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Abstract. A continuation-ratio model represents a variant of an ordered regres-
sion model that is suited to modeling processes that unfold in stages, particularly
those in which a return to a previous stage is not possible (for example, educational
attainment, job promotion, or disease progression). The parameters for covariates
in continuation-ratio models may be constrained to be equal, vary by a set of
common factors (that is, proportionality constraints), or freely vary across stages.
Currently, there are three community-contributed commands that fit continuation-
ratio models. Each of these commands fits some subset of continuation-ratio mod-
els involving parameter constraints, but none of them offer complete coverage of
the range of possibilities. The new gencrm command expands the options for
continuation-ratio models to include the possibility for some of or all the covari-
ates to be constrained to be equal, to freely vary, or to vary by a set of common
factors across stages. gencrm relies on Stata’s maximum likelihood routines for
estimation and avoids reshaping the data. gencrm includes options for three link
functions (logit, probit, and cloglog) and supports Stata’s multiple-imputation
suites of commands.

Keywords: st0546, gencrm, generalized continuation-ratio models, stage models,
sequential logit models, stopping-ratio models

1 Introduction

Outcomes measured by a set of ordered categories arise frequently in social science
research. In some cases, such outcomes likely reflect an underlying continuous measure,
such as Likert responses to attitude measures, the response categories to standard self-
rated health measures, or intervals of income. In other cases, the ordered responses may
reflect truly discrete social phenomena, such as educational degrees, steps in the process
of voting, or stages of a disease. When one analyzes such outcomes, it can be important
to account for the ordinal scale of the outcome using some form of an ordered regression
model (Agresti 2010; Long 1997; McKelvey and Zavoina 1975; Winship and Mare 1984).

When selecting a specific ordered regression model, analysts have two primary
choices to make. The first is how the probabilities of interest are defined. The stan-
dard or cumulative approach, which is implemented in Stata’s ologit and oprobit

commands, models the probability of being at or below a given value m [Pr(y ≤ m)]
(McCullagh and Nelder 1989). The standard cumulative approach is particularly suited
to modeling measures such as Likert scale items that represent an underlying continuous
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distribution. The second approach models the probability of a given value m relative to
the probability of the next higher value [Pr(y = m|y = m or y = m+1)]. These models
are referred to as adjacent-category models (Agresti 2010; Fullerton 2009; Goodman
1983; Sobel 1997). The adjacent-categories approach has been applied in contexts in
which, for instance, a middle category (for example, neither agree or disagree) or an
incremental increase in a response level is of particular interest (Sobel 1997). A third
approach models the probability of being at a given value m, given that a case has
advanced to that stage of the sequential process [Pr(y = m|y ≥ m)]. These models
are referred to as continuation-ratio models (or stage models, sequential logit mod-
els, or stopping-ratio models) (Fienberg 2007; Fullerton 2009; Fullerton and Xu 2016;
McCullagh and Nelder 1989; Tutz 2012; Yee 2015). This approach is most appropriate
for modeling social processes that unfold in stages, particularly those in which it is not
possible to return to a previous stage, such as educational attainment.

The second decision involves the extent to which the parallel lines assumption (or
proportional-odds assumption in the case of logit link) holds across the independent
variables (IVs) (Long 1997). The standard approach, again as implemented in Stata’s
official commands for ordered logit and probit models, has the parallel lines assumption
hold for all IVs—that is, regression coefficients are constrained to be equal across all cut-
point equations. If this assumption does not hold in the data, then the constraints can
lead to substantially biased coefficients across cutpoint equations (Williams 2016). In
addition, researchers may have substantive or theoretical reasons to expect that regres-
sion coefficients will vary across cutpoint equations. For instance, an intervention might
shift people from one stage to the next (for example, precontemplation to contempla-
tion) but no further (for example, contemplation to action) (Hedeker and Mermelstein
1998). One can relax the parallel lines assumption for all or a subset of IVs in two ways.
Coefficients can either vary across cutpoint equations by a set of commons factors (that
is, proportionality constraints) or freely vary across cutpoint equations.

The combination of the two decision points creates a 4×3 table that defines a family
of ordered regression models (Fullerton 2009; Fullerton and Xu 2016). Table 1 provides
the official Stata commands and community-contributed commands that are currently
available for each type of ordered regression model. The standard choice for an approach
to comparisons, labeled cumulative, is well represented by Stata’s official commands
ologit and oprobit andWilliam’s (2006) gologit2 command. The only missing option
involves allowing a subset of IVs to have coefficients that vary across cutpoint equations
by a set of common factors, but this option can be obtained using Stata’s constraint
command if the researcher can specify the common factors in advance.
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Table 1. Typology of ordered regression models with existing commands
and gencrm

Approach to comparisons
Parallel lines Cumulative Stage Adjacent

for all IVs ologit, ccrlogit, adjcatlogit

gologit2 ocratio,
gencrm

for some IVs (freely vary) gologit2 gencrm –

for some IVs (common factors) – gencrm –

no IVs gologit2 seqlogit, mlogit

ucrlogit,
gencrm

note: Based on Fullerton (2009, table 1). Probit and complementary log-log links are
available for some of the models. In some cases, one can also use Stata’s constraint

commands to fit a model in which the coefficients for some IVs vary by a set of common
factors. In addition, in some cases, one can translate stage or continuation-ratio models into
a discrete-time survival analysis framework. The stereotype logit model (Stata’s slogit) is
another ordered regression model related to the adjacent approach to comparisons. We did
not include it in this table, because it does not precisely fit the parallel lines dimension as
we have outlined. With the stereotype logit, all the IVs vary by the same common factors,
but one can include multiple dimensions.

There are several official Stata commands and community-contributed commands
that fit variants of models for the stage and adjacent approaches. In particular, Wolfe’s
(1998) older ocratio command and Fagerland’s (2014) newer ccrlogit command
fit continuation-ratio models in which all IVs have coefficients subject to the parallel
lines constraint. In addition, Buis’s (2007) seqlogit command and Fagerland’s (2014)
ucrlogit command fit continuation-ratio models in which all the IVs have coefficients
that freely vary across all cutpoint equations. Fagerland’s (2014) adjcatlogit fits
adjacent-category models in which the coefficients for all the IVs are constrained to be
equal across cutpoint equations. Finally, Stata’s slogit command fits a stereotype
logit model, which is a form of an adjacent-category model, with a proportionality con-
straint. Stata’s mlogit command fits an adjacent-category model in which all the IVs
have coefficients that freely vary.

In this article, we introduce a new command, gencrm, to fit generalized continuation-
ratio models that include all forms of the parallel lines assumption (see table 1). In
contrast to existing commands, the new command provides the option of maintaining
the parallel lines assumption for all IVs or any subset of IVs. In addition, gencrm provides
the option for allowing a subset of IVs to have coefficients that vary by a set of common
factors. Section 2 provides a brief overview of the generalized continuation-ratio model.
Section 3 introduces the new command and discusses various options, some of which
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are also not currently available for any of the existing commands. Section 4 provides
an extended empirical example illustrating the use of the new command.

2 Continuation-ratio model

Following Fullerton and Xu (2016, 65), the general form of the continuation-ratio model
is given by

Pr(y = m|y ≥ m,x) = F (τm − x1β − x2γm − φmx3λ) (1 ≤ m < M)

where y is an ordered outcome with m = 1, . . . ,M categories, F (·) is the logistic, probit,
or complementary log-log cumulative distribution function, and x = [x1 x2 x3] is a
vector of IVs partitioned into three sets corresponding to whether the parallel lines
assumption is maintained, relaxed, or partially relaxed (that is, the coefficients are
allowed to vary by a set of common factors). The parameters in the model include
a vector of cutpoints τm, a vector β of coefficients that do not vary across cutpoint
equations, a vector γm of coefficients that vary across cutpoint equations, a vector λ of
coefficients that vary across cutpoint equations by a set of common factors, and a vector
φm of common factors. To identify the model, we assume that φ1 = 1 and φM = 0;
thus, there are M − 2 common factors to estimate.

The probability for any given value (m) of the outcome (y) conditional on the co-
variates is the product of the probability that y = m for the current stage and the
probabilities that y > m for all earlier stages. This is given by

Pr(y = m|x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

F {τ1 − g(x)} m = 1(
m−1∏
j=1

[1− F {τj − g(x)}]
)
F {τm − g(x)} 1 < m ≤M

M−1∏
j=1

[1− F {τj − g(x)}] m =M

(1)

where F (·) is the logistic, probit, or complementary log-log cumulative distribution
function and g(x) = x1β + x2γm + φmx3λ. In the gencrm command, (1) is the basis
for writing the likelihood function that is used with Stata’s maximum likelihood (ML)
estimators to fit generalized continuation-ratio models.1

1. Some of the other commands that fit continuation-ratio models in Stata use different forms of
the likelihood function. seqlogit uses an inverse form of the likelihood function, and ccrlogit

and ucrlogit begin with the opposite direction for defining the continuation ratios. We verified
that gencrm provides numerically consistent results with all of these programs accounting for the
differences in the likelihood functions.
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3 The gencrm estimation command

3.1 Syntax

gencrm depvar
[
indepvars

] [
if
] [

in
] [

weight
] [

, factor(varlist) free(varlist)

link(string) vce(vcetype) or eform display options maximize options
]

3.2 Description

gencrm fits a continuation-ratio regression model of an ordered outcome, depvar, on a set
of IVs, indepvars, that includes variables with coefficients constrained to be equal across
all cutpoint equations (that is, subject to the parallel lines assumption), coefficients
allowed to vary by a set of common factors across cutpoint equations, and coefficients
allowed to freely vary across cutpoint equations.

3.3 Options

factor(varlist) specifies the IVs, if any, that have coefficients that vary by a set of
common factors across cutpoint equations (that is, proportionality constraint).

free(varlist) specifies the IVs, if any, that have coefficients that freely vary across cut-
point equations. Any IVs not appearing in either factor(varlist) or free(varlist)
have coefficients that are constrained to be equal across cutpoint equations.

link(string) specifies the link function. The default is link(logit). Users may also
specify a probit or cloglog link.

The remaining options are all standard Stata options for choosing the variance–covar-
iance estimator (the gencrm command supports robust and cluster–robust standard
errors), exponential forms for coefficients, and options for displaying results and other
ML options. In addition, the command supports the usual Stata options for selecting
subsets of cases and incorporating various types of weights and factor-variable prefixes.

The gencrm command is integrated with Stata’s multiple-imputation suite of com-
mands with the mi prefix. However, gencrm is not currently integrated with Stata’s
predict and margins functions. Thus, it is also not integrated with Stata’s survey
suite of commands (though it permits the use of weights).
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3.4 Stored results

In addition to standard results returned from Stata’s ML commands, gencrm stores the
following in e():

Scalars
e(k cat) number of values of depvar

Macros
e(cmd) gencrm

e(factor) variables allowed to vary by common factor or factors (if specified)
e(free) variables allowed to freely vary (if specified)
e(link) link function (if specified)

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

4 Example

In this section, we provide an extended example of fitting a continuation-ratio model
with the gencrm command. Our example involves fitting a model for educational at-
tainment, which was one of the early uses of a continuation-ratio model (Mare 1980).
The specific example is adapted from Fullerton and Xu (2016) and uses 2016 data from
the General Social Survey (Smith, Hout, and Marsden 2016). The outcome is educa-
tional attainment (degree) measured as a series of education degrees: 1) less than high
school, 2) high school, 3) junior college degree, 4) bachelor’s degree, and 5) graduate
degree. Predictors include age, female (fem), white (wht; versus other races), mother’s
education (maeduc), and father’s education (paeduc). Readers interested in replicating
the example can download gencrm-gss-data.dta.

We begin with a model in which each of the covariates predicts successively higher
degrees and all the coefficients are constrained to be equal across degrees. The following
code illustrates fitting a baseline model with just degree, then the model with covariates,
and then conducting a likelihood-ratio test for an improvement in model fit from adding
predictors to the model.
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. use gencrm-gss-data

. quietly gencrm degree, link(logit)

. estimates store m1

. gencrm degree age fem wht paeduc maeduc, link(logit) or

initial: log likelihood = -3668.1349
alternative: log likelihood = -3645.9171
rescale: log likelihood = -3633.1208
rescale eq: log likelihood = -2539.6218
Iteration 0: log likelihood = -2539.6218
Iteration 1: log likelihood = -2442.7855
Iteration 2: log likelihood = -2441.9627
Iteration 3: log likelihood = -2441.9619
Iteration 4: log likelihood = -2441.9619

Ordered Logit Estimates Number of obs = 1,942
Wald chi2(5) = 319.94

Log likelihood = -2441.9619 Prob > chi2 = 0.0000

degree Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

age 1.015591 .0022791 6.89 0.000 1.011134 1.020068
fem 1.149795 .0818703 1.96 0.050 1.000026 1.321994
wht 1.050093 .0945003 0.54 0.587 .8802912 1.252649

paeduc 1.136152 .0144333 10.05 0.000 1.108212 1.164796
maeduc 1.086111 .0150384 5.97 0.000 1.057032 1.115989

/tau1 .6107924 .2129124 2.87 0.004 .1934918 1.028093
/tau2 3.585688 .2270397 15.79 0.000 3.140699 4.030678
/tau3 2.000827 .23791 8.41 0.000 1.534532 2.467122
/tau4 4.199473 .2498289 16.81 0.000 3.709817 4.689129

Note: Estimates are transformed only in the first equation.

. estimates store m2

. lrtest m2 m1, force

Likelihood-ratio test LR chi2(5) = 355.68
(Assumption: m1 nested in m2) Prob > chi2 = 0.0000

We see from both the likelihood-ratio test and the Wald test that the addition of
covariates significantly improves model fit. Note that the force option is required for
the lrtest command because of the way we have written the likelihood functions for
the baseline model and the model with covariates. Turning to the parameter estimates
(odds ratios in this case), we find statistically significant positive relationships for all
the covariates with the exception of the indicator for whites. For instance, women have
about 15% greater odds of achieving each higher degree level than men.

With our next model, we consider the possibility that the coefficients for age vary
across different degrees. To allow for this, we indicate that age is free to vary in
the gencrm command as follows. In addition, we also conduct a likelihood-ratio test
comparing this model with the previous model and illustrate a Wald test for the joint
significance of the coefficients across each cutpoint equation.
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. gencrm degree age fem wht paeduc maeduc, link(logit) free(age)

initial: log likelihood = -3668.1349
alternative: log likelihood = -3339.37
rescale: log likelihood = -3271.2404
rescale eq: log likelihood = -2595.8049
Iteration 0: log likelihood = -2595.8049
Iteration 1: log likelihood = -2446.8028
Iteration 2: log likelihood = -2431.5829
Iteration 3: log likelihood = -2431.5317
Iteration 4: log likelihood = -2431.5317

Ordered Logit Estimates Number of obs = 1,942
Wald chi2(8) = 337.15

Log likelihood = -2431.5317 Prob > chi2 = 0.0000

degree Coef. Std. Err. z P>|z| [95% Conf. Interval]

parallel
fem .1444237 .0713972 2.02 0.043 .0044877 .2843597
wht .0425363 .0905248 0.47 0.638 -.134889 .2199616

paeduc .1289287 .0127438 10.12 0.000 .1039513 .153906
maeduc .0822023 .0138752 5.92 0.000 .0550074 .1093973

eq1
age .0040033 .0051552 0.78 0.437 -.0061007 .0141074

eq2
age .0119869 .002952 4.06 0.000 .006201 .0177729

eq3
age .020851 .0059033 3.53 0.000 .0092809 .0324212

eq4
age .0339279 .0051812 6.55 0.000 .023773 .0440828

/tau1 .0405321 .32246 0.13 0.900 -.5914778 .6725421
/tau2 3.422866 .2437559 14.04 0.000 2.945113 3.900618
/tau3 2.269478 .3547533 6.40 0.000 1.574174 2.964782
/tau4 5.132067 .3471922 14.78 0.000 4.451583 5.812552

. estimates store m3

. lrtest m3 m2

Likelihood-ratio test LR chi2(3) = 20.86
(Assumption: m2 nested in m3) Prob > chi2 = 0.0001

. test _b[eq1:age] = _b[eq2:age] = _b[eq3:age] = _b[eq4:age]

( 1) [eq1]age - [eq2]age = 0
( 2) [eq1]age - [eq3]age = 0
( 3) [eq1]age - [eq4]age = 0

chi2( 3) = 20.59
Prob > chi2 = 0.0001

The output for this version of the continuation-ratio model includes separate panels
for the coefficients that are constrained to be equal across cutpoint equations (labeled
parallel) and the coefficients that vary across cutpoint equations (labeled by equation
number). In this case, there are four cutpoint equations, and we have coefficients for
age for each of the cutpoint equations labeled as eq1 through eq4.
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We find that the likelihood-ratio test and Wald test are significant, and both suggest
that the coefficient for age does vary across degrees. In addition, we note that the coeffi-
cients for age across the different degree equations are statistically significant except for
the first cutpoint equation. Thus, in the absence of substantive or theoretical reasons
for constraining the coefficients to be equal, we would consider relaxing the parallel lines
assumption for age (see Fullerton and Xu [2016] for further discussion).

Finally, past studies of the effects of socioeconomic background on educational tran-
sitions have argued that the effects exhibit a proportional decline across transitions
(Hauser and Andrew 2006). We allow for this possibility for both father’s and mother’s
education by including them in the factor() option of the gencrm command as follows:

. gencrm degree age fem wht paeduc maeduc, link(logit) factor(paeduc maeduc)

initial: log likelihood = -3668.1349
alternative: log likelihood = -3308.1636
rescale: log likelihood = -3242.1982
rescale eq: log likelihood = -2526.2919
Iteration 0: log likelihood = -2526.2919 (not concave)
Iteration 1: log likelihood = -2490.3498 (not concave)
Iteration 2: log likelihood = -2471.9621 (not concave)
Iteration 3: log likelihood = -2457.4778 (not concave)
Iteration 4: log likelihood = -2452.1061
Iteration 5: log likelihood = -2449.2655 (not concave)
Iteration 6: log likelihood = -2427.5344 (not concave)
Iteration 7: log likelihood = -2425.7204
Iteration 8: log likelihood = -2421.2151
Iteration 9: log likelihood = -2412.9341
Iteration 10: log likelihood = -2410.5602
Iteration 11: log likelihood = -2409.3258
Iteration 12: log likelihood = -2409.2145
Iteration 13: log likelihood = -2409.2125
Iteration 14: log likelihood = -2409.2125

Ordered Logit Estimates Number of obs = 1,942
Wald chi2(5) = 213.27

Log likelihood = -2409.2125 Prob > chi2 = 0.0000

degree Coef. Std. Err. z P>|z| [95% Conf. Interval]

parallel
age .0149736 .0022572 6.63 0.000 .0105495 .0193977
fem .1435732 .0715348 2.01 0.045 .0033676 .2837789
wht .020399 .0904489 0.23 0.822 -.1568776 .1976756

factor
paeduc .1959092 .0205751 9.52 0.000 .1555827 .2362357
maeduc .1061246 .019652 5.40 0.000 .0676073 .1446418

/tau1 1.408306 .2648227 5.32 0.000 .8892628 1.927349
/tau2 3.864981 .2926254 13.21 0.000 3.291446 4.438516
/tau3 1.272505 .388327 3.28 0.001 .5113985 2.033612
/tau4 1.849416 .3888958 4.76 0.000 1.087194 2.611637
/phi2 .7822944 .0826679 9.46 0.000 .6202683 .9443205
/phi3 .5131833 .0981178 5.23 0.000 .320876 .7054905
/phi4 .1413287 .0837833 1.69 0.092 -.0228835 .3055409
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The output for this version of a continuation-ratio model is presented in three panels.
The first panel, labeled parallel, includes the variables with coefficients constrained
to be equal across cutpoint equations. The second panel, labeled factor, includes the
variables with coefficients that are allowed to vary by a set of common factors across
cutpoint equations. The third panel has been expanded to include both the estimates
for the thresholds (labeled as taus) and the estimates for the common factors (labeled
as phis).

. test /phi2 == 1

( 1) [/]phi2 = 1

chi2( 1) = 6.94
Prob > chi2 = 0.0085

. test /phi3 == 1

( 1) [/]phi3 = 1

chi2( 1) = 24.62
Prob > chi2 = 0.0000

. test /phi4 == 1

( 1) [/]phi4 = 1

chi2( 1) = 105.04
Prob > chi2 = 0.0000

. test /phi2 = /phi3 = /phi4 == 1

( 1) [/]phi2 - [/]phi3 = 0
( 2) [/]phi2 - [/]phi4 = 0
( 3) [/]phi2 = 1

chi2( 3) = 124.57
Prob > chi2 = 0.0000

A likelihood-ratio test is not appropriate for testing this model against a model in
which all the coefficients are constrained to be equal across cutpoint equations because
under the null hypothesis that the coefficients equal zero, the common factors (the φ’s)
are not identified (Fullerton and Xu 2018, 185). However, one can use Wald tests to
determine whether any given common factor significantly differs from 1 or a joint test
for whether any of the common factors differ from 1. Note that the z statistics and
significance tests reported in the table of estimates are for the null hypothesis that the
factors differ from 0, which is not a particularly useful null hypothesis in this context.
For this example, we find that all the common factors significantly differ from 1. In
addition, they exhibit the theoretically expected pattern of a declining effect of father’s
and mother’s education across higher levels of education degrees.

Note that gencrm does not force the estimates for common factors to range between
0 and 1 (as is true of Stata’s slogit command). Researchers should be aware that such
estimates being returned is evidence of model misspecification, and we would recommend
removing the proportionality constraint and instead recommend either constraining the
coefficients to be equal or allowing them to vary freely across cutpoint equations.
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5 Conclusion

Our new command, gencrm, fits generalized continuation-ratio models and expands the
capabilities available for researchers using Stata to study processes that unfold in a series
of discrete stages. In particular, gencrm allows for a specification involving three differ-
ent subsets of IVs: those whose coefficients are constrained to be equal across cutpoint
equations (that is, subject to the parallel lines assumption), those whose coefficients are
allowed to vary by a set of common factors across cutpoint equations, and those whose
coefficients are allowed to freely vary across cutpoint equations.

In our view, the choice to fit a model that explicitly accounts for a stage-based process
is best justified on a substantive or theoretical basis. At a minimum, the measure should
index an underlying process that proceeds through a series of steps in which it is not
possible to return to an earlier step. Beyond that, in some cases continuation-ratio
models can provide a nice substantive match with certain types of research questions or
theoretical consideration. For instance, sociological and economic theories of educational
progression often emphasize decision points at each degree or credential level.

In addition to the choice of fitting a continuation-ratio model, it is best to use
substantive knowledge or theory to make decisions about which coefficients, if any, to
allow to freely vary across cutpoint equations and which coefficients, if any, to constrain
to have proportional effects across cutpoint equations. In some cases, research questions
dictate specific coefficients to vary across cutpoint equations. For instance, some studies
of educational attainment have posited that a woman’s advantage emerges more clearly
at higher levels of education. This possibility can be explored directly by allowing the
coefficient for women to vary across education thresholds. In other cases, theory might
suggest a proportionality constraint is appropriate as in our example in which the effects
of mother’s and father’s education are thought to diminish across education thresholds.
In absence of such substantive or theoretical concerns, one can also treat the free()

option as simply a means of testing the parallel lines assumption for a subset of or for
all the predictors in a continuation-ratio model.
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