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Abstract. In this article, we examine several techniques that allow for the con-
struction of bounds estimates based on instrumental variables, even when the
instruments are not valid. We introduce the plausexog and imperfectiv com-
mands, which implement methods described by Conley, Hansen, and Rossi (2012,
Review of Economics and Statistics 94: 260–272) and Nevo and Rosen (2012b,
Review of Economics and Statistics 94: 659–671). We examine the performance
of these bounds under a range of circumstances, which leads to several practical
results related to the informativeness of the bounds in different situations.
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1 Introduction

Instrumental variables (IVs) are a workhorse estimator in economics and in other fields
concerned with the causal estimation of relationships of interest. Nonetheless, credible
IVs are hard to come by. While finding variables that are correlated with an endogenous
variable of interest (“relevant” in IV terms) is generally not a challenge, motivating
and defending a zero correlation with unobserved error terms (“validity”) is much less
straightforward.1

As is well known, validity assumptions in an IV setting are untestable. While par-
tial tests exist (Sargan 1958; Hansen 1982; Kitagawa 2015), these tests are necessary,
rather than sufficient, to demonstrate instrumental validity. This often leads to the
uncomfortable position where the best estimates for a parameter are based on a strong
assumption for which no definitive proof can be offered.

In this article, we examine several recent methodologies for inference with instru-
ments that (potentially) fail the typical IV validity assumption. In particular, we focus
on two methods that provide bounds on an endogenous variable of interest with as few
as one IV that does not necessarily have zero correlation with the unobserved error
term. These methodologies—one from Conley, Hansen, and Rossi (2012) and one from
Nevo and Rosen (2012b)—loosen IV assumptions in different ways and are relevant to
different types of settings in which IVs are suspected not to hold precisely. As we lay out
in further detail below, Conley, Hansen, and Rossi (2012) replace the (exact) exclusion
restriction in an IV model with an assumption related to its support or distribution,

1. We lay out the classical IV model in section 2 and the traditional assumptions leading to consistent
estimates of parameters of interest.
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whereas Nevo and Rosen (2012b) replace the zero correlation assumption between the
instrument and the unobserved error term with an assumption related to the “sign” of
the correlation.

IV bounds under weaker-than-standard assumptions are potentially of use in a wide
range of applications. Much effort is often spent in empirical work to convincingly
argue for the validity of instruments. Nonetheless, the validity of IVs are often ques-
tioned. Consider the survey paper of Rosenzweig and Wolpin (2000), which describes
several “natural” IVs that are not under the control of humans and hence have been
proposed to be valid IVs.2 Among those listed, most have been questioned on various
grounds. The use of season of birth (Angrist and Krueger 1991) was suggested to be po-
tentially correlated with many relevant correlates (Bound, Jaeger, and Baker 1995) and
then documented to be directly related to maternal characteristics in the United States
(Buckles and Hungerman 2013). The use of twins (Rosenzweig and Wolpin 1980a,b)
was later questioned based on birth spacing and parental responses (Rosenzweig and
Zhang 2009) and parental behavior in utero (Bhalotra and Clarke 2016); the use of
the gender mix of children (Angrist and Evans 1998) was shown to have other relevant
effects on family behavior (Dahl and Moretti 2008).

However, often critiques of IVs imply minor, rather than major, correlations be-
tween instruments and unobserved behavior. In this article, we introduce two Stata
commands that permit for the construction of valid bounds in circumstances precisely
like this: The plausexog command, based on Conley, Hansen, and Rossi’s (2012) plau-
sibly exogenous inference, and the imperfectiv command, based on Nevo and Rosen’s
(2012b) imperfect IV inference. These methods allow for the construction of IV bounds
under weaker-than-traditional assumptions. We lay out the basics of each methodology
and the use of each command and discuss several factors to be considered when con-
fronted with questionable IVs. As we show, the relative informativeness of plausexog
and imperfectiv bounds depends on the particular context, with each being particu-
larly suitable in different (invalid) IV circumstances. In the remainder of this article,
we document the scope of each procedure and suggest that these commands should be
considered as complements, rather than substitutes, in the applied researcher’s toolbox.

2 Methodology

The habitual linear IVs model is laid out as follows,

Y = Xβ + ε (1)

X = ZΠ+V (2)

where Y is an outcome variable of interest, X a matrix of (potentially endogenous)
treatment variables, and Z a matrix of instruments that are uncorrelated by assumption
with the error term ε. Presuming that X contains an endogenous variable (or variables),

2. In particular, they listed five outcomes arising from natural (biological or climate) processes that
were potentially random and had been used as instruments. These were i) twin births, ii) human
cloning (monozygotic twinning), iii) birth date, iv) gender, and v) weather events.
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the parameter vector β is not consistently estimable with ordinary least squares (OLS).
The existence of valid instruments Z, which can be excluded from (1), thus drives the
estimation of the structural parameters of interest β.

Validity is typically presented in one of two formats. The first is in terms of the
exclusion restriction: the instruments Z have no direct effect on Y once purged of their
effect on X. The second is in terms of correlations with unobservables: if Z is uncor-
related with ε, instrumental validity is fulfilled. While either condition is appropriate
to motivate consistent estimation of parameters in IV models,3 we consider both here
because they provide alternative approaches to conceptualize failures of the underlying
assumption in IVs.4 If it can be credibly argued that the validity assumption holds,
two-stage least squares (2SLS) estimates of β from (1) are consistent.

However, as discussed in the introduction, this validity assumption is untestable
given that it is related to the behavior of the unobservable ε. Even if instruments
are shown to be unrelated to many observable factors, or to pass overidentification
tests, this does not provide definitive proof of their validity. This has given rise to a
modern literature focused on relaxing these assumptions. Work by Manski and Pepper
(2000, 2009) loosened the validity assumption, replacing strict equalities with (weak)
inequalities. This work has been extended by, among others, Conley, Hansen, and Rossi
(2012); Nevo and Rosen (2012b) propose linear5 models in an IV framework but with the
absence of the traditional IV validity assumption. Rather than driving estimation and
inference from dogmatic priors, which require strict equalities in the exclusion restriction
or correlations, it has been shown that bounds on parameters can be estimated under
considerably loosened conditions.

While both Conley, Hansen, and Rossi (2012) and Nevo and Rosen (2012b) suggest
ways of loosening traditional assumptions to form IV bounds with as few as one (invalid)

3. Indeed, their implications are equivalent in the simultaneous equations framework laid out here
(additional discussion related to their difference in the potential-outcomes interpretation of the
Rubin [1974] casual model can be found in Angrist and Pischke [2009, 85–91]). If we consider two
structural equations of the form

y = βa
0 + βa

1X+ εa

and

y = βb
0 + βb

1X+ βb
2Z+ εb

failure of the exclusion restriction means that βb
2 is not equal to zero. However, a nonzero value

of βb
2 also implies that ρZ,εa �= 0 (where ρ is the covariance) and, by definition, ρy,εa > 0. Thus,

assuming that the exclusion restriction holds in this setup is equivalent to assuming that Z is un-
correlated with the structural error term. And vice versa, once the conditional correlation between
the instrument and the error term is assumed to be zero, the exclusion restriction assumption is
superfluous.

4. In this article, we do not consider in much length the relevance assumption. This assumption is
testable, and considerable literature exists on this topic.

5. While these methods are exclusively presented in terms of linear IV in this article, the
underlying logic can extend to nonlinear models. One particular method is provided in
Conley, Hansen, and Rossi (2008), who show a nonlinear extension to relax the exclusion restric-
tion assumption. A benefit of restricting our analysis to a linear IV setup here is that this allows
for bounds to be produced with clear links to frequently used (linear) models such as 2SLS and
OLS and the regress and ivregress commands available within Stata.
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IV,6 the precise manner in which this is undertaken in each case is different. The
suggestion of Conley, Hansen, and Rossi (2012) is to relax the exclusion restriction,
where rather than assuming that it is exactly equal to zero, some range is allowed for
the coefficient on the instrument in the structural equation. They allow the exclusion
restriction to fail but proceed with estimation by restricting the failure to some range.
Nevo and Rosen (2012b), on the other hand, document that assuming a “direction” for
the covariance between the instrument and the stochastic error ε can result in two-
sided bounds for the parameter of interest β. We consider each method, as well as the
resulting bounds below, before turning to the practicalities of estimation later in this
article.

Relaxing the exclusion restriction assumption The classical IV system of equations
defined in (1) and (2) is a restricted version of the following:

Y = Xβ + Zγ + ε (3)

X = ZΠ+V (4)

We arrive at (1) and (2) by imposing the (strong) prior that γ = 0, resulting in point
estimates of the parameter vector of interest β. One way to loosen the IV assumptions is
to remove the assumption that γ is precisely equal to zero. A range of literature seeks
to restrict the range of this unidentified parameter (or parameter vector) γ without
assuming that it is exactly equal to zero. Manski and Pepper (2000) document inference
in IV settings where the strict equality in γ = 0 is replaced by a weak inequality, giving
“monotone IVs”.7 Earlier work by Hotz, Mullin, and Sanders (1997) proposes bounding
in an IV setting where the exclusion restriction is assumed to hold for some part of the
population and not hold for others, requiring an estimate or assumption regarding the
degree of contamination of the IV. More recent extensions, including Small (2007) and
Conley, Hansen, and Rossi (2012), seek to further restrict the range of values for γ while
still allowing the exclusion restriction to fail either by searching for plausible parameters
in overidentified systems (Small 2007) or by allowing researchers to specify priors for γ
in a range of flexible ways (Conley, Hansen, and Rossi 2012).

In what remains, when considering relaxations of the exclusion restriction, we will
follow the procedure implemented by Conley, Hansen, and Rossi (2012). This procedure
allows for valid inference using an IV (or variables) even when the exclusion restriction
does not hold precisely. They document several procedures that can be followed, de-
pending on a researcher’s prior belief regarding the degree of failure of the exclusion
restriction and the amount of structure that the researcher is willing to place on this
violation. In particular, assumptions can be made regarding the range of values that

6. However, there is also an alternative set of methodologies proposing inference in an IV framework
without strict validity assumptions, using more than one (invalid) IV. For example, Small (2007)
proposes a case with as few as two instruments, and Kolesár et al. (2015) and Kang et al. (2016)
describe estimation procedures with many invalid or invalid and valid instruments.

7. Strictly speaking, Manski and Pepper’s approach does not require (3) and (4), because it is based
in a nonparametric setting, where instruments are assumed to monotonically impact conditional
expectations, and so involves conditional means rather than covariances.
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γ can take in (3), regarding the entire distribution for γ, or a fully Bayesian approach
can be undertaken, in which, as well as a prior for the γ term, priors for each model
parameter and the distribution of error terms must be provided.

The first of these approaches consists of simply replacing the original exclusion re-
striction assumption of γ = 0 with an assumption regarding the minimum and maxi-
mum values that γ may take. This allows for circumstances in which γ can be assumed
to be entirely positive or negative, or alternatively, overlapping zero. Estimation thus
consists of producing confidence intervals on β for a range of models of the following
form, where γ0 refers to values from an (appropriately binned) range [γmin,γmax].

(Y − Zγ0) = Xβ + ε

In each case, the above model can be fit by 2SLS using the transformed dependent
variable Y − Zγ0. Conley, Hansen, and Rossi (2012) name this approach the union
of confidence intervals (UCI), because in practice, bounds consist of the union of all
confidence intervals in the assumed range of γ0 ∈ [γmin,γmax]. In the case that more
than one plausibly exogenous IV exists, the above procedure is followed with priors over
γ0 for each instrument; thus, γ0 is a vector rather than a scalar. More importantly,
nothing restricts these priors over γ0 to be identical for different instruments, either in
magnitude or in sign.

Additional structure can be placed on assumptions regarding γ to relax the exclusion
restriction. If, rather than assuming simple maximum and minimum values for γ, one
makes a distributional assumption, bounds on the parameter β can be calculated using
the entire assumed distribution for γ. This allows, among other things, for more or
less weight to be placed on values of γ, which are perceived to be more or less likely,
for example, by placing more weight on values of γ close to zero and less weight on
values of γ further away.8 As Conley, Hansen, and Rossi (2012) document, replacing
the assumption that γ = 0 with an assumption that γ ∼ F (where F is some arbitrary

distribution) implies the following approximate distribution for β̂:

β̂
a∼ N (β, V2SLS) +Aγ (5)

Here the original 2SLS asymptotic distribution is inflated by a second term, where A =
{X ′X(Z ′Z)−1Z ′X}−1(X ′Z) and γ is assumed to follow some arbitrary distribution F ,
assumed independent of N (β, V2SLS). This approach is called the local to zero (LTZ)
approximation and treats uncertainty regarding γ and sampling uncertainty as of a
similar magnitude.

Practically, estimating bounds on β using the result in (5) can proceed in multiple
ways. A simulation-based approach can be used that allows for any type of distribution
for γ, or if γ is assumed to have a Gaussian distribution, this leads to a convenient

8. Conley, Hansen, and Rossi (2012) also discuss how this can be housed in the union of confidence
interval approach discussed above by giving more or less weight to certain values in the [γmin,γmax]
range. However, the present approach allows for the flexibility to easily include any distributions
for γ, and so we focus on this here.
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analytical bounds formula for β. In the case that γ is assumed to follow a Gaussian
distribution, N (μγ ,Ωγ), bounds on β from (5) simplify to

β̂
a∼ N (β +Aμγ , V2SLS +AΩγA

′)

As in the UCI case, if multiple instruments are available, both μγ and Ωγ refer to the
distributional assumptions for each γ term, where particular priors over the violation
of the exclusion restriction are allowed to vary for different instruments.9 If a non-
Gaussian prior for γ is assumed, Conley, Hansen, and Rossi (2012) outline a simulation
algorithm for calculating bounds on β. This procedure consists of generating draws of
the following quantity, which calculates deviations of β̂ from β, where draws from the
assumed γ distribution are included in the second part of the formula:

η ∼ N (0, V2SLS) +Aγ

In practice, with numerous draws of η in hand, confidence intervals on β can be found
by subtracting desired quantiles of the η distribution from β̂ in (5). Both the exact and
simulation-based method can be implemented using the plausexog command described
in further detail later in this article.10

Finally, even further structure can be placed on the exclusion restriction if rather
than simply assuming a range of values for γ (UCI), or a distribution for γ (LTZ), one
follows a full Bayesian procedure. This requires assuming not only a distribution for
γ but also a prior for error terms and other model parameters. We do not go into
additional detail regarding this Bayesian procedure here; however, we direct interested
readers to Conley, Hansen, and Rossi (2012) and computational implementations (in R)
as bayesm (Rossi 2017).

In the methods described by Conley, Hansen, and Rossi (2012), prior beliefs over
the violation of the exclusion restriction play an important role in the eventual bounds
estimates. Deciding precisely which values to indicate as priors is an empirical consider-
ation and will vary considerably depending on the plausibility of IVs and posited reasons
why an exclusion restriction may not hold. As Conley, Hansen, and Rossi suggest, these
beliefs are likely to vary by researchers, pointing to the importance of sensitivity anal-
yses related to estimated bounds. While it is not possible to provide a general rule for
setting priors related to the exclusion restriction, it is often the case that researchers do
hold subjective beliefs about the exclusion restriction and hypotheses about why it may

9. If multiple instruments are used, there is no limit on the way that priors for γ need be specified.
This includes cases where multiple instruments may be thought to suffer different failures of the
exclusion restriction in sign or in magnitude (by varying parameters in the μγ vector) or where the
degree of uncertainty for one instrument may be more than the degree of uncertainty for another
instrument (varying variance terms in the Ωγ matrix).

10. While it is preferable to use the exact result if a Gaussian prior is assumed for the distribution
of γ, a Gaussian prior can also be included using the simulation-based algorithm described in
Conley, Hansen, and Rossi (2012), and assuming that a large enough number of draws of η are
taken, these two approaches return identical bounds. By default, plausexog draws 5,000 realizations
of η, and this generally leads to similar bounds in the simulated and closed-form approaches with
a Gaussian prior. The number of draws of η can be changed by users. Where possible, more draws
should always be preferred.
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not hold precisely. Several cases show how such priors may be formed using economic
logic. Bound, Jaeger, and Baker (1995), for example, perform a back-of-the-envelope
calculation related to the direct effect of season of birth (a proposed IV) on educational
outcomes, which Conley, Hansen, and Rossi (2012) use to form a prior. In examining
selectiveness of twin births, Bhalotra and Clarke (2016) aim to directly estimate the
degree of violation of the exclusion restriction using additional data, auxiliary to their
main analysis. An alternative approach to estimating (rather than assuming) γ is sug-
gested by van Kippersluis and Rietveld (2017) by focusing on particular subsamples.

Relaxing IV correlation assumptions The classical IV approach described in (1) and
(2) produces consistent estimates of β based on the (unobservable) validity assumption
E(Zε) = 0. Bounds inference in an IV setting can proceed with weaker-than-classical
assumptions by replacing the validity (zero covariance) assumption with an assump-
tion on the sign of the covariance. Nevo and Rosen (2012b) proceed with a linear IV

model in which the zero covariance assumption is loosened in this way. Their results
extend an earlier line of research from Leamer (1981); Klepper and Leamer (1984);
Bekker, Kapteyn, and Wansbeek (1987); and Manski and Pepper (2000). Nevo and
Rosen (2012b) document that replacing the demanding zero covariance assumption with
an assumption regarding the sign of the covariance between an IV and the stochastic
error leads to convenient and easily estimable bounds in the linear IV model.

To define these bounds, we follow Nevo and Rosen (2012b) in using ρxε to signify
correlation and σxε to signify covariance and σx to signify standard deviation, where
subscripts make clear the random variables considered. The traditional IV validity
assumption is thus denoted ρzε = 0. Nevo and Rosen (2012b) replace this validity
assumption with an assumption regarding only the “direction” of correlation between
an instrument Z and the stochastic error term ε in (1):

ρxερzε ≥ 0 (6)

This assumption (Nevo and Rosen’s [2012b] “assumption 3”11) thus states that the
instrument has (weakly) the same direction of correlation with the omitted error term
as the endogenous variable X.

This assumption, combined with a fourth assumption, gives the definition of an
“imperfect instrumental variable” as an IV that has the same direction of correlation
with the unobserved error term as the endogenous variable of interest x but is less
endogenous than x:

|ρxε| ≥ |ρzε| (7)

Based on (7), we can define a quantity denoting the relative degree of correlation between
the instrument and the error term compared with the same correlation between the orig-
inal endogenous variable and the stochastic error term. This quantity, which captures
how much less flawed the instrument is than the endogenous variable, λ∗ = ρzε/ρxε, is
not known without further assumptions; however, it is clearly bounded between 0, in

11. Nevo and Rosen (2012b) make a series of standard assumptions regarding the sampling process
and any exogenous covariates included in the model, as assumptions 1 and 2.
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the case that the traditional IV assumption holds and 1 in the case where (7) holds with
equality.

Ignoring for now that λ∗ is unknown, if it were known, a new valid compound
instrument could be constructed by forming σXZ − λ∗σZX. The logic behind this
instrument is that the endogenous components of the original endogenous variable X
and the (less) endogenous Z can be canceled out, and hence,

E{(σXZ− λ∗σZX)ε} = σXσZε − λ∗σZσXε = 0

is a valid instrument. Nevo and Rosen’s (2012b) proposal is to replace this above the
valid instrument, denoted V (λ∗) = (σXZ − λ∗σZX), with V (1) = (σXZ − 1σZX), the
instrument in the limit case implied by (7). While this will not give point estimates
on the parameter of interest β, it will allow for the construction of bounds in certain
circumstances discussed below.

Consider now the probability limits of three different estimators: βOLS, the original
estimand of β using endogenous X in a standard linear regression; βIV

z , the 2SLS esti-
mator using the imperfect IV; and βIV

v(1), the 2SLS estimator of the transformed variable
described above. Based on the above two assumptions in (6) and (7), these parameters
are not guaranteed to bound the true parameter β. However, if the instrument is nega-
tively correlated with the endogenous variable, σxz < 0, this allows for the construction
of upper and lower bounds on the true parameter β. These bounds are described in
panel A of table 1. The right-hand panel describes the case in which Nevo and Rosen’s
(2012b) assumption 4 is not maintained; hence, βIV

v(1) is not used. In this case, the

original βIV
z parameter and the OLS estimate βOLS bound β, with the upper and lower

bounds depending on the assumed correlation between X and ε (and hence Z and ε).12

However, if the correlation between X and Z is positive, only one-sided bounds can be
formed. In the case that assumption 4 (7) is maintained, this leads to a further tight-
ening of the bounds, given that the inconsistent βOLS parameter can be replaced by
the less inconsistent βIV

v(1) parameter.13 Once again, however, if the correlation between
the endogenous variable and the instrument is not negative, informative bounds cannot
be formed, leading to only one-sided bounds for β. Both bounds with and without
assumption 4 can be produced by the imperfectiv command described later in this
article.

12. To see why the IV and OLS parameters bound the true parameter β, note that in the simple linear
model described in (1) and (2), we can write βOLS = β + (σxε/σ2

x) and βIV
z = β + (σzε/σxz).

Given that σxz is assumed negative (a testable assumption) and σ2
x is positive, these two parameters

bound β.

13. To see why βIV
z and βIV

v(1) bound the true parameter, we can start from βIV
z and βOLS, which

we know provide bounds. Given that βIV
v(1) is a weighted average of βIV

z and βOLS assuming

λ = 1 (see Nevo and Rosen [2012b] for full details), this estimate will remove part of the bias from
the βOLS parameter, moving estimates toward the βIV parameter. However, given that z is less
endogenous than x, the contribution of z to the compound instrument βIV

v(1) will never be sufficient

to completely reverse the direction of the bias of the original βOLS estimate, and so βIV
z and βIV

v(1)

still provide (potentially tighter) two-sided bounds.
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In the discussion up to this point, we have justified the relaxation of the instrumental-
validity assumption when one imperfect IV is present. However, Nevo and Rosen (2012b)
demonstrate that if more than one imperfect IV is available, this result can be used to
potentially generate tighter bounds14 and, under an auxiliary assumption, produce two-
sided bounds where previously only one-sided bounds were observed. In the simplest
case, without further restrictions on the nature of each imperfect IV (beyond the fact that
they each meet assumptions 3 and 4), the bounding procedure consists of a search among
all imperfect IVs and the OLS estimate to generate the tightest set of bounds possible
given the assumptions maintained in assumptions (6) and (7). This can be seen as a
generalization of panel A of table 1, where each βIV parameter is replaced with its min
(for upper bounds) or max (for lower bounds). In the case that various candidates exist
for upper or lower bounds, inference in the Nevo and Rosen procedure must account
for uncertainty in various coefficients. As laid out in Nevo and Rosen (2012b, 665–666),
this is based on a variant of Chernozhukov, Lee, and Rosen’s (2013) intersection bounds.
This inference procedure is performed by default in the imperfectiv command when
multiple similar bound candidates exist.

Finally, Nevo and Rosen (2012b) show that if more than one instrument is available
and if one instrument is assumed to be better than another in both relevance and
validity, then two-sided bounds can be produced, even if the original imperfect IVs are
positively correlated with the endogenous variable X. Consider two imperfect IVs, Z1

and Z2, where assumption 6 is assumed to hold, σxz1 > σxz2 (Z1 is more relevant than
Z2), and it is assumed that σεz1 < σεz2 (Z1 is less endogenous than Z2). Then, the
production of a new instrument,

ω(γ) = γZ2 − (1− γ)Z1

will lead to two-sided bounds so long as σω(γ)ε ≥ 0 and σω(γ)x < 0. These bounds are
described in panel B of table 1 and are summarized as Nevo and Rosen’s proposition 5.
In practice, Nevo and Rosen (2012b) suggest using a value of γ = 0.5 to form the
reweighted imperfect IV. In the imperfectiv command, γ = 0.5 is used by default, and
a “better” and “worse” imperfect IV must be indicated by the user to produce bounds
in this case.

14. Recent work from Wiseman and Sørensen (2017) suggests under an alternative (implicit) assump-
tion that Nevo and Rosen’s bounds can, in some cases, be further tightened, especially when in-
struments are weak.
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3 Stata commands

Below we describe the basic syntax of two commands that implement the estima-
tors described in the previous section. These two commands are plausexog, which
implements Conley, Hansen, and Rossi’s (2012) bounds relaxing the exclusion restric-
tion, and imperfectiv, which implements Nevo and Rosen’s (2012b) bounding pro-
cedure by relaxing the traditional validity assumption. We examine the commands
in turn in sections 3.1 and 3.2. We also provide extended examples of their syntax
and their use by replicating empirical examples from Nevo and Rosen (2012b) and
Conley, Hansen, and Rossi (2012) in appendix A. In both cases, the syntax is presented
following a linear IV model, and constant coefficients are assumed.15

3.1 The plausexog command

Syntax

plausexog is closely related to Stata’s IV regression command, ivregress, with argu-
ments describing the prior expectation of the degree of the violation of the exclusion
restriction. The generic syntax of the command is as follows:

plausexog method depvar
[
varlist1

]
(varlist2 = varlist iv)

[
if
] [

in
] [

weight
][

, level(#) vce(vcetype) gmin(numlist) gmax(numlist) grid(#)

mu(numlist) omega(numlist) distribution(name, params) seed(#)

iterations(#) graph(varname) graphmu(numlist) graphomega(numlist)

graphdelta(numlist) graph options
]

method must be specified as either uci (union of confidence intervals) or ltz (local to
zero), depending on the desired estimator. The remainder of the syntax follows Stata’s
ivregress syntax, where first any exogenous variables are specified as varlist1, then
the endogenous variables are specified as varlist2, and finally “plausibly exogenous”
instruments are specified as varlist iv.

Options

level(#) sets the confidence level. The default is level(0.95).

vce(vcetype) determines the type of standard error reported in the estimated regression
model and allows standard errors that are robust to certain types of misspecification.
vcetype may be robust, cluster clustvar , bootstrap, jackknife, unadjusted, or
hac kernel.

15. Nevertheless, in the case of plausexog, estimated parameter bounds can also be interpreted as the
bounds on the average treatment effect assuming heterogeneous treatment effects. Discussion of
this is provided in Conley, Hansen, and Rossi (2012, 261).



674 Practical IV estimation

gmin(numlist) specifies the minimum values for γ on plausibly exogenous variables
(specified with uci only). One gmin() value must be specified for each plausibly
exogenous variable, and these values likely vary for each plausibly exogenous IV.

gmax(numlist) specifies the maximum values for γ on plausibly exogenous variables
(specified with uci only). One gmax() value must be specified for each plausibly
exogenous variable, and these values likely vary for each plausibly exogenous IV.

grid(#) specifies the number of points (in [gmin(), gmax()]) at which to calculate
bounds (specified with uci only). The default is grid(2).

mu(numlist) specifies the mean value for the prior distribution of γ, assuming a Gaussian
prior and the ltz method. One mu() value must be specified for each plausibly
exogenous variable, and these values likely vary for each plausibly exogenous IV.

omega(numlist) specifies the variance value for the prior distribution of γ, assuming
a Gaussian prior and the ltz method. One omega() value must be specified for
each plausibly exogenous variable, and these values likely vary for each plausibly
exogenous IV.

distribution(name, params) allows for non-Gaussian priors for the distribution of
gamma. When one uses the distribution() option, the mu() and omega() options
do not need to be specified. Bounds based on nonnormal distributions for gamma are
calculated using the simulation-based algorithm described in Conley, Hansen, and
Rossi (2012, 265) and section 2. name may be normal, uniform, chi2, poisson,
t, gamma, and special. When one specifies any of the first six names, params
must be specified along with each of these distributions. For normal, parameters
are the assumed mean and standard deviation; for uniform, the parameters are the
minimum and maximum; for chi2 (χ2), it is the degrees of freedom; for poisson, it
is the distribution mean; for t, it is the degrees of freedom; and for gamma, it is the
shape and scale of the assumed distribution. For any assumed distribution of gamma
that is not contained in the previous list, special can be specified, and a variable
can be passed containing analytical draws from this distribution. If more than one
plausibly exogenous variable is used, the relevant parameters must be specified for
each plausibly exogenous variable. Note that although a Gaussian prior is allowed
in this format, if a Gaussian prior is assumed, it is preferable to use the mu() and
omega() options because these give an exact, rather than approximate (simulated),
set of bounds.

seed(#) sets the seed for simulation-based calculations when using a non-Gaussian
prior with ltz. This option is required when the distribution() option is specified.

iterations(#) determines the number of iterations for simulation-based calculations
when using a non-Gaussian prior with ltz. The default is iterations(5000). In
Stata/IC and Small Stata, the number of iterations cannot exceed the maximum
matrix size permitted by Stata. As such, these are set to 800 and 100, respectively.
The distribution() option should be used with care in these flavors of Stata.
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graph(varname) indicates that a graph should be produced of bounds over a range of
assumptions related to the failure of the exclusion restriction. varname indicates the
name of the endogenous variable (from varlist2 ) that the user wishes to graph. In
the uci method, confidence intervals will be graphed, whereas in the ltz method,
both confidence intervals and a point estimate will be graphed over a range of gamma
values.

graphmu(numlist) (specified with ltz when a graph is desired) provides the values for
a series of mu() values for each point desired on the graph. Each point refers to the
mean value of γ assuming a Gaussian prior.

graphomega(numlist) (specified with ltz when a graph is desired) provides the values
for a series of omega() values for each point desired on the graph. Each point
corresponds to the value in the graphmu() list and specifies the variance of the
Gaussian prior at each point.

graphdelta(numlist) allows for the plotting of values on the graph. If not specified,
the values in graphmu() will be plotted on the horizontal axis.

graph options are any other options documented in [G-3] twoway options. This over-
rides default graph options such as title and axis labels.

Stored results

plausexog stores the following in e():

Scalars
e(lb endogname) lower-bound estimate for each (plausibly) instrumented variable
e(ub endogname) upper-bound estimate for each (plausibly) instrumented variable

In the case where Conley, Hansen, and Rossi’s (2012) ltz method is used with an
assumption of normality, the following are also returned:

Matrices
e(b) coefficient vector under plausible exogeneity
e(V) variance–covariance matrix of the estimators under plausible ex-

ogeneity

These are the coefficient vector and variance–covariance matrix of the estimated
parameters based on the plausibly exogenous model.
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3.2 The imperfectiv command

Syntax

The imperfectiv command is also closely related to Stata’s IV regression command,
with arguments describing correlation between the endogenous variable and the unob-
servable to replace the validity assumption of the instruments. The generic syntax of
the command is as follows:

imperfectiv depvar
[
varlist1

]
(varlist2 = varlist iv)

[
if
] [

in
] [

weight
] [

,

level(#) vce(vcetype) ncorr prop5 noassumption4 exogvars(varlist)

bootstraps(#) seed(#) verbose
]

The syntax follows Stata’s ivregress syntax, where first any exogenous variables
are specified as varlist1, then the endogenous variables are specified as varlist2, and
finally “imperfect” instruments are specified as varlist iv.

Options

level(#) sets the confidence level. The default is level(0.95).

vce(vcetype) determines the type of standard error reported in the estimated regression
model and allows standard errors that are robust to certain types of misspecification.
vcetype may be robust, cluster clustvar, bootstrap, or jackknife.

ncorr specifies that the correlation between the endogenous variable and the unob-
servable error is assumed negative. By default, this correlation is assumed to be
positive.

prop5 specifies that proposition 5 of Nevo and Rosen (2012b) should be used in the
estimation of bounds. If the correlation between the endogenous variable and each
imperfect instrument is positive, the result of the estimation is an interval with only
one bound. If there is more than one imperfect instrument, then proposition 5 of
Nevo and Rosen can be used to generate two-sided bounds. If prop5 is specified, the
first two instruments specified in varlist iv are used, and it is assumed that the
“better” instrument is listed first. Additional discussion is provided in section 2.

noassumption4 specifies that assumption 4 of Nevo and Rosen (2012b) does not hold.
By default, this assumption is assumed to hold. Assumption 4 states that the
correlation between the imperfect instrument and the unobservable is less than the
correlation between the endogenous variable and the unobservable.

exogvars(varlist) specifies to display bounds on exogenous variables included in varlist1
(if present). By default, only bounds on the endogenous variable of interest in the
model are presented. Any variable indicated in exogvars() must be included in the
original model in varlist1.
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bootstraps(#) specifies the number of bootstrap replications. Wherever possible, a
larger number of bootstraps should be specified. In the case when multiple candi-
dates exist for upper or lower bounds, inference procedures consider uncertainty
in each estimate that is close to binding using a bootstrap procedure (refer to
Nevo and Rosen [2012b, 666] for full details).

seed(#) allows for the seed to be set to permit replicability of the bootstrap procedure.
This option is relevant only when multiple candidates for upper or lower bounds
exist.

verbose causes additional output be produced during the running of the command. This
option is relevant when large datasets are used and multiple bounds are considered,
because the bootstrap procedure may take some time to complete.

Stored results

imperfectiv stores the following in e():

Scalars
e(lb endogname) lower-bound point estimate for the endogenous instrumented

variable
e(ub endogname) upper-bound point estimate for the endogenous instrumented

variable
e(CIlb endogname) lower-bound confidence interval for the endogenous variable
e(CIub endogname) upper-bound confidence interval for the endogenous variable

In this case, these values refer to point estimates identifying bound endpoints. The
confidence intervals associated with these estimates (and hence the bounds) are returned
as e(CIlb endogname) and e(CIub endogname).

Matrices
e(LRbounds) upper and lower bounds on each endogenous variable and all

exogenous covariates

e(LRbounds) returns both the point estimates at each end of the bounds, as well as
the confidence interval on these estimates.

4 Performance under simulation

We demonstrate the usage of the imperfectiv and plausexog commands under a series
of simulations. These simulations allow us to examine the behavior of bounds on the
(known) endogenous parameter of interest under a series of different assumptions. In
particular, we can compare the behavior of bounds using the uci and ltz methods of
Conley, Hansen, and Rossi (2012) and with and without the use of Nevo and Rosen’s
(2012b) assumption 4.

We aim to examine performance of bounds under a wide range of situations. To do
so, we consider a linear model in which we allow the correlation between an endogenous
variable of interest x and the unobserved error term ε to vary (that is, varying the degree
of endogeneity of the parameter of interest) and in which the correlation between the
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“instrument” z and the unobserved compound error term varies (varying the quality of
the instrument). In particular, we allow for this in the following two-stage setup:

⎛⎝z
ε
ν

⎞⎠ ∼ N
⎡⎣⎛⎝0

0
0

⎞⎠,
⎛⎝1 0 0
0 1 0
0 0 1

⎞⎠⎤⎦
x = πz+ με+ ν (8)

y = βx+ γz+ ε

Here y is a dependent variable, x an endogenous variable of interest, and z an imper-
fect, or plausibly exogenous, instrumental variable. In all simulations presented here,
we consider the case where one instrument exists; however, we provide an illustration
with multiple instruments in appendix B. Provided that μ �= 0, β cannot be estimated
consistently with an OLS regression, and provided that γ �= 0, IV estimates of β will not
be consistent under standard assumptions. The instrument z and error terms ε and ν
are simulated from independent normal distributions. In traditional 2SLS, γ is assumed
to be 0; thus, γz is omitted from the final equation. This leads to a compound error
term (γz+ ε), which we refer to as η below.

Using this structure, we examine the use of and performance of imperfectiv and
plausexog by varying γ (the degree of instrumental invalidity) and μ (the degree of
endogeneity). We fix π at −0.6 in all simulations, ensuring that the instrument is not
weak. The performance of plausexog following this data-generating process (DGP) is
documented below:

. set obs 1000
number of observations (_N) was 0, now 1,000

. set seed 1716

. foreach var in u z v w {
2. generate `var´ = rnormal()
3. }

. generate x = -0.6*z + 0.33*u + v

. generate y1 = 3.0*x + 0.10*z + u

. plausexog uci y1 (x=z), gmin(0) gmax(0.2)
Estimating Conely et al.´s uci method
Exogenous variables:
Endogenous variables: x
Instruments: z

Conley et al (2012)´s UCI results Number of obs = 1000

Variable Lower Bound Upper Bound

x 2.7463585 3.2788045
_cons -.05578396 .07826073
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. plausexog ltz y1 (x=z), mu(0.1) omega(0.01)
Estimating Conely et al.´s ltz method
Exogenous variables:
Endogenous variables: x
Instruments: z

Conley et al. (2012)´s LTZ results Number of obs = 1000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

x 3.017955 .1722409 17.52 0.000 2.680369 3.355541
_cons .0079718 .0339273 0.23 0.814 -.0585244 .0744681

Above we document the use of plausexog with the uci and ltz methods. In each case,
we “correctly” specify the prior over the violation of the exclusion restriction. In the
uci example, the exclusion restriction is allowed to have support ∈ [0, 0.2], with the true
value simulated being 0.1. In the ltz example, the exclusion restriction is specified to
fall within a normal distribution mean of 0.1 and variance of 0.01. In each case, bounds
on the endogenous variable x contain the true parameter β = 3.

Below we document the use of imperfectiv using the same DGP. We first specify
that bounds be calculated without assuming that the instrument is “less endogenous”
than the endogenous variable; in the second case, we add this assumption:

. imperfectiv y1 (x=z), noassumption4

Nevo and Rosen (2012)´s Imperfect IV bounds Number of obs = 1000

Variable Lower Bound(CI) LB(Estimator) UB(Estimator) Upper Bound(CI)

x [2.7463585 (2.8548516 3.1942966) 3.243692]

. imperfectiv y1 (x=z)

Nevo and Rosen (2012)´s Imperfect IV bounds Number of obs = 1000

Variable Lower Bound(CI) LB(Estimator) UB(Estimator) Upper Bound(CI)

x [2.7463585 (2.8548516 3.0819896) 3.1396404]

These examples document performance of plausexog and imperfectiv under one
particular DGP. In table 2 below, we consider a range of DGPs where we vary γ (within
each panel) and μ (across each panel). Here γ refers to the failure of the exclusion
restriction with which Conley, Hansen, and Rossi (2012) are concerned, and the result-
ing correlations between x and η (the compound error term) and z and η with which
Nevo and Rosen (2012b) are concerned are displayed in subsequent columns. Bounds
are then documented under two cases in Conley, Hansen, and Rossi (2012) (the uci and
ltz methods, each with correctly specified priors) and two cases in Nevo and Rosen
(2012b) (with and without assumption 4). In the case of Nevo and Rosen (2012b), the
assumptions for “No A4” will be met provided that the sign on ρx,η and ρz,η is the same
and will be met for “Assumption 4” only if ρx,η ≥ ρz,η.
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Table 2. Performance of various bounds under Monte Carlo simulation

Plausibly exogenous Imperfect IV

γ ρx,η ρz,η UCI LTZ N (μ, σ2) No A4 Assumption 4

Panel A: Minor correlation between x and ε
0.1 0.27 0.10 [2.744 3.247] [2.684 3.318] [2.744 3.268] [2.744 3.150]
0.2 0.22 0.19 [2.582 3.397] [2.563 3.439] [2.582 3.229] [2.582 3.074]
0.3 0.16 0.28 [2.419 3.550] [2.468 3.534] [2.419 3.190] [2.419 2.997]
0.4 0.11 0.36 [2.256 3.706] [2.388 3.614] [2.256 3.152] [2.256 2.922]

Panel B: Moderate correlation between x and ε
0.1 0.61 0.10 [2.735 3.238] [2.681 3.321] [2.735 3.429] [2.735 3.277]
0.2 0.56 0.19 [2.565 3.380] [2.558 3.443] [2.565 3.405] [2.565 3.217]
0.3 0.51 0.28 [2.394 3.528] [2.462 3.540] [2.394 3.381] [2.394 3.157]
0.4 0.46 0.36 [2.223 3.681] [2.380 3.622] [2.223 3.357] [2.223 3.097]

Panel C: Major correlation between x and ε
0.1 0.91 0.10 [2.706 3.208] [2.670 3.332] [2.706 3.292] [2.706 3.224]
0.2 0.88 0.19 [2.508 3.336] [2.538 3.463] [2.508 3.288] [2.508 3.196]
0.3 0.84 0.28 [2.309 3.515] [2.433 3.569] [2.309 3.283] [2.309 3.169]
0.4 0.80 0.36 [2.110 3.710] [2.341 3.661] [2.110 3.279] [2.110 3.142]

We display 95% confidence intervals associated with the parameter β in square parentheses. The
true value of β is 3 in the DGP described in (8). The value of γ in each case is displayed in the
left-hand column (between 0.1 and 0.4), and the correlation between x and η and z and η inferred
in each case is listed in subsequent columns. Here η refers to the compound error term that causes
endogeneity and instrumental invalidity. We use 1,000 simulated observations. Different panels
allow the correlation between the endogenous variable x and the ε term to vary, making x more or
less endogenous. Confidence intervals for the plausibly exogenous UCI case are based on a support
assumption implying that the true value of γ is at the mean and hence is [0, 2γ]. In the LTZ
case, the distribution for γ is assumed to be normal, with mean equal to the value of gamma, and
variance equal to γ/10. Confidence intervals for imperfect IV estimates are based on assumptions
that ρx,η > 0 and ρz,η > 0 in the “No A4” case and that ρx,η ≥ ρz,η > 0 in the “Assumption 4”
case. The veracity of each assumption can be determined from displayed correlations in columns 2
and 3.

The bounds produced in each case on the endogenous variable of interest are pre-
sented in table 2. In nearly all simulations, the bounds include the true value of β = 3.
The only cases in which this is not seen is with those in the right-most columns at the
bottom of panel A. This is to be expected, given that in this case, the assumptions
underlying the bounds (assumption 4 of Nevo and Rosen [2012b]) are not met; hence,
the imperfectiv command should correctly have been run with the noassumption4

option. In each circumstance, the Conley, Hansen, and Rossi (2012) bounds contain
the true parameter, but this is dependent on correctly specifying the prior over γ, as we
ensure in table 2. Given that in practice, knowing the true prior for γ is an empirical
challenge (see, for example, Bhalotra and Clarke [2016] as well as additional discussion
in section 2 of this article), researchers may prefer conservative assumptions on γ.

In general, although the procedures of both Nevo and Rosen (2012b) and Conley,
Hansen, and Rossi (2012) allow the strong assumptions relating to unobservables in an
IV setting to be loosened, bounds estimates still rely on a willingness to specify some-
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thing about the relationship between instruments and unobservables. Ideally, these
assumptions should be well founded in a theory related to the nature of failure of IV

validity. In the case of Nevo and Rosen (2012b), a willingness to assume that an instru-
ment is positively or negatively related to unobservables may reflect some underlying
model of selection into an instrument or of behavioral response to a particular draw
of the instrumental variable. Consider briefly two well-known instruments in models
of human fertility: the gender mix of children and the occurrence of twin births. In
the case of gender mix of births, Dahl and Moretti (2008) document a “demand for
sons”, suggesting that investments following sons may depend positively on this partic-
ular realization of the IV. In the case of twins, Bhalotra and Clarke (2016) document
a cross-cutting positive selection of twin births, where many (positive) maternal health
behaviors in utero increase the likelihood of giving live births to twins (even if twin
conception is random). Here assumptions relating to a positive correlation between the
instrument and unobservables seems reasonable based on positive correlations between
the instrument and many hard-to-measure and frequently unobserved variables.16 As
discussed above, the willingness to assume a particular range or distribution for the
failure of the exclusion restriction is also an empirical challenge. While in the case of
Conley, Hansen, and Rossi (2012), bounds are constructed based on stronger assump-
tions than just the sign of the correlation, a benefit of this approach is that it allows
for the sign to be indeterminate, for example, if one is concerned that instruments may
only be “close” to exogenous but not certain of the direction in which failures of validity
occur. We return to these considerations below.

Abstracting now from why identifying assumptions may be met, we see that table 2
offers several lessons regarding the relative performance of Conley, Hansen, and Rossi
and Nevo and Rosen bounds. First, the bounds on the endogenous parameter using
Conley, Hansen, and Rossi’s (2012) plausexog procedure are approximately constant
across panels (given a particular value for γ) because the degree of endogeneity of x
does not impact the estimated bounds. In the case of Nevo and Rosen (2012b), all else
remaining constant, bounds are more or less wide when the independent variable of
interest is more or less exogenous. This is because Nevo and Rosen (2012b) use infor-
mation from the original endogenous variable to form one side of their bounds (when
two-sided bounds are formed). In the limit case when assumption 4 is not assumed, the
bound on the OLS estimate of β itself is used. When both cases are examined using the
methods of Nevo and Rosen (2012b), the lower bound consists of the original IV esti-
mate, which agrees with the lower bound determined by the Conley, Hansen, and Rossi
(2012) UCI approach. This is not always the case in Conley, Hansen, and Rossi’s meth-
ods and only occurs when the lower limit of γ is fixed at 0. Then, the IV would be valid,
and the lower bound becomes the unaltered IV estimate.

16. More generally, often intuitively, the likely direction of correlation between an observed variable and
an unobserved error term is assumed in empirical applications. For example, in simple linear models,
the well-known omitted variable bias in OLS can be signed if the correlation between an included
variable and the unobservable error is assumed. In Nevo and Rosen’s imperfect IV application, we
are concerned with similar correlations between IVs and unobserved errors. Whether a reasonable
assumption regarding the potential correlation between an instrument and the error term exists
depends entirely on the phenomenon under study.
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Second, we note that bounds from Nevo and Rosen (2012b) are always tighter when
assumption 4 is used (in the case shown in table 2, the upper bound on β always falls).
Of course, this is not free but rather a direct result of the assumption that z is less
endogenous than x. In the case that this is true, bounds are both tighter and contain
the true parameter. When assumption 4 is not met, bounds are tighter but do not
contain the true parameter.

Finally, we note that in this case, adding additional structure in the Conley, Hansen,
and Rossi (2012) bounding procedure with the LTZ approach actually results in wider
bounds in some cases. This is a direct result of the parameters assumed in each case.
In the UCI case, we allow for a support of [0, 2× γ] for each implementation, while the
LTZ case assumes that γ ∼ N (γ, γ/10), which often results in a probability distribution
for γ that has a considerable probability mass outside the values allowed in the UCI

approach. This should not be seen as necessarily representative of the use of the UCI

and LTZ approaches. Frequently, the LTZ approach leads to tighter bounds, given the
additional structure placed on the prior for γ. Indeed, in the above simulations, if
we were to use a Gaussian prior in the LTZ approach with an identical variance of a
uniform spanning the UCI γmin and γmax values, bounds in the LTZ approach would
be tighter than those in the UCI approach. This is a direct result of placing greater
weight on values closer to the true value of γ when using the normal prior. Unlike
the Nevo and Rosen (2012b) method, the Conley, Hansen, and Rossi (2012) method
allows for a prior that the instrument may be positively related, negatively related, or
unrelated with the unobserved error term. However, the additional flexibility of the
Conley, Hansen, and Rossi (2012) method also comes with the caveat that rather than
knowing the sign of the correlation between the instrument and the error term, we must
assume something about the magnitude of the failure of the exclusion restriction.

While Nevo and Rosen (2012b) are based on two assumptions and no further priors
are required (as documented in the two columns of table 2), Conley, Hansen, and Rossi
(2012) bounds are based on parametric priors that can take an unlimited range of values.
Thus, if a researcher uses Conley, Hansen, and Rossi (2012) bounds, it may be useful
or illustrative to visualize bounds based on a range of values for a particular parametric
prior.17 This can be achieved using the graphing options of plausexog. We document
an example of this code below, which produces figure 1a.18

17. A comprehensive example of this procedure is provided in the original Conley, Hansen, and Rossi
(2012, 267) article. We show how to replicate a portion of their results using the plausexog

command in appendix A.2.
18. All code in the article is made available on one of the author’s website, currently at http://www.

damianclarke.net/replication/.

http://www.damianclarke.net/replication/
http://www.damianclarke.net/replication/
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. generate x = 0.33*u + 0.6*z + v

. generate y3 = Beta*x + 0.3*z + u

. quietly plausexog ltz y3 (x=z), omega(0.01) mu(0.3) graph(x)
> graphomega(0 0.0225 0.09 0.2025 0.36 0.5625)
> graphmu(0 0.15 0.3 0.45 0.6 0.75)
> graphdelta(0 0.15 0.3 0.45 0.6 0.75) scheme(sj)
> ytitle(Estimated {&beta}) xtitle({&delta})
> xlabel(0 "0" 0.2 "0.20" 0.4 "0.40" 0.6 "0.60" 0.8 "0.80")
> legend(order(1 "Point Estimate (LTZ)" 2 "CI (LTZ)")) ylabel(0(1)5);
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Figure 1. Plausibly exogenous bounds varying prior assumptions

Figure 1a assumes a Gaussian (normal) prior for γ in the LTZ approach of Conley,
Hansen, and Rossi (2012) but varies the mean and variance. Bounds at each point on
the graph are based on the assumption that γ ∼ N (δ, δ2). Figure 1b compares the
bounds from the Gaussian prior with bounds based on a uniform prior that assumes
γ ∼ U(0, 2 × δ). The true value for γ is 0.3, and the true value for β is 3. This allows
for the comparison of the bounds estimator over a range of priors for γ. We observe (in
figure 1a) that the true parameter is contained in the bounds only when the mean of the
exclusion restriction is sufficiently high to approach the true value and that as in table 2,
the bounds grow as the prior allows for additional probability mass on more extreme
values of the violation of the exclusion restriction. In each case, classical IV imposing
the exact assumption that γ = 0 would result in confidence intervals considerably above
the true population parameter.

5 Conclusion

In this article, we discussed several issues involved in the estimation of bounds when
examining a causal relationship in the presence of endogenous variables. These types of
bounding procedures are likely to be particularly useful given the difficulties inherent
in IV estimation and challenges in convincingly arguing for IV validity or the exclusion
restriction in an IV model.



684 Practical IV estimation

We introduced two procedures for estimating bounds in Stata: imperfectiv for
Nevo and Rosen (2012b)’s “imperfect instrumental variable” procedure and plausexog

for Conley, Hansen, and Rossi (2012)’s “plausible exogeneity”. In documenting these
procedures, we laid out numerous considerations when implementing each bounding
process.

Nevo and Rosen (2012b) bounds are particularly appropriate when one is convinced
of the direction of correlation of an IV with an unobserved error term but not necessarily
its magnitude. The Conley, Hansen, and Rossi (2012) procedure, on the other hand, is
well suited for situations in which the direction of correlation need not be known (but can
be known) but in which the practitioner has some belief over the magnitude of the IV’s
importance in the system of interest. All else constant, Nevo and Rosen (2012b) bounds
perform relatively better when the endogenous variable is less correlated with unobserv-
ables, while Conley, Hansen, and Rossi (2012) bounds perform equally well regardless of
the correlation between the endogenous variable of interest and unobservables. Finally,
while Conley, Hansen, and Rossi (2012) bounds are often based on more parametric or
otherwise stronger assumptions related to the unobservable behavior of IVs, it is sim-
ple to undertake sensitivity testing of estimated bounds’ stability to changes in these
assumptions, and such sensitivity tests are encouraged when dealing with questionable
IVs.

Given that these methodologies loosen IV assumptions in different ways and are well
suited to different types of (classically invalid) IVs, we suggest that these methodologies
should be seen as a complement, rather than a substitute, in the empirical researcher’s
toolbox. The ease of use of each methodology and their ability to recover parameters
under a broad range of failures of IV assumptions suggest that these procedures should
act as a go-to consistency test in the increasingly large number of cases where concerns
exist regarding the veracity of IVs.
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A Empirical examples using original data

We illustrate the performance of each of the imperfectiv and plausexog commands
in Stata by replicating empirical examples from Nevo and Rosen (2012b) and Conley,
Hansen, and Rossi (2012). These examples use data from the original articles19 and the
syntax of each command as explained in section 3.

A.1 Nevo and Rosen’s (2012b) demand for cereal example

Below we replicate the bounds calculated by Nevo and Rosen (2012b) in their empiri-
cal application examining the demand for cereal. We use the imperfectiv command
described above to calculate bounds. This syntax replicates the results in table 2 of
Nevo and Rosen (2012b, 667) and in particular columns 3 and 4, where the imperfect
IV methodology is used.

We first show the case where “assumption 4” is not imposed and output bounds on
both the endogenous and each exogenous variable and then replicate the results assum-
ing that “assumption 4” holds. In the second case, we display only the bounds on the en-
dogenous variable of interest and one exogenous variable as presented in Nevo and Rosen
(2012b), using the exogvars() option to simplify output. We note that in each case, the
results displayed here (for the confidence intervals only) are slightly different from those
reported in the article. Results displayed for the estimators themselves are identical.
This difference owes to the simulation-based procedure followed for inference, described
in Nevo and Rosen (2012b, 665–666).

. use nevorosen2012, clear
(Nevo and Rosen´s (2012) REStat cereal demand example)

. replace addv=addv/10
(986 real changes made)

19. Both of these datasets are available for public download from the Harvard Dataverse; refer to
Rossi, Conley, and Hansen (2012) and Nevo and Rosen (2012a) for full details.



688 Practical IV estimation

. local w addv bd1 bd2 bd3 bd4 bd5 bd6 bd7 bd8 bd9 bd10 bd11 bd12 bd13 bd14
> bd15 bd16 bd17 bd18 bd19 bd20 bd21 bd22 bd23 bd24 dd2 dd3 dd4 dd5 dd6 dd7 dd8
> dd9 dd10 dd11 dd12 dd13 dd14 dd15 dd16 dd17 dd18 dd19 dd20 sfdum

. generate qavgpo=p_bs

. replace qavgpo=p_sf if city==7
(495 real changes made)

. imperfectiv y `w´ (price=qavgp qavgpo), prop5 noassumption exogvars(`w´)

Nevo and Rosen (2012)´s Imperfect IV bounds Number of obs = 990

Variable Lower Bound(CI) LB(Estimator) UB(Estimator) Upper Bound(CI)

price [-11.374594 (-8.6880097 -4.0775182) -2.0114159]
addv [.16464915 (.27997955 .2984391) .42634903]
bd1 [-.04658989 (.31879272 .92096513) 1.2107664]
bd2 [.3517848 (.52184143 .76148481) .91496402]
bd3 [.29607864 (.52176292 .86312992) 1.057621]
bd4 [.09445771 (.36348807 .79478678) 1.0123517]
bd5 [.2194114 (.39085272 -1.2152841) -.10164419]
bd6 [-.23430896 (-.0602687 .19185713) .34736924]
bd7 [.07644934 (.19387363 .31510206) .43441841]
bd8 [-.65082539 (-.52044026 -.36450968) -.23924725]
bd9 [-.51739615 (-.40278766 -.28907719) -.17017835]
bd10 [.79419792 (.95862659 1.1773915) 1.3330057]
bd11 [.33849583 (.53183548 .81935473) .98935052]
bd12 [-.80965492 (-.55555294 -.14994102) .05513481]
bd13 [.6066799 (.70922607 .76195243) .87482299]
bd14 [-.12946468 (.00740146 .17926588) .30958453]
bd15 [-.16953307 (-.07601362 -.06468287) .04021644]
bd16 [-.17496545 (.08218297 -2.6424916) -.69030523]
bd17 [-.64602115 (-.52156319 -.38020246) -.25973429]
bd18 [-.19268084 (-.08270381 .01721605) .13047166]
bd19 [-.3321358 (-.15811579 .09357173) .24547956]
bd20 [.31778867 (.41761932 .29539792) .48054201]
bd21 [-.86633982 (-.68524192 -.42802781) -.27180957]
bd22 [-.00272639 (.09304845 -.07916141) .11525372]
bd23 [-.7086475 (-.48185292 -.12731672) .06207178]
bd24 [-.19987399 (.06647916 .49375976) .70912936]
dd2 [-.10411673 (-.01868476 -.01359145) .07957804]
dd3 [-.06364777 (.02241417 -.05978335) .09186974]
dd4 [-.1838241 (-.09690161 -.28861194) -.10026549]
dd5 [.10764943 (.1961398 -.07747668) .15686027]
dd6 [.0822766 (.17019612 -.11133631) .12466767]
dd7 [.1548558 (.24748077 -.18745247) .14113948]
dd8 [.07232434 (.16762425 -.33668355) .04177717]
dd9 [.04546349 (.14267331 -.40659777) -.00498925]
dd10 [.02818531 (.124874 -.40942752) -.02356694]
dd11 [-.01469474 (.08069586 -.42489117) -.05381292]
dd12 [-.12544516 (-.02937618 -.55191795) -.17312484]
dd13 [-.02303931 (.07812767 -.55719801) -.10269805]
dd14 [.04028046 (.14216755 -.50754673) -.04849103]
dd15 [.03570445 (.13436028 -.44665285) -.0222374]
dd16 [-.08954305 (.00839237 -.55593204) -.14027698]
dd17 [.04099528 (.13694727 -.38298065) .00307687]
dd18 [.05112385 (.14315789 -.27322378) .03860742]
dd19 [.05634496 (.15135756 -.34413822) .02660973]
dd20 [-.06413548 (.03281487 -.51054805) -.10844663]
sfdum [-.20866809 (-.13629732 -.90239378) -.35730793]
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. imperfectiv y `w´ (price=qavgp qavgpo), prop5 exogvars(addv)

Nevo and Rosen (2012)´s Imperfect IV bounds Number of obs = 990

Variable Lower Bound(CI) LB(Estimator) UB(Estimator) Upper Bound(CI)

price [-11.374594 (-8.6880097 -5.9886321) -3.5545173]
addv [.16464915 (.27997955 .29078735) .42368452]

A.2 Conley, Hansen, and Rossi’s (2012) 401(k) example

Below we replicate the plausibly exogenous bounds calculated by Conley, Hansen, and
Rossi (2012) in their empirical application examining the effect of participation in a
401(k) on asset accumulation. We use the plausexog command described in section 3
to calculate the LTZ bounds.

. use conleyetal2012
(Conely et al´s (2012) REStat for 401(k) participation)

. local xvar i2 i3 i4 i5 i6 i7 age age2 fsize hs smcol col marr twoearn db pira
> hown

. plausexog ltz net_tfa `xvar´ (p401 = e401), omega(25000) mu(0) level(.99)
> vce(robust) graph(p401) graphmu(0 1000 2000 3000 4000 5000)
> graphomega(0 333333.33 1333333.3 3000000 5333333.3 8333333.3)
> graphdelta(0 2000 4000 6000 8000 10000)
Estimating Conely et al.´s ltz method
Exogenous variables: i2 i3 i4 i5 i6 i7 age age2 fsize hs smcol col marr twoearn
> db pira hown
Endogenous variables: p401
Instruments: e401

Conley et al. (2012)´s LTZ results Number of obs = 9915

Coef. Std. Err. z P>|z| [99% Conf. Interval]

p401 13222.14 1926.609 6.86 0.000 8259.53 18184.76
i2 962.1541 700.6402 1.37 0.170 -842.5755 2766.884
i3 2190.277 992.1113 2.21 0.027 -365.2329 4745.786
i4 5313.626 1420.208 3.74 0.000 1655.411 8971.84
i5 10400.47 2017.663 5.15 0.000 5203.31 15597.62
i6 21859.43 2239.623 9.76 0.000 16090.55 27628.32
i7 62464.83 5871.894 10.64 0.000 47339.83 77589.82
age -1811.558 536.1392 -3.38 0.001 -3192.561 -430.555

age2 28.68893 6.712006 4.27 0.000 11.39995 45.97791
fsize -724.4649 378.4213 -1.91 0.056 -1699.214 250.2839

hs 2761.253 1244.257 2.22 0.026 -443.742 5966.247
smcol 2750.739 1643.95 1.67 0.094 -1483.795 6985.273

col 5161.979 1926.959 2.68 0.007 198.461 10125.5
marr 4453.186 1853.123 2.40 0.016 -320.1425 9226.515

twoearn -15051.59 2125.758 -7.08 0.000 -20527.18 -9576.003
db -2750.19 1207.883 -2.28 0.023 -5861.49 361.1102

pira 31667.72 1730.29 18.30 0.000 27210.79 36124.65
hown 4200.889 767.7217 5.47 0.000 2223.369 6178.409
_cons 18929.86 9755.124 1.94 0.052 -6197.679 44057.39
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The output displayed above documents bounds on each model parameter. Bounds
on the endogenous variable of interest (p401) are displayed at the top of the output
table and agree with those displayed in figure 2 of Conley, Hansen, and Rossi (2012).

Below we display the output from replicating the full figure 2 of Conley, Hansen,
and Rossi (2012) with bounds across a range of priors using the LTZ approach and the
graphing capabilities of plausexog.
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Figure A.1. Replicating figure 2 for 95% confidence intervals with positive prior

B A simple simulated example with multiple instruments

In simulations presented in section 4 and described in the system of equations (8), we
considered a case where one plausibly exogenous or imperfect IV (z) exists. To see how
this situation is generalized to multiple IV cases, we document a situation below with
two IVs suffering similar problems to those described in the article. In this case, two IVs
(z1 and z2) exist, both of which do not satisfy the exclusion restriction. The violation of
the exclusion restriction is larger for the second instrument, and so in both the UCI and
LTZ implementations of plausexog, the priors over the sign of γ for each IV capture this
DGP. In the case of the UCI method, this is accommodated with various (different) values
provided in the gmax() option, allowing the violation of the exclusion restriction to reach
up to 0.2 for the first instrument and up to 0.4 for the second instrument. Similarly,
in the LTZ approach, a normal prior is assumed, and the mean value is assumed to be
0.1 for the first instrument, while up to 0.2 for the second instrument. In the case of
the imperfectiv examples, no special considerations need be made, because we simply
assume that both instruments are correlated in the same (in this case positive) direction
with the unobserved error term. Full output in each of the four columns examined in
table 2 is provided below.
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. set obs 1000
number of observations (_N) was 0, now 1,000

. foreach var in u z1 z2 v w {
2. generate `var´=rnormal()
3. }

. generate x = -0.6*z1 - 0.40*z2 + 0.33*u + v

. generate y1 = 3.0*x + 0.10*z1 + 0.20*z2 + u

. plausexog uci y1 (x = z1 z2), gmin(0 0) gmax(0.2 0.4)
Estimating Conely et al.´s uci method
Exogenous variables:
Endogenous variables: x
Instruments: z1 z2

Conley et al (2012)´s UCI results Number of obs = 1000

Variable Lower Bound Upper Bound

x 2.6148176 3.3474023
_cons -.09554232 .05332347

. plausexog ltz y1 (x = z1 z2), mu(0.1 0.2) omega(0.01 0.02)
Estimating Conely et al.´s ltz method
Exogenous variables:
Endogenous variables: x
Instruments: z1 z2

Conley et al. (2012)´s LTZ results Number of obs = 1000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

x 2.988505 .1709607 17.48 0.000 2.653428 3.323582
_cons -.0196366 .0363677 -0.54 0.589 -.0909159 .0516428

. imperfectiv y1 (x=z1 z2), noassumption4

Nevo and Rosen (2012)´s Imperfect IV bounds Number of obs = 1000

Variable Lower Bound(CI) LB(Estimator) UB(Estimator) Upper Bound(CI)

x [2.6646757 (2.788265 3.1014073) 3.1493633]

. imperfectiv y1 (x=z1 z2)

Nevo and Rosen (2012)´s Imperfect IV bounds Number of obs = 1000

Variable Lower Bound(CI) LB(Estimator) UB(Estimator) Upper Bound(CI)

x [2.6636537 (2.788265 2.9651037) 3.0330018]


