help string functions is the place to start.

On the whole, we do not especially recommend using edit here to change your data
even if you are keeping a log of all that you are doing. It is best to identify from close
scrutiny of problematic strings what the generic problems are and then fix them through
destring options. One benefit of that is whenever data files from the same source need
to be treated in the same way. There is a clear gain to having a single command rather
than being obliged to fire up edit to make changes one by one.

3 Recap and review

We can now recap the seven steps recommended:

1. Always keep copies of original data.

2. Does any string variable contain a date or date-time string? If so, a date-time
function is usually needed to convert it to numeric.

3. If the string variable holds identifiers or categorical values, and you need a numeric
variable to use in modeling or other statistical analysis, then you should map it to
a numeric variable using encode (see [D] encode). egen’s (see [D] egen) group()
function is another possibility.

4. Sometimes, however, there is little or no gain in converting a string variable to
numeric.



992 Speaking Stata: Seven steps for vexatious string variables

5. Sometimes, your data have been read in as string because metadata have been
included by mistake. That needs to be fixed before you can do anything very
productive with the data.

6. If you have got to here, you have ruled out your string variable as being a date; or as
being an identifier or categorical variable to be encoded; or as being contaminated
by metadata. Then your best guess is that destring is what you need, but there
is still a question of why Stata read in your data as string, when on your story
they should be numeric.

7. A short glance at your dataset or long experience with Stata or particular kinds
of dataset may allow a quick guess at what is wrong, as just explained. Often you
need something more systematic to look at all the values that cannot automatically
be handled by destring.

The highlights therefore—whenever string variables really need to be mapped to
numeric—are

• date-time functions such as daily() to produce numeric dates;

• encode or sometimes egen’s group() function for identifiers or categorical vari-
ables; and

• destring for numeric content trapped in a string container.

What is key here is that each solution attacks a different and specific problem. We
should underline that no one command or function is an all-purpose solution for values
wrapped up in inappropriate variables.

Specifically, neither encode nor destring knows anything about dates. The default
mapping used by encode is quite wrong for dates and will typically not even leave them
in the right order. Stripping dates of slashes or text elements with destring will make
them harder to use, not easier. Stata can struggle with run-together dates such as
201810 for October 2018, although code can be suggested (Cox 2018).

To spell this out, and as a check of your understanding, let’s consider a toy example
where neither destring nor encode is the right answer.

. clear

. input str10 mydate

mydate
1. "23/12/1960"
2. "12/09/2012"
3. end



N. J. Cox and C. B. Schechter 993

An intelligent child could tell you what these data mean. Alas, Stata in many ways
lacks the insight of an intelligent child. If you destring this variable by stripping out
the slash characters, you have not solved the problem. You have made it worse, as even
converting it back to string and pushing the result through daily() shows:

. display daily(string(23121960), "DMY")

.

You may be able to think of ways of splitting numbers like 23121960 into their
component parts, but none beats the solution, clear from 2.2 above, of feeding the
original string to daily().

Similarly, pushing these data through encode will map "23/12/1960" to 2 and
"12/09/2012" to 1—because that is how the strings sort robotically: the first charac-
ters, "1" and "2", resolve the sort order. The original strings will be copied to value
labels. This false solution is insidious: you know you have produced a numeric variable,
and in the Data Editor and in listings, it will look fine because you will see the original
dates as value labels. However, almost always, the results will be pure garbage.

You might entertain yourself briefly thinking up exceptions: a short run of dates
from "1/10/2018" to "9/10/2018" would be mapped to 1 to 9: hence, so far, so
good. Yet adding just "30/9/2018" or "10/10/2018" is quite sufficient to mess up the
correspondence.

The problem extends beyond dates. It should now be clear that pure numbers should
not be encoded but pushed through destring. Thus, again, strings "100", "30", and
"2" will not even be encoded in the right order. Try that if you do not see why.

The art of mapping from string to numeric is thus just one of keeping straight the
right solution for each quite different problem.

4 Acknowledgments

Problems raised by many members of the community, particularly on Statalist, have
helped extend our awareness of the many forms in which data may arrive and may
require surgery or engineering before they are suitable for analysis.

5 References
Cox, N. J. 2007. Stata tip 52: Generating composite categorical variables. Stata Journal
7: 582–583.

. 2018. Stata tip 130: 106610 and all that: Date variables that need to be fixed.
Stata Journal 18: 755–757.

Schechter, C. 2011. Stata tip 99: Taking extra care with encode. Stata Journal 11:
321–322.



994 Speaking Stata: Seven steps for vexatious string variables

About the authors

Nicholas Cox is a statistically minded geographer at Durham University. He contributes talks,
postings, FAQs, and programs to the Stata user community. He has also coauthored 16 com-
mands in official Stata. He was an author of several inserts in the Stata Technical Bulletin and
is an editor of the Stata Journal. His “Speaking Stata” articles on graphics from 2004 to 2013
have been collected as Speaking Stata Graphics (2014, College Station, TX: Stata Press).

Clyde Schechter is a professor of family and social medicine at the Albert Einstein College
of Medicine, where he works as an epidemiologist and focuses on clinical and health services
research projects involving many specialties and disciplines. He has used Stata since version 4,
is an active participant in the Statalist forum, and is an occasional contributor to the Stata
Journal.


