
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their 
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/


The Stata Journal (2018)
18, Number 3, pp. 741–754

Speaking Stata: From rounding to binning

Nicholas J. Cox
Department of Geography

Durham University
Durham, UK

n.j.cox@durham.ac.uk

Abstract. This is a basic review of how to bin variables in Stata, meaning
how to divide their range or support into disjoint intervals. I survey rounding
functions with emphasis on floor and ceiling functions as tools to get clearly defined
intervals of equal width. Using a specific display format is usually a better idea
than rounding to multiples of a fraction. Quantile binning is popular in several
fields. I give tips and tricks on how to produce such bins and also on how to show
their limitations. Experimentation with the display command or Mata is a good
way to learn about functions and to test binning rules.

Keywords: dm0095, binning, rounding, format, display, quantiles

1 Introduction

The previous column (Cox 2018) said much about binning on logarithmic scales. Here I
back up to cover some basic ideas about binning and its fraternal twin, rounding. Most
of what follows is elementary, meaning fundamental as well as introductory. Questions
on Statalist and elsewhere often show minor and even major confusion about what is
needed when researchers want to round or bin. How to round or bin in Stata is far from
the only question; exactly what is wanted and even whether it is a good idea may be
moot.

For the most part, I will steer clear in what follows of the vital statistical question
of whether coarsening a numerical scale by binning will help in analysis. The humble
histogram illustrates many of the issues. Unless variables are discrete, binning is a
means to an end, simplifying a distribution by aggregating. At best, the information
lost from the graph is noise. At worst, it is interesting, informative, or important
fine structure. You are likely to know many alternatives to histograms that may do
better. Beyond visualization of distributions, the gains and losses from binning are
harder questions whenever researchers focused on predictive modeling are tempted to
bin predictor variables or even outcome variables. For incisive discussion, see Harrell
(2015, 18–21) or Bennette and Vickers (2012).

In most projects, exactly how you bin or round is likely to be a trivial detail, or at
least you hope that it is. The principle here is that you should still aim to know exactly
what you did so that you can understand and reproduce it and so that other researchers
can do likewise. Further, exactly how you bin or round becomes a crucial detail whenever
binning or rounding is problematic. Thus, there is clear merit in methods that are easy
to explain and document.

c© 2018 StataCorp LLC dm0095

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1536867X1801800311&domain=pdf&date_stamp=2018-09-01


742 Speaking Stata: From rounding to binning

This account cannot claim comprehensiveness on binning schemes. There are many
ways to subdivide a range, most of them defensible. Much of what is well known,
say, in cartography and geographical information science could be of interest or use
to readers (Evans 1977; Kraak and Ormeling 2013; Field 2018). Bins that overlap by
design are sometimes useful for graphical exploration (Cleveland 1993) but are not
further discussed here.

2 Rounding functions

Let’s dive straight in and look at the rounding functions available in Stata, which are
the first place to look for solutions. The functions in Stata include int() (trunc() is
a synonym), round(), floor(), and ceil(). A little oddly at first sight, Mata has
trunc() but not int(), but more on that point in a moment. Otherwise, the functions
are the same in Mata as in Stata.

Puzzlingly or not, I like two of these functions greatly and am wary of the others.
It may seem strange to have small passions or prejudices about rounding functions, but
I will explain.

int() or trunc() rounds toward zero, or more precisely to the nearest integer in the
direction of zero. So it rounds positive numbers down if it changes them and negative
numbers up if it changes them. Otherwise put, decimal parts are lopped off, and each
number is truncated to its integer part, hence the name trunc().

Two overarching tips for this column are about how to experiment when you are
reaching toward code. Use display on simple examples for which you know what you
want. Use Mata on slightly more complicated examples.

. display int(3.4)
3

. display int(-3.4)
-3

. mata : trunc((3.4, -3.4))
1 2

1 3 -3

So the function does what the documentation says. Further, Mata seems comfortable
about being given several numbers at once. But there is a small twist that may be new to
you. trunc() in Mata expects just one argument at a time, or in other words, one thing
to be fed to it. It is happy with one vector or one matrix. The inner parentheses and
the comma within bind the numbers 3.4 and −3.4 into a vector. Hence, the argument
is (3.4, -3.4). The outer parentheses are part of the function syntax, trunc(). You
need both pairs of parentheses for this example.

Having introduced that pair of functions, I now explain why I will not use them
further.



N. J. Cox 743

First, I often want to round up or to round down. I do not often find myself wanting
to do both at the same time. Admittedly, there are occasions when you do want to use
only the integer part. Producing stem-and-leaf plots is one such occasion (Cox 2007).

Second, functions named int() or INT() are common across computing in various
programming languages and applications programs. So the good news is that they can
be recognized fairly easily as functions rounding to integers. The bad news is that they
do not all work identically! So, for example, Microsoft Excel has INT(), but it always
rounds down. INT(-3.4) yields −4.

Hence, I have some distaste for int() because it is far from self-explanatory and
dependent on someone knowing exactly what it does (and even in which program it was
done). That said, the ambiguity of int() does bring up why trunc() is a much better
name.

Henceforth in this column, I will consider only round(), floor(), and ceil().
Before we look at them, let’s sketch a common and concrete problem as context.

3 Rounding for binning: Integers only

Stata users often want to average or otherwise summarize variables for disjoint time
intervals, such as 10- or 5- or 3-year periods. (“Disjoint” here is useful jargon for “not
overlapping”.) Clearly, you do not want to issue repeated summarize statements or even
write a loop if there is an easier way to do it, and there is. egen will calculate group
means (and many other group summaries); you just need a grouping variable. Consider
the Grunfeld data bundled with Stata:

. webuse grunfeld

. summarize year

Variable Obs Mean Std. Dev. Min Max

year 200 1944.5 5.780751 1935 1954

We have 20 years of observations, so 5 years seems a convenient averaging period.

The problem is rounding integers to other integers. We will not look at rounding
numbers with fractional parts until the next section.

I am very fond of floor() as a solution here (Cox 2003). First, the name floor(),
once understood as meaning rounding down, is easy to remember and to explain to
others. Just imagine looking down toward the floor to imprint the name. floor() by
itself just rounds down to the nearest integer, but there is an easy twist to get what we
want for integer multiples.

Always experiment when you are uncertain about the code you need: in this territory,
silly little errors lie in wait all around. Let’s play with the years 1935 to 1944 as enough
of a check on any code. Fire up Mata with the command mata (no following colon) and
type



744 Speaking Stata: From rounding to binning

: years = (1935..1944)

: years
1 2 3 4 5 6 7 8 9 10

1 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944

: 5 * floor(years/5)
1 2 3 4 5 6 7 8 9 10

1 1935 1935 1935 1935 1935 1940 1940 1940 1940 1940

So, in the easiest case, dividing by 5 before you use floor() and then multiplying
back by 5 is enough to round in 5-year periods. The years 1935–1939 round down to
1935, 1940–1944 round down to 1940, and so on. A solution with egen is now in hand.
We have seen that the Grunfeld data have a variable year, so we type

. generate year5 = 5 * floor(year/5)

. egen mean_mvalue = mean(mvalue), by(year5)

Let’s suppose that the data were more awkward for that trick to be enough, say
that they ran from 1936 to 1945. That is also easy, but we need to switch to the twin
function ceil(), which is short for ceiling (Cox 2003). You look up to the ceiling, and
ceil() always rounds up. Once more in Mata, type

: years = (1936..1945)

: 5 * ceil(years/5)
1 2 3 4 5 6 7 8 9 10

1 1940 1940 1940 1940 1940 1945 1945 1945 1945 1945

Here is a more awkward problem. Suppose that the years included started in 1937
and ran to 1946. As before, looking at the first 10 years makes the difficulty clear.

: years = (1937..1946)

: 1 :+ 5 * ceil((years :- 1)/5)
1 2 3 4 5 6 7 8 9 10

1 1941 1941 1941 1941 1941 1946 1946 1946 1946 1946

: 2 :+ 5 * floor((years :- 2)/5)
1 2 3 4 5 6 7 8 9 10

1 1937 1937 1937 1937 1937 1942 1942 1942 1942 1942

You get the idea. You may need to shift the vector by subtracting a constant and
then adding it back. On the sly, more Mata details are revealed here. Often Mata wants
you to spell out that you want elementwise calculation. Colon operators :+ and :- are
addition and subtraction operators but with a colon prefix to flag that you want results
element by element.



N. J. Cox 745

At this point, the problems may seem to require more trickery than you want. But
experience underlines that fluency with these and many other functions does pay off.
For further discussion on the theme, see a previous column (Cox 2011). It is possible
to imagine a general binning function—or more likely command—with arguments or
options to indicate origin, width, rounding up or down, and possibly other choices. The
tradeoff is delicate: you would need to study its documentation and work out which
options you needed. Having a suite of functions to use directly is the better deal.

Historical note: The names “floor” and “ceiling” were introduced by Iverson (1962).
Kenneth Eugene Iverson (1920–2004) is remembered as the principal architect behind
the programming languages APL and J, neither of which ever achieved many users.
Those languages, however, have had an enormous diffuse influence, detectable in any
language in which arrays of any kind are entities in their own right that can be used
and manipulated directly. Iverson also gave a very big push to the idea—growing out of
Boolean logic and used by Stata, Mata, and many other languages—that true or false
expressions are evaluated as 1 and 0, respectively.

Floor and ceiling as function names from Iverson’s original introduction of the nota-
tion that became APL caught on quickly as evocative and easy to remember. Sometimes,
it does take a smart person to come up with simple and useful and obvious names. Note
in particular the adoption and use of those function names by Donald E. Knuth in suc-
cessive editions of his magisterial set The Art of Computer Programming (1968, 1973,
1997) and in the typesetting languages in the TEX family, used by Stata for its docu-
mentation and publications since early days. See also Graham, Knuth, and Patashnik
(1994, chap. 3) for an especially thorough account of floor and ceiling functions.

One bonus is worth a small flag. If you bin 1935–1939 to 1950–1954 as 1935(5)1950,
no one will care one bit exactly how you did it except other people who want to do that
too. But not only is that possible with a one-liner, it also has a mathematical expression
as 5
 year/5 �.

So far, so good. But what about round(), which may well be better known?

: years = (1935..1944)

: round(years, 5)
1 2 3 4 5 6 7 8 9 10

1 1935 1935 1935 1940 1940 1940 1940 1940 1945 1945

: round(years :+ 3, 5)
1 2 3 4 5 6 7 8 9 10

1 1940 1940 1940 1940 1940 1945 1945 1945 1945 1945

: round(years :- 2, 5)
1 2 3 4 5 6 7 8 9 10

1 1935 1935 1935 1935 1935 1940 1940 1940 1940 1940



746 Speaking Stata: From rounding to binning

: 2 :+ round(years :- 2, 5)
1 2 3 4 5 6 7 8 9 10

1 1937 1937 1937 1937 1937 1942 1942 1942 1942 1942

Points from earlier recur. You may need to add or subtract a constant. There is
also scope for getting a middle year, which could seem congenial or at least convenient
(for example, for graphing). That could be attractive when the number of times being
averaged is an odd number like 5 or 3 or 7. Note in passing that round() allows two
arguments. When there is a second argument, it controls how much rounding takes
place.

What happens when you round to multiples of 2? It is obvious that even numbers
will round to themselves, but will odd numbers round up or down?

: years \ round(years, 2)
1 2 3 4 5 6 7 8 9 10

1 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
2 1936 1936 1938 1938 1940 1940 1942 1942 1944 1944

There is an answer for you, but I do not like to have to remember that answer or even
re-create it every time I wonder, which is one reason I tend to avoid round(). The extra
Mata detail here is using the backslash to put one row vector below another.

4 Pitfall: Rounding as a poor way to format

Let’s bring numbers with decimal parts into the discussion. Now matters become
murkier. This section is a warning of a common confusion. People often want to round
off fractions to a moderate number of decimal places. Your teachers explained this as
good practice early in your education. round() allows fractional second arguments, so
it may seem to be a way forward.

Suppose you have a correlation that you want to round sensibly. correlate yields
Pearson correlations and by default shows four decimal places. Conversely, it leaves
the r-class stored result in memory, which lets you see even more decimal places. (That
could be important if you wanted to check correlation results across programs for correct
calculations.) We are still using the Grunfeld data, although any dataset would suffice.

. correlate mvalue invest
(obs=200)

mvalue invest

mvalue 1.0000
invest 0.8569 1.0000

. display r(rho)

.8569329



N. J. Cox 747

Let’s imagine that two decimal places would be enough. Many users approach this
kind of problem using round() with a second argument, 0.01, for two decimal places
(or 0.1 or 0.001 for one or three decimal places, and so on).

. display round(r(rho), 0.01)

.86

. display %23.18f round(r(rho), 0.01)
0.859999999999999987

What is going on here? Did that work or not? The short answer is that it seemed to
work at first, but then you might wonder. An explanation comes on two levels.

On the surface: If you use display without specifying a format, then its default
comes into play. The default format of display usually does a good job of rounding
off trivial detail. So the first command immediately above shows you a combination of
what was done to r(rho) and what display does anyway. If we insist on many decimal
places with a specific format, what we usually see is that the rounding was approximate,
not exact.

Deeper down: The problem here is that Stata works in binary arithmetic but defaults
to showing decimal results. Many simple decimal fractions fail to have exact binary
representations. Among the fractions from 0.1 to 0.9 in steps of 0.1, only 0.5 (as 1/2 or
2−1) can be held exactly in binary. Among the fractions from 0.01 to 0.99 in steps of
0.01, only 0.25, 0.50, and 0.75 can be held exactly in binary.

Resources for understanding this and related questions on how Stata holds and works
with numbers are revealed by search precision in Stata. I strongly recommend the
blog posts by William Gould.

There is a better solution than using round() with a fractional second argument:
Using a display format suitable for the purpose. If needed, the result of that formatting
with an individual correlation or a similar result can be put in a local macro for later
use.

. display %03.2f r(rho)
0.86

. local wanted: display %03.2f r(rho)

. display "`wanted´"
0.86

. display `wanted´

.86

Here we asked for, and got, a display with leading zeros and just two decimal places.
Putting that into a local macro allowed us to play it back, which is often useful. Whether
in graphics or in other reporting, you often want to round results that will be given as
part of a title, table, or other text.

But that still leaves the different results of the last two commands just above to
explain. The local macro wanted contains the text string 0.86. That makes sense to
people as a numeric result, but as said, it is just a text string to Stata. Using double



748 Speaking Stata: From rounding to binning

quotes in a display command emphasizes that you want to see the exact contents of a
quoted string, which is just text. If you leave out the double quotes, Stata first sees the
macro reference and interprets that immediately. The result is the instruction to

. display 0.86

.86

As just shown, display then uses its default format and does not show the leading zero.
As we have seen, we can insist on seeing leading zeros with a suitable display format.

This section is about a problem in which display format is the answer. For the
opposite problem in which people expect more of changing the format than it can
achieve, see Cox (2012b).

5 Rounding for binning: General case

Let’s return to binning in general. Everything to be said has already been said. We just
need to think through the principles in concrete cases. Thus, from good introductory
texts and courses, it should be clear that bins being presented as, say, 0–2, 2–4, 4–
6, and so forth is sloppy presentation. Yule (1911) and Freedman, Pisani, and Purves
(2007) can stand representative of many such explanations over a century or more. Even
earlier, Galton (1885a,b) underlined, although not in these words, that ambiguous bin
limits could be misinterpreted; see Pearson (1924, 377) for summary and comment.

In a nutshell, the bounds are ambiguous in such presentation. What happens if any
data value is an exact multiple of 2? Do values go up or down from the boundary into
the higher or lower class?

The beauty of using floor() or ceil() to bin is that this ambiguity does not exist.
With floor(), lower limits or bounds are inclusive; with ceil(), upper limits or bounds
are inclusive.

6 Quantile binning

Researchers in some fields like to bin their variables in groups that are, or should be,
equally numerous and whose limits are defined by quantiles equally spaced on a cumu-
lative probability scale. Thus, four quintiles corresponding to cumulative probabilities
0.2(0.2)0.8 delimit five bins, classes, or intervals, subject to small print about how the
limits are treated. Or 9 deciles for cumulative probabilities 0.1(0.1)0.9 delimit 10 bins,
and so forth. Such binning, on evidence from Statalist, seems especially popular for
work on data from business and finance. Performance is relative as well as absolute,
although that alone does not imply using bins rather than, say, ranks or percentile ranks
(associated cumulative probabilities).

An aside on terminology: A collection of terms for such quantiles was given in
Cox (2016), to which can be added “trentile” (Slonim 1958) for division into 30 bins.
Historically, the quantile terms such as tertiles, quartiles, quintiles, and their kin, and
also the generic term quantile itself, referred to point summaries of a variable, and not



N. J. Cox 749

to the bins they delimit. However, it has become common to extend those terms to the
bins as well as their limits. Thus, the first quintile might mean the bin below the first
quintile as well as that first quintile. Such extension can be criticized as awkward and
ambiguous (I agree with that) and defended as now widely familiar and even customary
(I agree with that too).

If all values of a variable are distinct (no value occurs twice or more) and missing
values are not a problem, then we could produce quantile bins directly with something
like this for some generic variable X:

. sort X

. generate bin5 = ceil(5 * _n/_N)

Here we follow a common convention and label quantile bins 1 and above. Wanting to
do this groupwise, say, within panels or within time periods, needs only a twist such as
(again, a generic identifier id)

. bysort id (X): generate bin5 = ceil(5 * _n/_N)

Recall, or otherwise please learn now, that in Stata, n is the observation number
running 1 and above and N is the total number of observations. Under the aegis of
by:, both are counted within each group defined by by:. Hence, the fraction n/ N

varies from just above 0 (strictly 1/ N) to 1 (the observation number n becomes equal
to the number of observations N when you reach the last observation). Multiplying by
the number of bins multiplies that range so that the upper limit is now the number of
bins. As before, the ceiling function ceil() rounds up so that 0.123 or 1.456 would be
rounded up to 1 and 2.

Using floor() would not be a good idea in this case, but not because the bins would
be labeled 0 and above. The problem is that the last observation for which n/ N is 1
would always be in a bin by itself.

Either of these commands would be a mildly entertaining one-line solution to quan-
tile bins—except that data are usually more complicated. Only exceptionally is the
number of values a multiple (meaning an integer multiple) of the number of bins, so
divisibility is usually a small problem. Thus, auto.dta, familiar to Stata users, contains
74 observations. A dataset size of 74 is divisible only by 2 and 37 and is otherwise awk-
ward for common choices such as 5 or 10 bins. For one variable, repair record rep78,
there are only 69 nonmissing values, a number divisible only by 3 and 23. This kind of
problem is common, but fortunately trivial once understood.

More crucially, a practical command should handle missing values directly and cope
with tied values. To make the problem of ties concrete, consider wanting to split 1, 2,
2, 3, 3, and 4 into 3 (tertile) bins. Here divisibility by 3 is not an issue, but ties are
evidently problematic. Any solution of splitting (1,2), (2,3), and (3,4) is no solution,
because it defies the principle that equal values belong in the same bin. Even if that
were thought dispensable, equal values are unlikely to be equal on other variables. The
two values of 2 may be equivalent to each other; the problem is that typically they
correspond to different values on other variables.



750 Speaking Stata: From rounding to binning

Stata has a built-in command, xtile, to produce quantile bins. The rules it follows
are that 1) each quantile calculated is the upper limit of its bin and 2) the maximum
is the upper limit of the last bin. Denote the kth quantile of y for K bins by yk, and
define y0 and yK as the minimum and maximum of y. (Fastidious readers queasy at my
hijacking notation commonly used otherwise may wish to invent their own alternative.)
Then bins as calculated by xtile run [y0, y1], (y1, y2], . . . , (yK−1, yK ] and the formula
for all but the first is (yk−1, yk]. Here we use a common notation for intervals: (a, b]
means for y that a < y ≤ b and [a, b] means for y that a ≤ y ≤ b.

To make this concrete, we turn to auto.dta and ask for five bins of mpg:

. sysuse auto, clear
(1978 Automobile Data)

. xtile mpg5 = mpg, nquantiles(5)

. _pctile mpg, nquantiles(5)

. return list

scalars:
r(r1) = 17
r(r2) = 19
r(r3) = 22
r(r4) = 25

. tabstat mpg, by(mpg5) statistics(n min max)

Summary for variables: mpg
by categories of: mpg5 (5 quantiles of mpg)

mpg5 N min max

1 18 12 17
2 17 18 19
3 13 20 22
4 12 23 25
5 14 26 41

Total 74 12 41

At the time of writing, xtile has various limitations. First, it does not display the
quantiles it uses, nor does it leave them as stored results. To discover what they are,
you could, for example, type pctile or tabstat. The latter has the advantage, as just
shown, of showing bin frequencies directly. Second, xtile does not support the by:

prefix, so you need some kind of work-around for groupwise binning. Third, xtile can
be slow for large datasets. The first limitation is easily addressed, as already shown.
Community-contributed commands can be found addressing the other two limitations,
but it seems likely that StataCorp will address these problems within the useful life of
this column. Otherwise, I suggest that you search Statalist for recommendations.

As the table just given emphasizes, quantile bins produced by xtile are necessarily
disjoint. Any values equal to a calculated quantile are all assigned to the same bin, and
this can lead to bins with markedly unequal frequency, especially if there are relatively
few distinct values. An absolute limit that sometimes puzzles people is that the number
of bins cannot possibly exceed the number of distinct values in the data!



N. J. Cox 751

A quantile plot (Cox 2005, fig. 1) can help emphasize how quantile binning works,
especially when the example dataset is small to moderate in size. I have found this plot
useful with people quite new to the idea. It does emphasize where the limits lie and
also does show directly how much variability there is within each bin. In this case, and
indeed commonly, the uppermost bin is the most variable. As the tabstat results also
underline, its range even exceeds the range of the other bins combined. Notice, as a
Stata detail, how we suppress the default marker symbol and put a marker label where
it would have been.

. quantile mpg, msymbol(none) mlabel(mpg5) mlabposition(0) rlopts(lcolor(none))

11

111111
11

1111
1111

222222222
22222222

333
33333

33333
444

4444
44444

555

555
5

55
5

5
55

5

10
20

30
40

Q
ua

nt
ile

s 
of

 M
ile

ag
e 

(m
pg

)

0 .25 .5 .75 1
Fraction of the data

Figure 1. Quantile plot showing five bins for mpg in auto.dta

Unequal bin frequencies raise the question of whether a different binning convention
might produce a better result (Cox 2012a). The title of that column unfortunately
hides the fact that it includes a section on binning. Conversely, the column shows how
matrices used as look-up tables can be used for quantile binning and indeed more widely.

We could defensibly have bins [y0, y1), [y1, y2), . . . , [yK−1, yK ] so that the notation for
all but the last is [yk−1, yk). As it turns out, the convention that lower limits are inclu-
sive is in essence that used by histogram and twoway histogram in Stata. According
to Venables and Ripley (2002, 112), it is “the convention that most people prefer” for
histograms. (Statisticians, like anybody else, can give confident generalizations with-
out showing or even needing empirical data.) If you want the same kind of binning,
you can check out twoway histogram gen (Harrison 2005); note that there are three
underscores in that command name, not two.

xtile does not offer this kind of binning as an option, but one easy way to subvert
the command is to negate the variable and then reverse the bins. See the column just
cited (Cox 2012a) for another example and another way to do it.



752 Speaking Stata: From rounding to binning

. generate negmpg = -mpg

. xtile mpg5rev = negmpg, nquantiles(5)

. replace mpg5rev = 6 - mpg5rev
(58 real changes made)

. tabstat mpg, by(mpg5rev) statistics(n min max)

Summary for variables: mpg
by categories of: mpg5rev (5 quantiles of negmpg)

mpg5rev N min max

1 14 12 16
2 13 17 18
3 16 19 21
4 12 22 24
5 19 25 41

Total 74 12 41

7 Conclusion

Binning is a basic device in statistical analysis, but it needs to be applied clearly,
carefully, and critically. Knowing useful functions and commands to bin variables is
the essential first step, but checking the results to see that they are fit for purpose is
just as necessary. In the larger scheme of statistical science, exactly how to bin is just
a bundle of small details, but any aim of reproducible research requires knowing and
stating explicit and unambiguous rules.

8 References
Bennette, C., and A. Vickers. 2012. Against quantiles: Categorization of continu-
ous variables in epidemiologic research, and its discontents. BMC Medical Research
Methodology 12: 21.

Cleveland, W. S. 1993. Visualizing Data. Summit, NJ: Hobart.

Cox, N. J. 2003. Stata tip 2: Building with floors and ceilings. Stata Journal 3: 446–447.

. 2005. Speaking Stata: The protean quantile plot. Stata Journal 5: 442–460.

. 2007. Speaking Stata: Turning over a new leaf. Stata Journal 7: 413–433.

. 2011. Speaking Stata: Fun and fluency with functions. Stata Journal 11:
460–471.

. 2012a. Speaking Stata: Matrices as look-up tables. Stata Journal 12: 748–758.

. 2012b. Stata tip 113: Changing a variable’s format: What it does and does not
mean. Stata Journal 12: 761–764.



N. J. Cox 753

. 2016. Speaking Stata: Letter values as selected quantiles. Stata Journal 16:
1058–1071.

. 2018. Speaking Stata: Logarithmic binning and labeling. Stata Journal 18:
262–286.

Evans, I. S. 1977. The selection of class intervals. Transactions of the Institute of British
Geographers 2: 98–124.

Field, K. 2018. Cartography. Redlands, CA: Esri Press.

Freedman, D., R. Pisani, and R. Purves. 2007. Statistics. 4th ed. New York: W. W.
Norton.

Galton, F. 1885a. A common error in statistics. In Jubilee Volume of the Statistical
Society, 261. Charing Cross London: Edward Stanford.

. 1885b. Some results of the anthropometric laboratory. Journal of the Anthro-
pological Institute of Great Britain and Ireland 14: 275–287.

Graham, R. L., D. E. Knuth, and O. Patashnik. 1994. Concrete Mathematics: A
Foundation for Computer Science. 2nd ed. Reading, MA: Addison–Wesley.

Harrell, F. E., Jr. 2015. Regression Modeling Strategies: With Applications to Linear
Models, Logistic and Ordinal Regression, and Survival Analysis. 2nd ed. Cham,
Switzerland: Springer.

Harrison, D. A. 2005. Stata tip 20: Generating histogram bin variables. Stata Journal
5: 280–281.

Iverson, K. E. 1962. A Programming Language. New York: Wiley.

Knuth, D. E. 1968. The Art of Computer Programming, Volume 1: Fundamental
Algorithms. Reading, MA: Addison–Wesley.

. 1973. The Art of Computer Programming, Volume 1: Fundamental Algorithms.
2nd ed. Reading, MA: Addison–Wesley.

. 1997. The Art of Computer Programming, Volume 1: Fundamental Algorithms.
3rd ed. Reading, MA: Addison–Wesley.

Kraak, M.-J., and F. Ormeling. 2013. Cartography: Visualization of Spatial Data. New
York: Routledge.

Pearson, K. 1924. The Life, Letters and Labours of Francis Galton. Volume 2: Re-
searches of Middle Life. Cambridge: Cambridge University Press.

Slonim, M. J. 1958. The trentile deviation method of weather forecast evaluation.
Journal of the American Statistical Association 53: 398–407.

Venables, W. N., and B. D. Ripley. 2002. Modern Applied Statistics with S. 4th ed.
New York: Springer.



754 Speaking Stata: From rounding to binning

Yule, G. U. 1911. An Introduction to the Theory of Statistics. London: Griffin.

About the author

Nicholas Cox is a statistically minded geographer at Durham University. He contributes talks,
postings, FAQs, and programs to the Stata user community. He has also coauthored 16 com-
mands in official Stata. He was an author of several inserts in the Stata Technical Bulletin and
is an editor of the Stata Journal. His “Speaking Stata” articles on graphics from 2004 to 2013
have been collected as Speaking Stata Graphics (2014, College Station, TX: Stata Press).


