%‘““‘“\N Ag Econ sxes
/‘ RESEARCH IN AGRICUITURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

‘l) Check for updates

The Stata Journal (2018)
18, Number 3, pp. 503-516

Graphing each individual’s data over time

Mark D. Chatfield
University of Queensland
Brisbane, Australia
m.chatfield@Quq.edu.au

Abstract. Graphing each individual’s data over time (in separate graphs) can be a
worthwhile approach in exploring longitudinal and panel datasets. This especially
applies for datasets where several variables change over time and where there
are many possible time points, for example, administrative datasets and patient
safety profiles in clinical trials. Studying a few individuals’ graphs closely can
provide insight into the nature and quality of the data, generate hypotheses, and
inform data analysis. Selecting a few typical or unusual graphs can make for
powerful presentations at meetings. I give examples of graphing a single variable
and multiple variables over time for each individual, and I detail associated Stata
coding tips and tricks.

Keywords: gr0074, longitudinal data, panel data, time series, graphics, twoway,
scatter, putdocx, superimposition, xtline, patient profile, profile plot, developmen-
tal trajectory

1 Introduction

A good statistical principle is to familiarize yourself with and explore a new dataset
before doing any analysis. Graphing raw data can be a useful way to explore the data.
It can lead to a greater understanding of the data for you and your research team. For
example, it can shed light on the nature and quality of the data (missing data patterns,
outliers, etc.), and it can help you to choose the appropriate direction for your analysis,
avoiding wasted time and frustration.

Cox (2010) discusses graphing data with an emphasis on comparisons between indi-
viduals or between groups of individuals. Graphing each individual’s data over time (in
separate graphs) may be a neglected approach in exploring datasets. By its nature, this
approach emphasizes within- (rather than between-) individual differences. Studying
graphs of a few individuals can deepen your understanding of the data and generate
ideas as to what questions you might ask of the data and how you might analyze the
data. In datasets with a lot of information on several individuals over time, graph-
ing raw data can be challenging. Symbols and lines can overlay each other and make
graphs hard to read. One solution is to produce a separate graph for each individual.
In situations where little information exists (that is, just one or two variables) on a
small number of individuals, this can satisfactorily be achieved using the by () option
of twoway. In the rest of this article, I provide code with comments on how such graphs
might be produced and collated in a more general setting.

© 2018 StataCorp LLC gro074

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1536867X1801800302&domain=pdf&date_stamp=2018-09-01

504 Graphing each individual’s data over time

1.1 Dataset used in examples

We will use data from a subsample of the National Longitudinal Survey of Labor Market
Experience (Center for Human Resource Research 1989) on young women aged 14-26
years in 1968. Women were surveyed in each of the 21 years from 1968 to 1988, except
for 1974, 1976, 1979, 1981, 1984, and 1986. nlswork.dta, often used in the Stata 15
[XT] Longitudinal-Data/Panel-Data Reference Manual, contains data on 4,711 women
in years when they were employed, not enrolled in school and having completed their
education, and made wages in excess of $1 per hour but less than $700 per hour. An
individual woman in the dataset has one row of data for each year she was surveyed.
The year is coded as a two-digit year ranging from 68 to 88. The dataset contains data
on how wages and related factors change over time:

use http://www.stata-press.com/data/r15/nlswork.dta
xtset
xtdescribe

To reproduce figures 1 and 2, you will need to set the Stata Journal graph scheme:
set scheme sj

In Stata for Windows to create multiple graphs as tabs within one window (rather
than as separate windows), you might want to use the setting

set autotabgraphs on

2 Simple example—Graphing a single variable over time
for each individual

2.1 Preparatory work

As a first example, suppose we wish to produce graphs of wages over time for each
individual. We might plot wages on the y axis (with linear scaling) and years on the x
axis. We examine the distribution of wages. Because some wages are so much higher
than the rest of the data, we truncate wages at $20 per hour.

generate wage = exp(ln_wage)

summarize wage, detail

generate wage_trunc = min(wage, 20) if !missing(wage)
label variable wage_trunc "Wage ($/hour)"

To demonstrate how to graph each individual’s data over time in separate graphs,
we do not need graphs for all 4,711 individuals in this dataset. We now restrict the

dataset to the first six individuals.

keep if idcode <= 6

M. D. Chatfield 505

2.2 Code for graphing a single variable over time for each individual

putdocx clear
putdocx begin, landscape
putdocx paragraph

levelsof idcode, local(idcodes) clean
foreach id of local idcodes {

scatter wage_trunc year if idcode == “id~", connect(l) sort ///
ylabel(0 2 4 6 8 10 12 14 16 18 20 ">20", angle(horizontal)) ///
yscale(range(0 20.5)) /17
xlabel(68 "1968" 73 "1973" 78 "1978" 83 "1983" 88 "1988") ///
xmtick(68 69 70 71 72 73 75 77 78 80 82 83 85 87 88, grid notick) ///
xscale(range(67.5 88.5)) /17
title("id “id™") /17
graphregion(color(white)) ///

name (g id~, replace)

graph export "temp_graph.png", replace
putdocx image "temp_graph.png"

}
putdocx save "Example 1. Individual Graphs.docx", replace

erase "temp_graph.png"

The result is six graphs, one of which is shown in figure 1.

id 5

=20+

18

16

_ 144
5

2 121

3 10,
&

© 8-
=

6,

4,

2,

0,

T T T T T
1968 1973 1978 1983 1988
interview year
Figure 1. A graph of wage over time for one individual (idcode == 5)

2.3 Comments on code

Before explaining the meaning of the code, I will comment on how the code was devel-
oped. The first line of code in section 2.2 was not written first! Rather, I wrote code in
the following order: First, I wrote code to produce a graph for one specific individual.

506 Graphing each individual’s data over time

Second, I generalized and added to the code so that a separate graph would be produced
for each individual. Finally, I added code to save the graphs into a .docx file. I now
comment on the code in that order.

After deciding to plot an individual’s data on a connected scatterplot, I wrote basic
code for the first individual:

scatter wage_trunc year if idcode == 1, connect(l) sort
It is often desirable to have the same labels and scaling of axes for each graph. I
decided upon the following options:
e y axis: the values to reflect the truncation of wages at $20 per hour, and for major

ticks, (horizontal) labels and grid lines to appear from 0 to > 20 in steps of 2.

ylabel(0 2 4 6 8 10 12 14 16 18 20 ">20", angle(horizontal)) ///
yscale(range(0 20.5)) /17

e 1 axis: major ticks and labels every 5 years from 1968 to 1988 and grid lines to
appear only for the 15 years of data collection.

xlabel(68 "1968" 73 "1973" 78 "1978" 83 "1983" 88 "1988") ///
xmtick(68 69 70 71 72 73 75 77 78 80 82 83 85 87 88, grid notick) ///
xscale(range(67.5 88.5)) 11/

Note that the range of the axes needed to be expanded so that grid lines appeared
at y =20, x = 68, and x = 88.

In case some graphs get printed and as a personal preference, I changed the line and
fill color and opacity of the outer graph region (which is blue in scheme s2color) to
white:

graphregion(color(white)) ///

To produce a graph for each individual, I created a local macro containing all
idcodes, used a loop to run the same code for each individual, and generalized the
code (to refer no longer to idcode == 1 but to idcode == ‘id’):

levelsof idcode, local(idcodes) clean
foreach id of local idcodes {
(commands referring to ~id")

}

Note that while the option clean makes no difference in this example (because
idcode is numeric), in other datasets, an ID variable will be string format (with no
spaces), and the code in this article will work fine as long as the option clean is used
to remove double quotes and ‘id’ is enclosed in double quotes where appropriate, for
example, if idcode == "‘id’".

I inserted an individual’s ID into the title of his or her graph:

title("id ~id"")

M. D. Chatfield 507

To see multiple graphs within Stata as they are created (and re-created), I used the
name () option:

name (g id~, replace)
To put all graphs into a .docx file, I used the following code:

putdocx clear
putdocx begin, landscape
putdocx paragraph

(inside foreach loop)
graph export "temp_graph.png", replace
putdocx image "temp_graph.png"

putdocx save "Example 1. Individual Graphs.docx", replace

The first line closes an open document if one had previously been created (with
putdocx begin) without saving, or else does nothing. The second line creates a fresh
document for export. (Stata 15.1 can have only one document open and ready to
be saved as a .docx file at any one time.) The third line adds a paragraph to the
document, which is necessary so that images can then be added (images can be added
only to paragraphs). Inside the foreach loop, the graph is written to a .png file before
the .png file is immediately added to the document. For the next idcode, the .png file
is overwritten, and the .png file is then added to the document. Finally, the document
is closed and saved as “Example 1. Individual Graphs.docx”, overwriting the .docx
file if it already exists. See [P] putdocx or [P] putpdf for more on exporting graphs to
a .docx or .pdf file.

Finally, having served its purpose, the .png file was erased from disk:

erase "temp_graph.png"

3 A more complicated example—Graphing multiple vari-
ables over time for each individual

3.1 Preparatory work

Suppose we wish to present the data on the following variables shown in the describe
results:

use http://www.stata-press.com/data/r15/nlswork, clear

generate wage = exp(ln_wage)

keep idcode tenure hours union msp race grade age year wage

generate death_yr = 83 if idcode==5 // variable created for illustration

508 Graphing each individual’s data over time

. describe

Contains data from http://www.stata-press.com/data/r15/nlswork.dta

obs: 28,534 National Longitudinal Survey.
Young Women 14-26 years of age
in 1968
vars: 11 27 Nov 2016 08:14
size: 627,748
storage display value
variable name type format label variable label
idcode int %8.0g NLS ID
year byte %8.0g interview year
age byte %8.0g age in current year
race byte %8.0g racelbl race
msp byte %8.0g 1 if married, spouse present
grade byte %8.0g current grade completed
union byte %8.0g 1 if union
tenure float %9.0g job tenure, in years
hours int %8.0g usual hours worked
wage float %9.0g
death_yr float %9.0g

Sorted by: idcode year
Note: Dataset has changed since last saved.

The first thing to do is to discover which variables vary with year within an individual
and which do not. In this example, because the dataset has been xtset and there are
no string variables, one can use the command xtsum. Variables that do not change
with year will have within standard deviation of 0. More generally, one can use the
community-contributed command distinct (Cox and Longton 2008) to check whether
variables are constant within an individual. The same numbers in the output below tell
us that grade is constant within idcode. The only other variables that are constant
within idcode are race and death_yr.

. distinct idcode

total distinct

idcode 28534 4711

. distinct idcode grade, joint missing

total distinct

(jointly) 28534 4711

Next, we consider the four time-varying continuous variables: wage, tenure, hours,
and age. Which variable or variables shall we plot on which axis? Do we use log
scales? Should we treat a continuous variable or variables the same as we would a
string variable? It was following this last line of thought that, after some deliberation,
I decided to add information in the numeric variable age as text near the x axis. (Age

M. D. Chatfield 509

does not correspond perfectly with year because a respondent is not interviewed exactly
one year from the date of the last interview.) Next, I examined the values of the other
three variables and decided to use linear scales and truncate large values. I also decided
that wage and tenure could share the same y axis (ranging from 0 to 20).

summarize wage, detail
generate wage_trunc = min(wage, 20) if !missing(wage)
label variable wage_trunc "Wage ($/hour)"

summarize tenure, detail
label variable tenure_trunc "Tenure (years)"
generate tenure_trunc = min(tenure, 20) if !missing(tenure)

summarize hours, detail
generate hours_trunc = min(hours, 60) if !missing(hours)
label var hours_trunc "Usual hours worked"

Next, we consider the two time-varying categorical variables union and msp. We
examine the values and decide the letters “U” for union, “M” for married, and “-” for
neither in a union nor married would be nice on a graph.

tabulate union, missing

generate lab_union = "U" if union==
replace lab_union = "-" if union==
tabulate msp, missing

generate lab_married = "M" if msp ==
replace lab_married = "-" if msp ==

Let us now consider the nontime-varying variables. We decide to draw a vertical
line on an individual’s graph corresponding to death_yr if that information exists. We
can present information on grade and race in a title near to the individual’s idcode.
Because the values of race are labeled, we create a variable containing the value labels
for race, which will make adding this information to the graphs easier.

decode race, generate(race_str)
As in the simple example, the dataset is now restricted to the first six individuals.

keep if idcode <= 6

3.2 Code for a graph of multiple variables over time for each indi-
vidual

generate y_union = 23
generate y_married = 26
generate y_age = 0
putdocx clear

putdocx begin, landscape
putdocx paragraph

levelsof idcode, local(idcodes) clean
foreach id of local idcodes {

local xline ""
local xlinetext ""

510 Graphing each individual’s data over time

summarize death_yr if idcode == “id~
if r(W) >0 {
local death_year = r(min)
if r(min) <= 88 {
local xline "xline(death_year)"
local xlinetext ~"text(21 “death_year” "Died")"~

}
}
levelsof race_str if idcode == “id~, local(race_info) clean
levelsof grade if idcode == “id~, local(grade_info)
twoway (scatter wage_trunc tenure_trunc year, connect(l 1) sort /17
clwidth(thick) msymbol(0 T)) /17
(scatter y_union y_married year, msymbol(i i) ///
mlabel(lab_union lab_married) mlabposition(0 0)) 11/
(scatter y_age year, msymbol(i) mlabel(age) mlabposition(6) ///
mlabgap(*0.1) mlabcolor(gs8)) 11/
(scatter hours_trunc year, yaxis(2) connect(l) sort msymbol(Sh) 11/
clpattern(dash)) 11/
if idcode == ~id~", /17
xlabel(68 "1968" 73 "1973" 78 "1978" 83 "1983" 88 "1988", notick ///
labsize(small) labgap(*6)) /17
xmtick(68 69 70 71 72 73 75 77 78 80 82 83 85 87 88, grid notick) ///
“xline” “xlinetext” /17
xscale(range(67.5 88.5)) /17
plotregion(margin(zero)) 11/
xtitle("") 17/
text(-1 66 "Age", size(small) color(gs8)) /17
text(-2.7 66 "Year", size(small)) /17
graphregion(color (white)) /17
legend(order(1 - " "6 2) span cols(3)) ///
ytitle("e Wage ($/hour) " "A Tenure (years) ") ///
ytitle("[Usual hours worked ", axis(2)) ///
title("id “id"") subtitle("("race_info~”, grade “grade_info~)") ///
ylabel(0 2 4 6 8 10 12 14 16 18 20 ">20" 23 "Union?" 26 "Married?", ///
angle(horizontal)) /17
ylabel(0 6 12 18 24 30 36 42 48 54 60 "60+", axis(2) ///
angle(horizontal)) /17
yscale(range(0 27)) yscale(range(0 81) axis(2)) ///

name(g id~, replace)
graph export "graph.png", replace
putdocx image "graph.png"
}
putdocx save "Example 2. Individual Graphs.docx", replace

erase "graph.png"

The result is six graphs, one of which is shown in figure 2.

M. D. Chatfield 511

id5
(white, grade 12)
Married?+- - - - - - - M M M M
Union? -
=20 Dipd 60+3
<% 18+ 54 g
38 16+ F48 2
> Vg s rese——B——Ba-——a——¢ r42 v
Se 12 36 3
o2 10 F30 <
©$ =
=2 8- F24 3
o< 6*/“‘/\//_' L1s 3
44 F12 O
m ~ L
Age 222324252627 29 3132 34 36
Year 1968 1973 1978 1983 1988
—— \\/age ($/hour) —-——B-—- Usual hours worked
—+—— Tenure (years)
Figure 2. A graph of wage and other factors over time for one individual (idcode == 5)

3.3 Comments on code

I will now comment on code that is additional to that used in the simple example.

I plotted the variables wage_trunc and tenure_trunc on the same y axis:

(scatter wage_trunc tenure_trunc year, connect(l 1) sort ///
clwidth(thick) msymbol(0 T)) /17

Using the same y axis, I added invisible markers with visible marker labels for the two
time-varying categorical variables union and msp. I specified particular heights on the
y axis for this information so that it appeared above the presentation of the continuous
variables wage_trunc and tenure_trunc (which range from 0 to 20). I substituted text
for labels on the y axis.

generate y_union = 23
generate y_married = 26

(scatter y_union y_married year, msymbol(i i) ///
mlabel(lab_union lab_married) mlabposition(0 0)) /17

, ylabel(0 2 4 6 8 10 12 14 16 18 20 ">20" 23 "Union?" 26 "Married?", ///
angle(horizontal)) i

In the same way, I added invisible markers with visible labels underneath for age
(at y = 0), which gave the impression that two scales (age and year) were simultane-
ously used on the z axis. To make the graph tidy, I used some options that included
eliminating the margin between the axes and the plot region.

512 Graphing each individual’s data over time

generate y_age = 0

(scatter y_age year, msymbol(i) mlabel(age) mlabposition(6) ///
mlabgap(*¥0.1) mlabcolor(gs8)) ///

, plotregion(margin(zero)) /17
xtitle("") /17
text(-1 66 "Age", size(small) color(gs8)) /17
text(-2.7 66 "Year", size(small)) /17

I plotted the variable hours_trunc on the y axis on the right by specifying yaxis(2).
This axis was labeled and scaled in such a way that the grid lines for the first y axis
nicely corresponded with labels on the second y axis. (Note that unless axis(2) is
specified, Stata thinks y-axis options apply to the first axis.)

(scatter hours_trunc year, yaxis(2) connect(l) sort msymbol(Sh) ///
clpattern(dash)) /77

, ylabel(0 6 12 18 24 30 36 42 48 54 60 "60+", axis(2) ///
angle(horizontal)) i
yscale(range(0 27)) yscale(range(0 81) axis(2)) /17

When several continuous variables are plotted on y axes, it can be challenging to
communicate which variables are which and to which axis they relate. I attempted to
achieve this by using a legend with the two variables associated with the left y axis
appearing in the left side of the legend and with the one variable associated with the
right y axis appearing in the right side of the legend. Perhaps unnecessarily so, I also
used the option ytitle(), which does not add symbols and connecting lines as nicely
as legend (). To find the circle, triangle, and square symbols, please see the Appendix.

legend(order(1 - " "6 2) span cols(3)) /17
ytitle("e Wage ($/hour) " "A Tenure (years) ") 11/
ytitle("d Usual hours worked ", axis(2)) ///

To add a vertical line for death_yr, I used the following code. It is important that the
local macros ‘xline’ and ‘xlinetext’ do not contain information from the previous
ID, hence the first two lines above resetting the macro to be empty. If death_yr is not
missing for an individual and is no later than 1988, then the macros are not empty, and
they will produce a vertical line at that time, with the text “Died”. It is a good idea
to verify that death information from individual 5 has not accidentally been carried
forward and plotted on the graph of individual 6.

local xline ""
local xlinetext ""
summarize death_yr if idcode == “id~
if r(N) >0 {
local death_year = r(min)
if r(min) <= 88 {
local xline "xline(death_year)"
local xlinetext ~"text(21 ~death_year ™ "Died")"~

}

twoway ..., "xline” “xlinetext~

Finally, to add the information from i) a string and ii) a numeric nontime-varying
variable to the subtitle, I used the following code. I used the clean option of levelsof

M. D. Chatfield 513

so that the resulting local macro did not contain compound double quotes for string
variables.

levelsof race_str if idcode == “id~, local(race_info) clean
levelsof grade if idcode == “id~, local(grade_info)
twoway ..., subtitle("(“race_info~”, grade “grade_info™)")

4 Concluding remarks

I provided examples to share thought processes and coding that will be useful for many
datasets, especially datasets where several variables change over time and where there
are many possible time points (for example, some events and measures can take place on
any day). Exploration of administrative datasets and patient safety profiles in clinical
trials are two examples. Much is possible using Stata’s two-way graphs and a spoonful
of creativity. More detail on possibilities can be found in Stata’s PDF documentation:
[G-2] graph twoway and [G-2] graph twoway scatter. I provide a few more tips in
the Appendix. Experimentation is important to see what is effective for a particular
dataset and a particular audience.

Such graphs can take a little time to explain to your collaborators, and looking
closely at a few graphs can also take a bit of time. However, my experience is such
that it is time well spent for you and your collaborators (study a dozen or so graphs
together if you can). One can often see many individual stories, and one can select a few
typical or unusual graphs for a powerful presentation at meetings. I hope this article
encourages and empowers you to take a little time to explore such datasets graphically.
What will be revealed as you do? And what ideas will be generated?

5 Acknowledgments

I am grateful for suggestions on drafts of the article by Satomi Okano, Karen Hay, and
Gunter Hartel.

6 References

Center for Human Resource Research. 1989. National Longitudinal Survey of Labor
Market Experience, Young Women 14-26 years of age in 1968. Ohio State University.

Cox, N. J. 2010. Speaking Stata: Graphing subsets. Stata Journal 10: 670-681.

Cox, N. J., and G. M. Longton. 2008. Speaking Stata: Distinct observations. Stata
Journal 8: 557-568.

514 Graphing each individual’s data over time

A Appendix
Some other useful tips:

1. Append rather than merge. Sometimes, information on an individual lies in dif-
ferent datasets. Provided that a common ID variable appears in these datasets,
the datasets can be combined for the purpose of creating graphs using append
rather than merge. This will be a relief for situations where the data are not easy
to merge.

2. To produce graphs for a subset of (approximately 1%) of randomly chosen indi-
viduals, type

set seed 2476247
generate random_number = runiform()
levelsof idcode if random_number < 0.01, local(idcodes)

3. You can use the command quietly to suppress some output in the Results win-
dow.
4. How to find symbols not on the keyboard?

For the greater than or equals to symbol:

display ustrunescape("\u2265")

For the black circle:

display ustrunescape ("\u25CF")

For the black triangle:

display ustrunescape("\u25B2")

For the white square:

display ustrunescape("\u25A1")

For more symbols, see
https: // www.rapidtables.com / code / text / unicode-characters.html or
http: // unicode.org / charts / #symbols.

Rather than copying and pasting the symbol from the Results window into the
do-file, users might instead create a local macro containing the symbol and use
the local macro in titles and labels. (Some symbols do not display properly in the
Results window or do-file where typically the Courier New font is used and they
appear as a box.)

5. An option that may be useful when there are many time-varying continuous vari-
ables to be plotted is to plot a variable or variables on what looks like another
graph above or below the current graph. For example, the following code added
into the right places in the second example will plot hours_trunc using the first
y axis in the as-yet-unused space where y ranges from 30-50. Figure 3 shows one

https://www.rapidtables.com/code/text/unicode-characters.html
http://unicode.org/charts/#symbols

M. D. Chatfield 515

of the graphs produced. Another way of creating similar graphs would be to use
graph combine.

generate hours_trunc_trick = 30 + hours_trunc/3

(scatter hours_trunc_trick year, connect(l) sort msymbol(sh) ///
clpattern(dash)) ///
, ylabel(0 2 4 6 8 10 12 14 16 18 20 ">20" 23 "Union?" 26 "Married?" ///
30 "0" 40 "30" 50 "60+", angle(horizontal)) ///
yline(30, lcolor(gs8)) ysize(6) legend(off) /17
ytitle("e Wage ($/hour) O Usual hours worked" ///
"A Tenure (years) ") /17
id 5
(white, grade 12)
60+
o
Q
X A A S A S A
o
2
2 304
=
S|
<
©
=
]
-]
O
0
Married?+- - - - - - - MM M M
Union? - - - -
Died 15jan1983
=20+
184
—T 164
33 144
£¢
@E 124
%}g 104
zF 81
([6-
4A
24 A\ -
20 YN\

Agg 222324252627 29 3132 34 36
1968 1973 1978 1983 1988
Year
Figure A.3. A graph of wage and other factors over time for one individual (idcode

== 5), plotting hours_trunc above the other data on the one y axis

516 Graphing each individual’s data over time

6. To create a local macro consisting of a formatted date (so a date can be added
into the graph as text), type

levelsof dod if idcode == “id~, local(dodnum)
local dodformatted : display %td ~dodnum~”

T used the above code (with the below code) in creating figure 3.

generate dod = 8415 // variable created for illustration
local xlinetext ~"text(21 “death_year "Died ~dodformatted ")"~

About the author

Mark Chatfield is an applied biostatistician and has enjoyed using Stata almost exclusively for
15 years. Work was done on this article while working in the Statistics Unit, QIMR Berghofer
Medical Research Institute, Brisbane, Australia.

