%‘““‘“\N Ag Econ sxes
/‘ RESEARCH IN AGRICUITURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

‘l) Check for updates

The Stata Journal (2018)
18, Number 3, pp. 491-502

Customizing Stata graphs made easy (part 1)

Ben Jann
University of Bern
Bern, Switzerland

ben.jann@soz.unibe.ch

Abstract. The overall look of Stata’s graphs is determined by so-called scheme
files. Scheme files are system components; that is, they are part of the local
Stata installation. In this article, I argue that style settings deviating from default
schemes should be part of the script producing the graphs, rather than being kept
in separate scheme files, and I present a simple tool called grstyle that supports
such practice.

Keywords: gr0073, grstyle, graph, graphics, scheme files

1 Introduction

Graphs are ubiquitous in scientific research. They serve many purposes such as data
analysis or presentation of results. Depending on properties of the data, the type of
analysis, the nature of results, the context in which the graphs are used, or the audience
to which the graphs are presented, graphs may look different. No universal best style
for graphs serves all purposes, and in many cases, the style of graphs must be tailored
to the specific application. To reduce the amount of typing required to generate graphs
conforming to a particular overall look, Stata features so-called scheme files. Scheme files
contain statements that define the default shape, color, and size of the various elements
that compose a graph. There are several official scheme files, such as s2color (the
factory default), sj, or slmono, that are part of any Stata installation (see [G-4] schemes
intro), but users can also create additional scheme files for their own needs and add
them to the system. Furthermore, some users provide custom scheme files for public use
that can, for example, be obtained from the Stata Journal net site or the SSC archive (see
[R] ssc). Examples are Juul (2003), Newson (2005), Atz (2011), Briatte (2013), Morris
(2013), Morris (2015), Bischof (2017a), and Bischof (2017b). Furthermore, Buchanan
(2015) provides a powerful framework for generating new schemes.

In essence, scheme files are system components that can be added to the local in-
stallation to extend Stata’s functionality. Adding custom schemes to the system may
make sense if one regularly produces specific types of graphs that differ substantially
from the default looks provided by official Stata. In many cases, however, just a few
small modifications of a default scheme would do. In such cases, I believe that the style
settings determining the look of the graphs should be part of the script producing the
graphs. Having to maintain a separate scheme file is unnecessarily complicated and,
worse, may prevent researchers from customizing their graphs at all.

© 2018 StataCorp LLC gr0073

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1536867X1801800301&domain=pdf&date_stamp=2018-09-01

492 Customizing Stata graphs made easy (part 1)

In this article, I present a new command called grstyle that allows users to cus-
tomize the overall look of graphs from within a do-file without having to fiddle with
external scheme files. The advantage of using grstyle over manually editing a scheme
file is that everything needed to reproduce the graphs can be included in a single do-file.
No scheme files must be copied, for example, if the graphs are to be reproduced on a
different computer.

grstyle does nothing that could not be done by manually editing a scheme file. In
fact, grstyle simply creates a scheme file on the fly and loads it as the default scheme.
The difference is that handling the scheme file is fully automated, so the user does not
have to worry about it. Thus, grstyle makes customizing Stata graphs easy.

2 Syntax

Syntax and usage of grstyle are as follows:

set scheme schemename
grstyle init [newscheme, path(path) ;eplace}

grstyle scheme entry

graph command

grstyle clear [, erase]

First, select a scheme to be used as the basis for the custom style settings; see
[G-2] set scheme. The default scheme according to factory settings is s2color. Hence,
s2color will be used as the basis if you omit the set scheme command.

After that, initialize the custom settings by typing grstyle init. Optionally, if
newscheme is specified, a new scheme containing the custom settings will be created
and stored in the file scheme-newscheme.scheme in the current working directory.
Option path () specifies an alternative directory for storing the scheme file,! and option
replace allows overwriting the file if it already exists. If newscheme is omitted, grstyle
manages the settings in the background; path() and replace are not allowed in this
case.

1. An absolute or relative path may be provided in path(). Note that the graphs using the scheme
will display correctly only if the scheme file is stored in a location where it is found by Stata; see
[U] 17.5 Where does Stata look for ado-files? and [P] sysdir.

B. Jann 493

Then, record the custom style settings using one or more grstyle scheme entry
commands. The syntax of scheme entry is described in help scheme entries; see
below for examples.

After recording the desired settings, run the commands creating your graphs.

At the end, if you want to drop the custom settings, type grstyle clear. grstyle
clear is needed only if you want to restore the original settings within the same Stata
session; changes made by grstyle are temporary, and restarting Stata will remove the
custom settings. Furthermore, grstyle init automatically runs grstyle clear before
initializing new settings.” Option erase causes the scheme file created by grstyle to
be erased from disk. Use this option if you specified newscheme when calling grstyle
init and do not want to keep the scheme file. The default is not to erase the scheme
file.

Two more commands are available. grstyle type views the current settings; it
types the contents of the custom scheme file to Stata’s Results window. Further-
more, grstyle set provides precoded collections of scheme entries and automizes han-
dling certain attributes such as colors or sizes. grstyle set is discussed in Jann
(Forthcoming).

3 Examples
Basic usage

Say that you want the size of your graphs to be 2 x 2 inches instead of Stata’s default
size. Instead of adding options ysize(2) and xsize(2) to each graph command, you
could use grstyle as follows:

2. However, note that clear all will not clear grstyle’s graph settings. You need to type grstyle
clear or restart Stata to remove the settings.

494 Customizing Stata graphs made easy (part 1)

. set scheme sj

. grstyle init

. grstyle graphsize x 2
. grstyle graphsize y 2

. sysuse auto
(1978 Automobile Data)

. scatter price weight

15,000
|

. .
.
°
. .
o
S | (X}
ol .
S .
= .
@
kel . °
o
° o O
o % o o
Hotd o W
) -
= e .

2,000 3,000 4,000 5,000
Weight (Ibs.)

. scatter price mpg

15,000
|

L)
o
8 L]
> .
= .
= .
@Q
S o
® e
0e._® o °
o o8 0 . °
= .Igo.
) i'.o..ol °®
 I-RY e .
. .

20 30
Mileage (mpg)

. grstyle clear

Some useful scheme entries

As illustrated, using grstyle is straightforward and simple.
course, is to know how the scheme entries must look. Type

. help scheme entries

The real difficulty, of

to view the corresponding documentation. Scheme entries have their own idiosyncratic
syntax, but the documentation is well structured, and it usually does not take long to

B. Jann

495

find the relevant information. Here is an example that illustrates several modifications

I find useful:®

. set scheme sj

. grstyle init

Omit background shading.

. grstyle color background white

Use horizontal text for tick labels on the Y (vertical) axis (the sj default is to use
vertical text, which makes the labels hard to read).

. grstyle anglestyle vertical_tick horizontal

Draw vertical grid lines; that is, draw grid lines on the X (horizontal) axis (the
sj default is to draw horizontal grid lines only).

. grstyle yesno draw_major_hgrid yes

Always include minimum and maximum grid lines (by default, minimum and
maximum grid lines are omitted if there are no data in the proximity of these grid
lines; I find this behavior odd, especially if one is producing a series of graphs that
use the same scale for the axes for sake of comparison).

. grstyle yesno grid_draw_min yes

. grstyle yesno grid_draw_max yes

Change color, width, and pattern of grid lines (by default, the grid lines have the
same color as the background and are a bit thicker than the axis lines; this no
longer makes sense if the background shading is removed).

. grstyle color major_grid gs8
. grstyle linewidth major_grid thin
. grstyle linepattern major_grid dot

Place the legend on the lower right of the plot region, and remove the frame.

. grstyle clockdir legend_position 4
. grstyle numstyle legend_cols 1
. grstyle linestyle legend none

Use thicker lines in line plots.

. grstyle linewidth plineplot medthick

3. Also see the schemes provided by Bischof (2017b) that contain similar modifications, among other
things.

496

Customizing Stata graphs made easy (part 1)

e Make markers transparent (only for the first two plot styles for case of exposition;*

requires Stata 15).

. grstyle color pilmarkline gs6%0

. grstyle color plmarkfill gs6%50
. grstyle color p2markline gs10%0
. grstyle color p2markfill gs10%50

Make confidence intervals transparent (requires Stata 15).

. grstyle color ci_area gs12/50

. grstyle color ci_arealine gs12%0

Now, create some graphs using the modified style.

. sysuse auto
(1978 Automobile Data)

twoway (scatter price weight if foreign==0)

> (scatter price weight if foreign==1)
> (1fitci price weight if foreign==0, clstyle(plline))
> (1fitci price weight if foreign==1, clstyle(p2line))
> , legend(order(1 "domestic" 2 "foreign"))

15,000 4

10,000 4

5,000

domestic
foreign

2,000 3,000 4,000 5,000
Weight (Ibs.)

4. Unfortunately, the colors have to be spelled out explicitly for each plot style, and it does not seem to

be possible to just make all markers transparent while keeping the default colors; type viewsource
scheme-scheme.scheme, and look for entries such as color pl, color p2, etc. to find out about
the default colors of a scheme.

B. Jann 497

twoway (scatter price mpg if foreign==0)

> (scatter price mpg if foreign==1)
> (1fitci price mpg if foreign==0, clstyle(plline))
> (1fitci price mpg if foreign==1, clstyle(p2line))
> , legend(order(1 "domestic" 2 "foreign"))
15,000 ~
10,000 A *
5,000 -
domestic
0 .
foreign
10 20 30 40
Mileage (mpg)

Absolute text sizes and line widths

In some situations, for example, because of requirements by a publisher, one needs to
set text sizes and line widths to specific absolute values. This is difficult to accomplish
in Stata because the sizes of objects on a graph are determined relative to the size of
the graph. That is, if you change the graph size, text sizes and line widths may change.
Given a specific graph size, it is difficult to know how large exactly the text sizes and
line widths will happen to be.

If you want to control the absolute size of text and line widths, you must create a
scheme that sets the relative sizes such that for a given graph dimension, the specified
relative sizes lead to the desired absolute sizes. Furthermore, you must create one such
scheme for each graph size you intend to use. The formula to compute the relative
sizes is not difficult, but it is a lot of work to do the computations and compile the
corresponding schemes manually.

More convenient is to change the settings on the fly using grstyle. The width
and height of Stata graphs are expressed in inches. One inch is equal to 72 points (or
2.54 centimeters). Relative sizes are expressed in percent of the minimum of width and
height of the graph. That is, if a graph is 5.5 inches wide and 4 inches high, then the
reference size is 4 inches (or 4 x 72 = 288 points), and a relative size of, say, 5 is equal
to 5 x (4 x 72)/100 = 14.4 points. Conversely, if you want the size of an object on this
graph to be 10 points, you need to set its relative size to 10/(4 x 72) x 100 = 3.472222.
Here is an example in which I use grstyle to set various text sizes and line widths

498 Customizing Stata graphs made easy (part 1)

according to this formula. The goal is to construct a graph that is 9cm wide and 7cm
high, uses 0.5 pt lines for axes, major grid lines, etc., and uses text sizes between 6 and
10 points depending on object:®

. local xsize = 9 / 2.54 // 9cm wide

. local ysize =7 / 2.54 // Tcm high

. local rsize = min("xsize”, “ysize”) // reference size

. foreach pt in .5 3 6 8 10 { // compute relative sizes
2. local nm: subinstr local pt "." "_" // so that ".#" is "_#"
3. local "nm'pt = “pt~ /(“rsize *72)*100
4. }

. grstyle init

. grstyle graphsize x “xsize”

. grstyle graphsize y “ysize”

. grstyle gsize heading “10pt” // title

. grstyle gsize subheading “8pt” // subtitle

. grstyle gsize axis_title “8pt”

. grstyle gsize tick_label “6pt”

. grstyle gsize key_label “8pt”~ // key labels in legend

. grstyle gsize plabel “6pt” // marker labels

. grstyle gsize text_option “6pt” // added text

. grstyle symbolsize p “3pt” // marker symbols

. grstyle linewidth axisline T_5pt”

. grstyle linewidth tick T _bpt~

. grstyle linewidth major_grid ~_5pt~

. grstyle linewidth legend “_5pt”~ // legend outline

. grstyle linewidth xyline “_5pt”~ // added lines

. sysuse auto
(1978 Automobile Data)

. generate str mlab = "Marker label (6pt)" if price>15000
(73 missing values generated)

. twoway (scatter price weight, mlabel(mlab)), title("Title (10pt)")

> subtitle("Subtitle (8pt)") xtitle("X-axis title (8pt)")
> ytitle("Y-axis title (8pt)") legend(on order(1l "Legend key (8pt)"))
> text (12500 2400 "Added text (6pt)") xline(4000)

5. The list of scheme entries in this example covers some of the most common elements but is not
exhaustive. Depending on the application, you may need to set the size of additional elements.
Furthermore, to fully control the layout of the graph, you would also have to set elements such as
gaps, margins, and tick length.

B. Jann 499
Title (10pt)
Subtitle (8pt)
S ©® Marker label (6pt)
2 °
= Y []
Added text (6pt) .
58 .o °f
2" . .
ﬁ ®e .. o °
%38 ° ° °
© S 1 4 o o
X5 %S m, e P .
o4
2,000 3,000 4,000 5,000

X-axis title (8pt)

® Legend key (8pt) |

To generate a graph with different dimensions that uses the same sizes for text and
line widths, simply change the xsize and ysize macros on the first two lines. An
alternative is to wrap the grstyle commands into a little program as follows:

program graphsetup
args x y

local xsize = “x~ / 2.54

local ysize = "y~ / 2.54

local rsize = min(xsize~”, “ysize~)
foreach pt in .5 3 6 8 10 {

local nm: subinstr local pt "." "_"
local "mnm'pt = “pt~ /(“rsize *72)*100

end

}

grstyle init

grstyle graphsize x “xsize”
grstyle graphsize y “ysize”
grstyle gsize heading “10pt”
grstyle gsize subheading “8pt”
grstyle gsize axis_title “8pt-
grstyle gsize tick_label “6pt”
grstyle gsize key_label “8pt-
grstyle gsize plabel “6pt”
grstyle gsize text_option “6pt”
grstyle symbolsize p “3pt”
grstyle linewidth axisline T _5pt”
grstyle linewidth tick T _bpt”
grstyle linewidth major_grid ~_5pt~
grstyle linewidth legend T _5pt”
grstyle linewidth xyline T _5pt”

500 Customizing Stata graphs made easy (part 1)

You can then use the program to quickly switch between different graph dimensions
while keeping text sizes and line widths fixed:

. graphsetup 9 7 // 9cm wide and 7cm high
. graph commands

. graphsetup 9 12 // 9cm wide and 12cm high
. graph commands

. etc.

You do not need to run grstyle clear between the graphsetup commands, because
grstyle init, which is called within graphsetup, will clear the previous settings.

4 Limitations and further remarks

Unless a custom scheme name is specified, grstyle works by creating a new scheme
called _GRSTYLE_ and storing it in file scheme-_GRSTYLE_. scheme in the PERSONAL ado-
file directory (see [U] 17.5.2 Where is my personal ado-directory? and [P] sysdir).
The relevance of this information is that there may be two complications:

e Stata must have writing rights in the PERSONAL ado-file directory. Furthermore,
if the PERSONAL ado-file directory does not exist, Stata must have the necessary
rights to create the directory.

o If multiple Stata sessions are executed in parallel and the sessions use the same
PERSONAL ado-file directory, then the grstyle commands in the different sessions
will all write to the same file. To keep the style settings distinct in this case, you
may want to provide a unique custom scheme name with grstyle init in each
session.

Furthermore, note that grstyle does not check whether a submitted style setting is
a valid scheme entry. It just copies the provided specification to the temporary scheme
file as is. Hence, if you misspell the scheme entry, no warning message will be displayed
by grstyle. Whether a subsequent graph command will display an error or just ignore
the misspelled scheme entry depends on context. Scheme entries have the following
syntax:

attribute element style

An example is “color background white”, where “color” is the attribute to be set,
“background” is the graph element to be affected, and “white” is the desired style. If
you misspell attribute or element (that is, if you specify an attribute or element that is
unknown to Stata), the most likely thing to happen is that the graph command ignores
the scheme entry, it will have no effect, and no warning message will be displayed.
If you misspell style, different things may happen. If the graph does not contain the
affected element, the scheme entry will again be ignored, and no warning message will
be displayed. Otherwise, the graph command will either abort with error (for example,

B. Jann 501

if style is a numeric value and you specify a value outside the allowed range) or display
a warning message stating that the style has not been found and that default attributes
will be used for the graph. In any case, if a graph does not seem to adopt your style
settings, it is always a good idea to double-check the spelling of your scheme entries.

Another reason why your style settings may not have an effect is that some of
the higher-level graph commands (that is, commands other than graph that internally
call graph) apply explicit style settings to certain elements and, hence, override the
defaults provided by grstyle. An example is marginsplot, which internally applies
option pstyle(pl) (or pstyle(p2), pstyle(p3), etc., depending on context) to the
confidence intervals so that point estimates and confidence intervals are displayed using
the same style. This makes it difficult to modify point estimates and confidence intervals
individually. For example, if you apply option recastci(rarea) tomarginsplot so that
the confidence intervals are displayed as areas instead of capped spikes, using grstyle
to set the attributes of elements plarea and plarealine will have no effect unless you
also add option cilopts(astyle(plarea)) to marginsplot. If your graph contains
multiple series of estimates and you want all confidence areas to look the same, it is
probably easiest to set the attributes of the ci elements (see help scheme ci plots)
and then add option ciopts(astyle(ci)) to marginsplot.

Finally, note that grstyle maintains global macros GRSTYLE FN (path and name
of the scheme file used to store the custom settings); GRSTYLE_SN (the corresponding
scheme name); GRSTYLE_SNO (name of the scheme that was active when initializing
grstyle); and, depending on context, GRSTYLE_RSIZE (the reference size for size cal-
culation by grstyle set; see Jann [Forthcoming]). Do not modify these globals. To
remove the globals and restore the initial settings, type grstyle clear.

5 References

Atz, U. 2011. scheme_tufte: Stata module to provide a Tufte-inspired graphics scheme.
Statistical Software Components S457285, Department of Economics, Boston College.
https: //ideas.repec.org / ¢ / boc / bocode / $457285.html.

Bischof, D. 2017a. gb38schemes: Stata module to provide graphics schemes for
http://fivethirtyeight.com. Statistical Software Components S458404, Department of
Economics, Boston College. https: //ideas.repec.org /¢ /boc /bocode /s458404.html.

. 2017b. New graphic schemes for Stata: plotplain and plottig. Stata Journal 17:
748-759.

Briatte, F. 2013. scheme-burd: Stata module to provide a ColorBrewer-inspired graphics
scheme with qualitative and blue-to-red diverging colors. Statistical Software Compo-
nents S457623, Department of Economics, Boston College. https: //ideas.repec.org /
¢/boc /bocode /s457623.html.

Buchanan, W. 2015. brewscheme: Stata module for generating customized graph scheme
files. Statistical Software Components S458050, Department of Economics, Boston
College. https: //ideas.repec.org /¢ /boc /bocode /s458050.html.

https://ideas.repec.org/c/boc/bocode/s457285.html
https://ideas.repec.org/c/boc/bocode/s458404.html
https://ideas.repec.org/c/boc/bocode/s457623.html
https://ideas.repec.org/c/boc/bocode/s457623.html
https://ideas.repec.org/c/boc/bocode/s458050.html

502 Customizing Stata graphs made easy (part 1)

Jann, B. Forthcoming. Customizing Stata graphs made easy (part 2). Stata Journal.
Juul, S. 2003. Lean mainstream schemes for Stata 8 graphics. Stata Journal 3: 295-301.

Morris, T. 2013. scheme-mrc: Stata module to provide graphics scheme for UK Medical
Research Council. Statistical Software Components S457703, Department of Eco-
nomics, Boston College. https: //ideas.repec.org /¢ /boc /bocode /$457703. html.

. 2015. scheme-tfl: Stata module to provide graph scheme, based on Transport
for London’s corporate colour pallette. Statistical Software Components S458103,
Department of Economics, Boston College. https: //ideas.repec.org /¢ /boc /bocode /
$458103.html.

Newson, R. 2005. scheme_rbnlmono: Stata module to provide minimal monochrome
graphics schemes. Statistical Software Components S456505, Department of Eco-
nomics, Boston College. https: //ideas.repec.org /¢ /boc /bocode /s456505.html.

About the author

Ben Jann is a professor of sociology at the University of Bern, Switzerland. His research
interests include social science methodology, statistics, social stratification, and labor market
sociology. He is the principle investigator of TREE, a large-scale multicohort panel study in
Switzerland on transitions from education to employment (http://www.tree.unibe.ch).

https://ideas.repec.org/c/boc/bocode/s457703.html
https://ideas.repec.org/c/boc/bocode/s458103.html
https://ideas.repec.org/c/boc/bocode/s458103.html
https://ideas.repec.org/c/boc/bocode/s456505.html

