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Abstract. Missing outcome data can invalidate the results of randomized trials
and their meta-analysis. However, addressing missing data is often a challenging
issue because it requires untestable assumptions. The impact of missing outcome
data on the meta-analysis summary effect can be explored by assuming a rela-
tionship between the outcome in the observed and the missing participants via an
informative missingness parameter. The informative missingness parameters can-
not be estimated from the observed data, but they can be specified, with associated
uncertainty, using evidence external to the meta-analysis, such as expert opinion.
The use of informative missingness parameters in pairwise meta-analysis of ag-
gregate data with binary outcomes has been previously implemented in Stata by
the metamiss command. In this article, we present the new command metamiss2,
which is an extension of metamiss for binary or continuous data in pairwise or
network meta-analysis. The command can be used to explore the robustness of
results to different assumptions about the missing data via sensitivity analysis.
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1 Introduction

Missing outcome data are a common threat to the validity of randomized trials and,
subsequently, their meta-analysis. Because missing data are by definition not present
in the dataset, addressing them requires making untestable assumptions. Researchers
undertaking meta-analyses typically ignore missing data and analyze complete data
only; we refer to such an analysis as an available cases analysis (ACA).

Assumptions about missing data were classified by Little and Rubin (2002). In the
randomized trial setting, data are missing completely at random if the probability of a
missing outcome is unrelated to any baseline variables, randomized group, or outcome.
Data are missing at random (MAR) if the probability of a missing outcome is unrelated
to the outcome, conditional on baseline variables and a randomized group. With no
baseline variables, MAR means that missing outcomes do not differ systematically from
observed outcomes in the same randomized group. An ACA therefore assumes MAR.
Data are missing not at random (MNAR) if they are not MAR: that is, if the probability
of a missing outcome is related to the outcome, conditional on baseline variables and a
randomized group. If data are MNAR, then an ACA is likely to be biased.

Here we consider randomized trials with an outcome measured at a single time point,
for which outcome data are unavailable for some of the participants within the trial.
Furthermore, we focus on approaches that are based on aggregate (summary) data from
the trial, such as are often available from journal articles, and that are typical of the
data available for a meta-analysis.

The use of pattern mixture models has been previously suggested for handling miss-
ing outcome data in meta-analysis of binary outcomes with aggregate data (White,
Higgins, and Wood 2008). This approach is based on the informative missingness odds
ratio (IMOR), which relates the odds of outcome in the missing data to that in the
observed data. The approach can allow for uncertainty in the IMOR and has been
implemented in Stata in the metamiss command.

Parameters like the IMOR that measure departure from a MAR assumption have been
called sensitivity parameters by Kenward, Goetghebeur, and Molenberghs (2001); we
follow White, Kalaitzaki, and Thompson (2011) in calling them informative missingness
parameters (IMPs). Mavridis et al. (2015) extended the IMP framework to meta-analyses
with continuous outcomes by defining IMPs that relate the mean of the outcome between
the missing and the observed participants.

Network meta-analysis (NMA) combines the results of multiple direct comparisons
(Salanti et al. 2008) and is therefore prone to the same biases as pairwise meta-analysis.
More specifically, incorrectly handling missing data in one or more comparisons of a NMA

could affect all relative effects in which this particular comparison is involved either
directly or indirectly (Salanti et al. 2014). Methods used to allow for IMPs in pairwise
meta-analysis apply directly to NMA when only two-group trials are included. In the
presence of multigroup trials, the “adjusted” covariance between relative effects from
the same study also needs to be estimated (Mavridis et al. 2015). The application of



718 Informative missingness in aggregate data meta-analysis

IMPs in NMA with binary outcome data has been exemplified in a Bayesian framework
by Spineli et al. (2013).

The aim of this article is to introduce a new Stata command, metamiss2, with new
syntax, which extends metamiss by handling continuous and binary outcome data and
by working in NMA and pairwise meta-analysis. metamiss2 performs a two-stage anal-
ysis: stage 1 estimates the “adjusted” study-specific relative effects and their variances
and covariances, and stage 2 calls metan (Harris et al. 2008) or metaan (Kontopantelis
and Reeves 2010) (for pairwise meta-analysis) and network meta (White 2015) (for
NMA) to obtain the summary effects.

2 Theory

This section describes stage 1 of the analysis, which estimates the treatment effects
and their variances for each study allowing for MNAR data. The second stage combines
the first-stage estimates using a standard meta-analysis procedure (Palmer and Sterne
2016) and is not further described here. We describe first the case of binary data and
then of continuous data. Our notation follows that of Mavridis et al. (2015) but is
extended to cover the case of binary data as in White, Higgins, and Wood (2008).

2.1 Binary outcome data

We assume we have data from multiple studies, each with two groups denoted T (treat-
ment) and C (control). We assume that in the jth group of the ith study (j = C, T ),
we know nij , the number of participants providing outcome data, and mij , the number
of participants with missing outcome data. We also assume we know rij , the number
of observed successes.

The model for the observed data is rij ∼ Bin(nij , χ
obs
ij ). Then, χobs

ij is the “true”
mean of the observed outcomes in the jth group of the ith study.

Our measure of interest in the ith study is defined as

βi = f(χtot
iT )− f(χtot

iC ) (1)

where χtot
ij is the true mean outcome of all (observed and missing) outcomes in the jth

group of the ith study. The link function f(·) may be the identity function f(x) = x (so
that the measure of interest is the risk difference), the logarithmic function f(x) = log(x)
(giving the log risk-ratio), or the logit function f(x) = logit(x) (giving the log odds-
ratio).

In this simple setting, a MAR assumption would imply that χtot
ij = χobs

ij (Little and
Rubin 2002). Under MNAR, we view the mean outcome of all participants as a mixture
of outcomes in the observed and in the missing participants. We write

χtot
ij = πijχ

obs
ij + (1− πij)χ

miss
ij (2)
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where πij ∼ Beta(nij ,mij) is the probability of a participant being observed in the data
and χmiss

ij is the (unobserved) mean outcome in the missing data. We introduce the IMP

as

λij = g(χmiss
ij )− g(χobs

ij ) (3)

We consider the case where g is the logit function g(x) = logit(x) and the IMP is
the log of IMOR (White, Higgins, and Wood 2008). When λij = 0, we assume that
the outcome in the missing participants is on average the same as the outcome in the
observed participants. This is equivalent to assuming MAR. We quantify departures
from the MAR assumption by allowing λij to assume nonzero values.

2.2 Continuous outcome data

If the outcome is continuous, we assume we again know nij , mij . We also know xobs
ij ,

the mean of the observed outcomes, and sij , the standard deviation (SD) of the observed
outcomes.

The model for the observed data is xobs
ij ∼ N(χobs

ij , s2ij). The measure of interest is
obtained from (1), where f may be the identity function f(x) = x (giving the mean
difference) or the logarithmic function f(x) = log(x) (giving the log ratio of means);
alternatively, f(x) may be replaced by fi(x) = x/σi, where σi is the pooled SD in the
ith study, giving the standardized mean difference (White and Thomas 2005).

The IMP (λij) is then expressed using (2) and (3). For a continuous outcome, g may
be the identity function g(x) = x (so the IMP is the informative missingness difference
of means or IMDOM) or the logarithmic function g(x) = log(x) (so the IMP is the log
of the informative missingness ratio of means or logIMROM) (Mavridis et al. 2015). We
generally expect researchers to use IMDOM with mean difference and standardized mean
difference and IMROM with ratio of means.

2.3 Estimation

The IMPs λij are required to estimate βi but are not identified by the observed data.
Instead, they are specified by the analyst on the basis of subject-matter knowledge or a
range of values is assumed in a sensitivity analysis. By allowing for uncertainty in the
IMPs, the model reduces the relative weight given to studies with more missing data
(White, Higgins, and Wood 2008). The IMPs may be specified as independent across
groups, λij ∼ N(μλij

, σ2
λij

), or we can allow for correlation by assuming a bivariate

normal distribution with corr(λiT , λiC) = ρλi
. Thus, nonzero values of any of μλiT

,
μλiC

, σ2
λiT

, and σ2
λiC

imply MNAR. The IMPs are assumed to be independent across
studies to abide by the fundamental assumption of independent studies in meta-analysis.

Two estimation procedures are described briefly here and in more detail in Mavridis
et al. (2015). We write βi = βi(θi), where θi = (πiT , πiC , χ

obs
iT , χobs

iC , λiT , λiC). In the
Taylor method, which uses a linear approximation to βi(θi), the point estimate of βi

is β̂i = βi(θ̂i), where θ̂i = (π̂iT , π̂iC , χ̂
obs
iT , χ̂obs

iC , λiT , λiC), and its estimated variance is
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v̂ar(β̂i) = DT
i ViDi, where Di = (dβi)/(dθi) is evaluated at θi = θ̂i and Vi = v̂ar(θ̂i) is

a block diagonal matrix combining the sampling variance for π̂iT , π̂iC , χ̂
obs
iT , and χ̂obs

iC

and the uncertainty variance for μλiT
and μλiC

. In the parametric bootstrap method,
which avoids the linear approximation to βi(θi), values θ

∗
i are repeatedly drawn—πiT ,

πiC , χobs
iT , and χobs

iC independently from their posterior distributions given the data,

and λiT and λiC jointly from their prior distribution—and the point estimate β̂ and
its estimated variance are the mean and variance of the βi(θ

∗
i ). When the measure of

interest is the standardized mean difference, the procedure takes σi as the pooled SD

across groups and ignores uncertainty in σi.

The same methods are used for multigroup studies, which may arise in NMA. Multi-
group studies yield multiple treatment effects, for example, βi1 = f(χtot

iT1)− f(χtot
iC ) and

βi2 = f(χtot
iT2) − f(χtot

iC ). Extending the estimation method above yields estimates of

their variances and the covariance cov(β̂i1, β̂i2) (Mavridis et al. 2015).

3 The metamiss2 command

3.1 Syntax

metamiss2
[
varlist

] [
if
] [

in
] [

, imptype(imdom | logimrom)
impmean(# # . . .#) impsd(# # . . .#) impcorrelation(real | exp |matrix)

compare(string) sensitivity smd md rom sdpool(on | off) rr or rd taylor

bootstrap reps(integer) seed(integer) fixed tau2(string) inconsistency

nometa metanoptions(meta options) networkoptions(network meta options)

nokeep varchange netplot trtlabels(string)

netplotreference(string) netplotoptions(intervalplot options)
]

where varlist is

• for pairwise meta-analysis with continuous outcome data: nE mE yE sdE nC mC

yC sdC—variables containing the numbers of observed and missing participants
and the mean and SD of the observed data in experimental and control groups,
respectively.

• for pairwise meta-analysis with binary outcome data: rE fE mE rC fC mC—vari-
ables containing the numbers of successes and failures in the observed data and the
number of missing participants in experimental and control groups, respectively.

• for NMA: varlist is not used, but the data must have been prepared using the
network setup command (White 2015) in the “augmented” format (see exam-
ple 4.3).
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3.2 Options

Options for specifying the IMPs

imptype(imdom | logimrom) specifies the type of IMP for continuous outcome data.
imdom indicates the informative missingness difference of means, and logimrom

indicates the log of the informative missingness ratio of means. The default is
imptype(imdom). This option is not needed for binary outcome data because the
only available IMP is logIMOR. For details on IMDOM, logIMROM, and logIMOR, see
section 2, Mavridis et al. (2015), and White, Higgins, and Wood (2008).

impmean(# # . . .#) specifies the mean of the assumed (normal) distribution for IMP.
The default value is 0 in all groups. If one value is given, it is the mean for all
groups. For pairwise meta-analysis, if two values are given, they are the means for
the experimental and control group. For NMA, if T values are given (with T the
total number of treatments), they are the means for the reference treatment and
the nonreference treatments in the order shown in network setup (White 2015).
Each # may be a single value corresponding to all studies or a variable containing
study-specific values.

impsd(# # . . .#) specifies the SD of the assumed (normal) distribution for IMP in the
same way as described above for impmean(). The default value is impsd(0) in all
groups.

impcorrelation(real | exp |matrix) specifies the correlation of the IMP between the
different groups. The default value is impcorrelation(0). A common correlation
value for all pairs of treatments or the full correlation matrix (only for NMA) can be
specified.

compare(string) specifies a second assumption for IMP to be compared with the primary
analysis. string may include impmean(), impsd(), and impcorrelation().

sensitivity specifies a sensitivity analysis for the IMP assuming a range of different
standard deviations for its distribution with impmean(0) or a different specified
impmean().

Options for continuous data

smd specifies the standardized mean difference as the measure of interest (the default
for continuous data).

md specifies the mean difference as the measure of interest.

rom specifies the ratio of means as the measure of interest.

sdpool(on | off) specifies whether the SD is pooled across groups in computing vari-
ances. Following metan, the default option for mean difference and ratio of means is
sdpool(off); for standardized mean difference, the default option is sdpool(on).
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Options for binary data

rr specifies the risk ratio (RR) as the measure of interest (the default for binary data).
Note that in this case, the IMP is the logIMOR.

or specifies the odds ratio as the measure of interest. Note that in this case, the IMP is
the logIMOR.

rd specifies the risk difference as the measure of interest. Note that in this case, the
IMP is logIMOR.

Estimation options

taylor specifies that Taylor-series approximation be used to integrate over the distri-
bution of the IMP (the default).

bootstrap specifies that parametric bootstrap be used to integrate over the distribution
of the IMP.

reps(integer) specifies the number of simulations under the bootstrap method. The
default is reps(10000).

seed(integer) specifies the initial value of the random-number seed for the bootstrap
method. The default is seed(0). See [R] set seed for more details.

Meta-analysis options

fixed specifies the use of the fixed-effect model instead of the default random-effects
model.

tau2(string) specifies the use of an estimator for the heterogeneity variance. This
option is available only for pairwise meta-analysis, and valid estimators are the
available estimators in metaan (Kontopantelis and Reeves 2010). The default is the
DerSimonian and Laird estimator using metan (Harris et al. 2008).

inconsistency specifies the use of an inconsistency model for the case of NMA instead
of the consistency model, which is the default.

nometa skips the conduct of pairwise or network meta-analysis after estimating the
“adjusted” study-specific effect sizes and variances.

metanoptions(meta options) specifies any valid options of metan (Harris et al. 2008).

networkoptions(network meta options) specifies any valid options of network meta

(White 2015).
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Output options

nokeep specifies that study-specific “adjusted” effect sizes and standard errors and
variances be dropped from the dataset. By default, these estimates are stored as
extra variables for pairwise meta-analysis with names ES, seES (as in metan) and
in NMA with prefix imp .

varchange specifies that the “adjusted” study-specific relative effects and variances be
stored in the dataset, replacing the respective values obtained from the network

setup command. This means that the current assumptions about the missing data
will also apply to future analyses of the data.

netplot specifies that a forest plot with the relative effects from NMA be drawn.
The same forest plot can be produced by running the intervalplot command
(Chaimani and Salanti 2015) after metamiss2 for a network meta-analysis. Note
that for the case of pairwise meta-analysis, a forest plot is produced by default.

trtlabels(string) specifies the labels of the treatments for the case of NMA. These
labels, separated with spaces, will be used in the forest plot. The first label should
correspond to the reference treatment, and the other treatment should be given in
the numerical or alphabetical order of their codes in the data.

netplotreference(string) specifies a treatment to be used as a reference in the forest
plot so that only a subset of the relative effects from the NMA (that is, every treat-
ment versus that reference) will be given in the forest plot. The treatment specified
here can be different from the reference treatment of the analysis.

netplotoptions(intervalplot options) specifies any valid options of intervalplot

(Chaimani and Salanti 2015).

4 Examples

4.1 Pairwise meta-analysis, binary data

We illustrate the use of metamiss2 for meta-analysis with binary aggregate outcome
data using a dataset that includes 17 trials comparing the effectiveness of haloperidol
with placebo for the treatment of schizophrenia. The outcome is clinical response, and
RR > 1 suggests that haloperidol works better that placebo.
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. use http://www.mtm.uoi.gr/images/haloperidol.dta

. list, clean noobs

author year rh fh mh rp fp mp
Arvanitis 1997 25 25 2 18 33 0

Beasley 1996 29 18 22 20 14 34
Bechelli 1983 12 17 1 2 28 1
Borison 1992 3 9 0 0 12 0

Chouinard 1993 10 11 0 3 19 0
Durost 1964 11 8 0 1 14 0
Garry 1962 7 18 1 4 21 1
Howard 1974 8 9 0 3 10 0
Marder 1994 19 45 2 14 50 2

Nishikawa_82 1982 1 9 0 0 10 0
Nishikawa_84 1984 11 23 3 0 13 0

Reschke 1974 20 9 0 2 9 0
Selman 1976 17 1 11 7 4 18

Serafetinides 1972 4 10 0 0 13 1
Simpson 1967 2 14 0 0 7 1
Spencer 1992 11 1 0 1 11 0
Vichaiya 1971 9 20 1 0 29 1

We explore different assumptions about the association of the outcome between
missing and observed data, which we describe by the logIMOR.

First, we assume that our beliefs about the missing data can be expressed as follows.
In the haloperidol group, we believe there may be systematic differences between out-
comes in missing and observed participants, but we are not sure in which direction, so we
give the logIMOR a distribution with mean 0 and SD 1. In the placebo group, we believe
the response in missing participants is probably worse than in observed participants, so
we give the logIMOR a distribution with mean −1 and SD 1. This can be the case, for
example, when patients drop out of the study because their symptoms have worsened.
We use the default method of estimation, which is Taylor-series approximation. We use
the metan option lcols(author) to label the studies.
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. metamiss2 rh fh mh rp fp mp, impmean(0 -1) impsd(1) metanopt(lcols(author))

*******************************************************************
******** METAMISS2: meta-analysis allowing for missing data *******
******** Informative missingness parameter with uncertainty *******
*******************************************************************

Informative missingness parameter: logIMOR
Measure of interest: Risk ratio
Assumed distribution for IMP: Experimental group ~ N(0,1^2)

Control group ~ N(-1,1^2)
IMP correlation between groups: 0
Method for first stage model: Taylor series approximation
Second stage model: Random effects meta-analysis

(Calling metan with options: lcols(author) ...)

Study | ES [95% Conf. Interval] % Weight
---------------------+---------------------------------------------------
Arvanitis | 1.417 0.890 2.256 18.58
Beasley | 1.323 0.720 2.432 14.50
Bechelli | 6.333 1.547 25.918 4.39
Borison | 7.000 0.400 122.442 1.19
Chouinard | 3.492 1.113 10.955 6.21
Durost | 8.684 1.258 59.946 2.51
Garry | 1.791 0.596 5.381 6.60
Howard | 2.039 0.670 6.208 6.48
Marder | 1.381 0.758 2.517 14.72
Nishikawa_82 | 3.000 0.137 65.903 1.03
Nishikawa_84 | 9.200 0.580 146.044 1.28
Reschke | 3.793 1.058 13.604 5.19
Selman | 1.949 0.906 4.194 11.09
Serafetinides | 8.764 0.516 148.917 1.22
Simpson | 2.526 0.135 47.152 1.14
Spencer | 11.000 1.671 72.396 2.62
Vichaiya | 19.393 1.180 318.749 1.25
---------------------+---------------------------------------------------
D+L pooled ES | 2.211 1.607 3.042 100.00
---------------------+---------------------------------------------------

Heterogeneity chi-squared = 20.66 (d.f. = 16) p = 0.192
I-squared (variation in ES attributable to heterogeneity) = 22.6%
Estimate of between-study variance Tau-squared = 0.0863

Test of ES=1 : z= 4.87 p = 0.000
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After we run metamiss2, the “adjusted” study-specific relative effects along with
their 95% confidence intervals are given in the output. The same results are obtained
when we run the same analysis with metamiss:

. metamiss rh fh mh rp fp mp, logimor(0 -1) sdlogimor(1) method(Taylor)
> randomi lcols(author)
*******************************************************************
******** METAMISS: meta-analysis allowing for missing data ********
******** Bayesian analysis using priors ********
*******************************************************************
Measure: RR.
Zero cells detected: adding 1/2 to 6 studies.
Priors used: Group 1: N(0,1^2). Group 2: N(-1,1^2). Correlation: 0.
Method: Taylor series approximation.

(Calling metan with options: randomi lcols(author) eform ...)

Study | ES [95% Conf. Interval] % Weight
---------------------+---------------------------------------------------
Arvanitis | 1.417 0.890 2.256 18.58
Beasley | 1.323 0.720 2.432 14.50
Bechelli | 6.333 1.547 25.918 4.39
Borison | 7.000 0.400 122.442 1.19
Chouinard | 3.492 1.113 10.955 6.21
Durost | 8.684 1.258 59.946 2.51
Garry | 1.791 0.596 5.381 6.60
Howard | 2.039 0.670 6.208 6.48
Marder | 1.381 0.758 2.517 14.72
Nishikawa_82 | 3.000 0.137 65.903 1.03
Nishikawa_84 | 9.200 0.580 146.044 1.28
Reschke | 3.793 1.058 13.604 5.19
Selman | 1.949 0.906 4.194 11.09
Serafetinides | 8.764 0.516 148.917 1.22
Simpson | 2.526 0.135 47.152 1.14
Spencer | 11.000 1.671 72.396 2.62
Vichaiya | 19.393 1.180 318.749 1.25
---------------------+---------------------------------------------------
D+L pooled ES | 2.211 1.607 3.042 100.00
---------------------+---------------------------------------------------

Heterogeneity chi-squared = 20.66 (d.f. = 16) p = 0.192
I-squared (variation in ES attributable to heterogeneity) = 22.6%
Estimate of between-study variance Tau-squared = 0.0863

Test of ES=1 : z= 4.87 p = 0.000
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The above analysis implicitly assumes that the IMPs in the two groups are unrelated.
We next assume that a high logIMOR in one group is likely to go with a high logIMOR in
the other group; that entails the two logIMORs are positively correlated, with correlation
ρ = 0.5. We obtain the study-specific RRs using the bootstrap method:

. metamiss2 rh fh mh rp fp mp, impmean(0 -1) impsd(1) impc(0.5) bootstrap
> metanopt(lcols(author))

*******************************************************************
******** METAMISS2: meta-analysis allowing for missing data *******
******** Informative missingness parameter with uncertainty *******
*******************************************************************

Informative missingness parameter: logIMOR
Measure of interest: Risk ratio
Assumed distribution for IMP: Experimental group ~ N(0,1^2)

Control group ~ N(-1,1^2)
IMP correlation between groups: .5
Method for first stage model: Parametric Bootstrap (10000 draws)
Second stage model: Random effects meta-analysis

(Calling metan with options: lcols(author) ...)

Study | ES [95% Conf. Interval] % Weight
---------------------+---------------------------------------------------
Arvanitis | 1.430 0.893 2.290 17.87
Beasley | 1.305 0.762 2.238 16.43
Bechelli | 7.878 1.582 39.235 4.45
Borison | 21.496 0.275 1682.770 0.71
Chouinard | 3.951 1.125 13.880 6.53
Durost | 14.575 1.235 172.078 2.10
Garry | 1.882 0.581 6.093 7.20
Howard | 2.249 0.672 7.529 6.91
Marder | 1.393 0.758 2.559 15.03
Nishikawa_82 | 7.315 0.068 787.967 0.62
Nishikawa_84 | 31.262 0.443 2205.611 0.75
Reschke | 4.710 1.075 20.641 5.09
Selman | 1.990 0.925 4.284 12.17
Serafetinides | 27.359 0.308 2427.858 0.67
Simpson | 6.899 0.078 612.395 0.67
Spencer | 18.644 1.565 222.118 2.08
Vichaiya | 64.289 0.820 5040.384 0.71
---------------------+---------------------------------------------------
D+L pooled ES | 2.329 1.603 3.384 100.00
---------------------+---------------------------------------------------

Heterogeneity chi-squared = 23.32 (d.f. = 16) p = 0.105
I-squared (variation in ES attributable to heterogeneity) = 31.4%
Estimate of between-study variance Tau-squared = 0.1455

Test of ES=1 : z= 4.44 p = 0.000
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Running the same analysis with metamiss gives slightly different results:

. metamiss rh fh mh rp fp mp, logimor(0 -1) sdlogimor(1) corrlogimor(0.5)
method(mc)randomi lcols(author) reps(10000)

*******************************************************************
******** METAMISS: meta-analysis allowing for missing data ********
******** Bayesian analysis using priors ********
*******************************************************************
Measure: logRR.
Zero cells detected: adding 1/2 to 6 studies.
Priors used: Group 1: N(0,1^2). Group 2: N(-1,1^2). Correlation: 0.5.
Method: Monte Carlo (10000 draws).
...............................................................................
> .............................................................................
> .............................................................................
> .............................................................................

(output omitted )
(Calling metan with options: randomi lcols(author) eform ...)

Study | ES [95% Conf. Interval] % Weight
---------------------+---------------------------------------------------
Arvanitis | 1.410 0.890 2.233 17.24
Beasley | 1.297 0.761 2.210 14.92
Bechelli | 5.283 1.506 18.533 4.39
Borison | 4.024 0.537 30.136 1.87
Chouinard | 3.195 1.101 9.274 5.78
Durost | 6.289 1.350 29.296 3.07
Garry | 1.745 0.616 4.942 6.01
Howard | 1.966 0.693 5.575 5.99
Marder | 1.372 0.760 2.476 13.33
Nishikawa_82 | 2.042 0.222 18.802 1.55
Nishikawa_84 | 5.173 0.774 34.552 2.08
Reschke | 3.472 1.122 10.749 5.25
Selman | 1.948 0.915 4.149 9.73
Serafetinides | 4.875 0.666 35.680 1.91
Simpson | 1.639 0.206 13.040 1.76
Spencer | 7.859 1.719 35.943 3.13
Vichaiya | 9.862 1.414 68.796 2.00
---------------------+---------------------------------------------------
D+L pooled ES | 2.141 1.613 2.843 100.00
---------------------+---------------------------------------------------

Heterogeneity chi-squared = 20.27 (d.f. = 16) p = 0.208
I-squared (variation in ES attributable to heterogeneity) = 21.1%
Estimate of between-study variance Tau-squared = 0.0663

Test of ES=1 : z= 5.26 p = 0.000

This difference in results is due to a) random error of the simulations and b) the
different way the two commands handle studies without missing participants in one or
both groups. More specifically, for these trials, metamiss2 assumes that the probability
of observing the data is πij = 1, while metamiss assumes that the probability is not
constant but a random variable.

An important advantage of metamiss2 when using the bootstrap method is that it
runs much faster (that is, about 10 times) than metamiss because of coding in Mata.
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4.2 Pairwise meta-analysis, continuous data

The second example involves data from eight trials that compare the effectiveness of
mirtazapine versus placebo for major depression. The outcome is change in depression
symptoms measured on a standardized rating scale [Hamilton Depression Rating Scale
21-Item (HAMD 21) depression scale].

. use http://www.mtm.uoi.gr/images/mirtazapine.dta, clear

. list, clean noobs

id study yp sdp np mp ym sdm nm mm
1 Claghorn1995 -11.4 10.2 19 26 -14.5 8.8 26 19
2 MIR 003-003 -11.5 8.3 24 21 -14 7.3 27 18
3 MIR 003-008 -11.4 8 17 13 -13.2 8 12 18
4 MIR 003-020 -6.2 6.5 24 19 -13 9 23 21
5 MIR 003-021 -17.4 5.3 21 29 -13.8 5.9 22 28
6 MIR 003-024 -11.1 9.9 27 23 -15.7 6.7 30 20
7 MIR 84023a -11.9 8.6 33 24 -14.2 7.6 35 25
8 MIR 84023b -11.8 8.3 48 18 -14.7 8.4 51 13

We first describe the departure from MAR using the IMDOM. We assume a systematic
departure from the MAR assumption where for the mirtazapine group, IMDOM has mean
−0.5 with SD(IMDOM) = 1 and where for the placebo group, IMDOM has mean 1 with
SD(IMDOM) = 1.5. This means that we think it is likely that missing participants had
better outcomes than observed participants in the mirtazapine group (for example, they
left the study because of early response with important side effects), while the opposite
is true in the placebo group (for example, they left the study because of lack of efficacy).
We also assume that IMDOMs are correlated between the two groups with ρ = 0.5, and
we compare the results with ACA (that is, when IMP = 0 without uncertainty):
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. metamiss2 nm mm ym sdm np mp yp sdp, impmean(-0.5 1) impsd(1 1.5) impcorr(0.5)
> compare(impmean(0) impsd(0)) md metanopt(lcols(study))

Primary analysis

*******************************************************************
******** METAMISS2: meta-analysis allowing for missing data *******
******** Informative missingness parameter with uncertainty *******
*******************************************************************

Informative missingness parameter: IMDOM
Measure of interest: Mean difference
Assumed distribution for IMP: Experimental group ~ N(-.5,1^2)

Control group ~ N(1,1.5^2)
IMP correlation between groups: .5
Method for first stage model: Taylor series approximation
Second stage model: Random effects meta-analysis

(Calling metan with options: lcols(study) ...)

Secondary analysis

*******************************************************************
******** METAMISS2: meta-analysis allowing for missing data *******
******** Available cases analysis ********
*******************************************************************

Informative missingness parameter: IMDOM
Measure of interest: Mean difference
Method for first stage model: Taylor series approximation
Second stage model: Random effects meta-analysis

(Calling metan with options: lcols(study) ...)

Study | ES [95% Conf. Interval]
---------------------+---------------------------------------------------

Primary analysis
Claghorn1995 | -3.889 -9.783 2.005
MIR 003-003 | -3.167 -7.653 1.319
MIR 003-008 | -2.533 -8.583 3.516
MIR 003-020 | -7.480 -12.143 -2.818
MIR 003-021 | 2.740 -0.940 6.420
MIR 003-024 | -5.260 -9.860 -0.660
MIR 84023a | -2.929 -6.956 1.097
MIR 84023b | -3.274 -6.645 0.096
Sub-total |
D+L pooled ES | -3.046 -5.264 -0.828

---------------------+---------------------------------------------------
Secondary analysis

Claghorn1995 | -3.100 -8.799 2.599
MIR 003-003 | -2.500 -6.814 1.814
MIR 003-008 | -1.800 -7.712 4.112
MIR 003-020 | -6.800 -11.305 -2.295
MIR 003-021 | 3.600 0.251 6.949
MIR 003-024 | -4.600 -9.038 -0.162
MIR 84023a | -2.300 -6.166 1.566
MIR 84023b | -2.900 -6.191 0.391
Sub-total |
D+L pooled ES | -2.382 -4.729 -0.035

---------------------+---------------------------------------------------
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Test(s) of heterogeneity:
Heterogeneity degrees of

statistic freedom P I-squared** Tau-squared

Primary analysis 13.92 7 0.053 49.7% 4.9682
Secondary analysis 16.92 7 0.018 58.6% 6.5355
** I-squared: the variation in ES attributable to heterogeneity)

Significance test(s) of ES=0

Primary analysis z= 2.69 p = 0.007
Secondary analysis z= 1.99 p = 0.047
-------------------------------------------------------------------------

Next, we change the IMP to the IMROM. To investigate how the summary effect and
its variance changes under different levels of uncertainty assumed for the IMP, we run
a sensitivity analysis with IMROM = 1 on a range of different values for SD(logIMROM)
using the bootstrap method:

. metamiss2 nm mm ym sdm np mp yp sdp, md sensitivity imptype(logimrom)

*******************************************************************
******** METAMISS2: meta-analysis allowing for missing data *******
******** Informative missingness parameter with uncertainty *******
**** Sensitivity analysis assuming departures from MAR *****
*******************************************************************

Figure 1. Plot of the summary mean difference of mirtazapine versus placebo and the
respective 95% confidence interval (random-effects meta-analysis) for various values of
SD(logIMROM) under the IMROM = 1 assumption

Figure 1 shows that increasing the uncertainty of the IMP results in a narrower
confidence interval for the summary effect up to some point (∼ SD = 3); this is related
to the reduction of heterogeneity due to the extra variance introduced in the study-



732 Informative missingness in aggregate data meta-analysis

specific estimates. However, when large uncertainty is assumed for IMP (SD > 3), then
this uncertainty is also reflected in the summary effect; therefore, the confidence interval
becomes wider.

4.3 Network meta-analysis

To illustrate the use of metamiss2 in NMA, we use a dataset that comprises a network
of 12 trials comparing the effectiveness of 9 antidepressants. The outcome is again mea-
sured as the change score on the Hamilton Depression Rating Scale 21-Item (HAMD 21)
depression scale.

. use http://www.mtm.uoi.gr/images/antidepressants.dta, clear

. list, clean noobs

id t y sd n m
1 1 9 8.65 41 8
2 1 7.56 12.31 39 1
3 2 17.2 11.1 74 23
4 2 13.5 2.1 12 15
5 3 6.55 5.23 20 5
6 4 7 5 45 0
7 4 9.6 6.2 63 19
8 5 10.4 9.12 37 163
9 5 15.8 3.3 30 3

10 6 8.2 7.52 55 20
11 7 7.4 7.52 16 2
12 6 12 8.65 89 32
1 8 4.6 8.65 39 13
2 4 11.27 11.33 45 3
3 6 14.2 11.1 75 18
4 4 13.8 1.8 15 11
5 4 7.76 2.89 21 3
6 9 6 5 43 1
7 9 8.4 5.4 67 11
8 4 11 9.12 55 145
9 6 18.7 5.1 32 2

10 9 8.7 7.52 55 15
11 6 10.4 7.52 15 3
12 9 11.3 8.65 91 37

Because of the complicated structure of data, metamiss2 does not take arguments for
the outcome when applied to NMA. Instead, the command metamiss2 will be executed
after the data have been set up with the network setup command (White 2015). This
applies to any type of outcome that is handled with the network setup command.
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We first prepare the data in the “augmented” format using the network package
(version 1.2.3 here) that calls mvmeta (version 3.1.3 here):

. network setup y sd n, trt(t) stud(id) nmiss(m) nocodes
Treatments used

1 (reference): 1
2: 2
3: 3
4: 4
5: 5
6: 6
7: 7
8: 8
9: 9

Measure Mean difference
Standard deviation pooling: off

Studies
ID variable: id
Number used: 12
IDs with augmented reference arm: 3 4 5 6 7 8 9 10 11 12
- observations added: 0.00001
- mean in augmented observations: study-specific mean
- SD in augmented observations: study-specific within-arms SD

Network information
Components: 1 (connected)
D.f. for inconsistency: 2
D.f. for heterogeneity: 2

Current data
Data format: augmented
Design variable: _design
Estimate variables: _y*
Variance variables: _S*
Command to list the data: list id _y* _S*, noo sepby(_design)

We then run metamiss2 without arguments to obtain the ACA:

. metamiss2

*******************************************************************
**** METAMISS2: network meta-analysis allowing for missing data ***
******** Available cases analysis ********
*******************************************************************

Informative missingness parameter: IMDOM
Measure of interest: Mean difference
Method for first stage model: Taylor series approximation
Second stage model: Random effects network meta-analysis

(Calling network meta ...)

Command is: mvmeta _y _S , bscovariance(exch 0.5) longparm suppress(uv mm)
> vars(_y_2 _y_3 _y_4 _y_5 _y_6 _y_7 _y_8 _y_9)
Note: using method reml
Note: using variables _y_2 _y_3 _y_4 _y_5 _y_6 _y_7 _y_8 _y_9
Note: 12 observations on 8 variables
Note: variance-covariance matrix is proportional to .5*I(8)+.5*J(8,8,1)

initial: log likelihood = -93.187608
rescale: log likelihood = -93.187608
rescale eq: log likelihood = -92.973311
Iteration 0: log likelihood = -92.973311 (not concave)
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Iteration 1: log likelihood = -92.868401 (not concave)
Iteration 2: log likelihood = -92.865231
Iteration 3: log likelihood = -92.863018
Iteration 4: log likelihood = -92.863013

Multivariate meta-analysis
Variance-covariance matrix = proportional .5*I(8)+.5*J(8,8,1)
Method = reml Number of dimensions = 8
Restricted log likelihood = -92.863013 Number of observations = 12

Coef. Std. Err. z P>|z| [95% Conf. Interval]

_y_2
_cons 3.770247 2.693254 1.40 0.162 -1.508434 9.048927

_y_3
_cons 2.499887 2.916042 0.86 0.391 -3.215451 8.215225

_y_4
_cons 3.709888 2.595755 1.43 0.153 -1.377698 8.797474

_y_5
_cons .6746296 2.853338 0.24 0.813 -4.91781 6.267069

_y_6
_cons 2.813138 2.759187 1.02 0.308 -2.594769 8.221045

_y_7
_cons -.1868627 3.862321 -0.05 0.961 -7.756873 7.383148

_y_8
_cons -4.4 1.934803 -2.27 0.023 -8.192145 -.607855

_y_9
_cons 2.622049 2.683481 0.98 0.329 -2.637476 7.881575

Estimated between-studies SDs and correlation matrix:
SD _y_2 _y_3 _y_4 _y_5 _y_6 _y_7

_y_2 8.197e-06 1 . . . . .
_y_3 8.197e-06 .5 1 . . . .
_y_4 8.197e-06 .5 .5 1 . . .
_y_5 8.197e-06 .5 .5 .5 1 . .
_y_6 8.197e-06 .5 .5 .5 .5 1 .
_y_7 8.197e-06 .5 .5 .5 .5 .5 1
_y_8 8.197e-06 .5 .5 .5 .5 .5 .5
_y_9 8.197e-06 .5 .5 .5 .5 .5 .5

_y_8 _y_9
_y_2 . .
_y_3 . .
_y_4 . .
_y_5 . .
_y_6 . .
_y_7 . .
_y_8 1 .
_y_9 .5 1
mvmeta command stored as F9
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To explore the impact of alternative assumptions, we incorporate IMPs in our analy-
sis. As in pairwise meta-analysis, IMPs can be treatment specific. There are 9 treatments
in the network, and assumptions for the outcome among missing participants can be
different depending on the administered treatment. Here we consider that treatments
1, 2, 6, and 8 are associated with IMDOM = 1; for treatments 3, 4, and 9, IMDOM = −1;
and for treatments 5 and 7, IMDOM = 0. We assume SD(IMDOM) = 1 for all treatments
in the network. Additionally, drug-specific IMDOMs can be correlated depending on
the nature of missing data. Information about the pairwise correlation between the 9
IMDOMs has to be collected in a matrix. In the matrix shown below, the correlation
between the IMDOMs for treatments 4 and 6 is ρ4,6 = 0.5 and between treatments 5 and
6 is ρ5,6 = 0.2:

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 1 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 1 0.2 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.2 1 0.2 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.2 1 0.2 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.2 1 0.2 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.2 1 0.2
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.2 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Note that here the choice of the correlation matrix is arbitrary, but in practice, it should
be defined on the basis of expert opinion.

The matrix can be specified using the matrix command:

. matrix C=J(9,9,0.5)+0.5*I(9)

. forvalues i=4/8{
2. matrix C[`i´,`=`i´+1´]=0.2
3. matrix C[`=`i´+1´,`i´]=0.2
4. }

. matrix list C

symmetric C[9,9]
c1 c2 c3 c4 c5 c6 c7 c8 c9

r1 1
r2 .5 1
r3 .5 .5 1
r4 .5 .5 .5 1
r5 .5 .5 .5 .2 1
r6 .5 .5 .5 .5 .2 1
r7 .5 .5 .5 .5 .5 .2 1
r8 .5 .5 .5 .5 .5 .5 .2 1
r9 .5 .5 .5 .5 .5 .5 .5 .2 1
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To run the analysis, the metamiss2 command needs three arguments: the vector of
the IMDOMs, the vector of their variances, and the matrix of correlations. We run the
analysis using the bootstrap method:

. metamiss2, impmean(1 1 -1 -1 0 1 0 1 -1) impsd(1) impcorr(C) bootstrap

*******************************************************************
**** METAMISS2: network meta-analysis allowing for missing data ***
******** Informative missingness parameter with uncertainty *******
*******************************************************************

Informative missingness parameter: IMDOM
Measure of interest: Mean difference
Assumed distribution for IMP: 1 ~ N(1,1^2) (Reference group)

2 ~ N(1,1^2)
3 ~ N(-1,1^2)
4 ~ N(-1,1^2)
5 ~ N(0,1^2)
6 ~ N(1,1^2)
7 ~ N(0,1^2)
8 ~ N(1,1^2)
9 ~ N(-1,1^2)

IMP correlation between groups: Matrix C
Method for first stage model: Parametric Bootstrap (10000 draws)
Second stage model: Random effects network meta-analysis

(Calling network meta ...)

Command is: mvmeta _y _S , bscovariance(exch 0.5) longparm suppress(uv mm)
> vars(_y_2 _y_3 _y_4 _y_5 _y_6 _y_7 _y_8 _y_9)
Note: using method reml
Note: using variables _y_2 _y_3 _y_4 _y_5 _y_6 _y_7 _y_8 _y_9
Note: 12 observations on 8 variables
Note: variance-covariance matrix is proportional to .5*I(8)+.5*J(8,8,1)

initial: log likelihood = -93.083888
rescale: log likelihood = -93.083888
rescale eq: log likelihood = -92.739094
Iteration 0: log likelihood = -92.739094
Iteration 1: log likelihood = -92.674229
Iteration 2: log likelihood = -92.672701
Iteration 3: log likelihood = -92.672697
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Multivariate meta-analysis
Variance-covariance matrix = proportional .5*I(8)+.5*J(8,8,1)
Method = reml Number of dimensions = 8
Restricted log likelihood = -92.672697 Number of observations = 12

Coef. Std. Err. z P>|z| [95% Conf. Interval]

_y_2
_cons 4.755919 2.727856 1.74 0.081 -.5905793 10.10242

_y_3
_cons 2.358211 2.918266 0.81 0.419 -3.361486 8.077908

_y_4
_cons 3.639063 2.589696 1.41 0.160 -1.436648 8.714774

_y_5
_cons 1.094613 2.867561 0.38 0.703 -4.525702 6.714929

_y_6
_cons 3.373884 2.762537 1.22 0.222 -2.040589 8.788356

_y_7
_cons .1929548 3.853219 0.05 0.960 -7.359216 7.745126

_y_8
_cons -4.343083 1.933772 -2.25 0.025 -8.133206 -.5529604

_y_9
_cons 2.62097 2.680077 0.98 0.328 -2.631884 7.873825

Estimated between-studies SDs and correlation matrix:
SD _y_2 _y_3 _y_4 _y_5 _y_6 _y_7

_y_2 5.018e-06 1 . . . . .
_y_3 5.018e-06 .5 1 . . . .
_y_4 5.018e-06 .5 .5 1 . . .
_y_5 5.018e-06 .5 .5 .5 1 . .
_y_6 5.018e-06 .5 .5 .5 .5 1 .
_y_7 5.018e-06 .5 .5 .5 .5 .5 1
_y_8 5.018e-06 .5 .5 .5 .5 .5 .5
_y_9 5.018e-06 .5 .5 .5 .5 .5 .5

_y_8 _y_9
_y_2 . .
_y_3 . .
_y_4 . .
_y_5 . .
_y_6 . .
_y_7 . .
_y_8 1 .
_y_9 .5 1
mvmeta command stored as F9

Accounting for missing outcome data in this particular example had little impact
on the results, which might be due to the arbitrary assumptions we made about the
IMPs. Treatment 8 appears to be more effective than treatment 1, as in the ACA. The
confidence intervals of all relative effects are slightly narrower compared with ACA, while
heterogeneity was estimated to be near zero.
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5 Discussion

metamiss2 and metamiss are almost equivalent for meta-analyses with binary outcome
data, and they give identical answers when the Taylor-series method is used to account
for uncertainty. However, small discrepancies exist between the two commands. First,
metamiss has the option to perform analyses of missing binary data based on reasons
for missingness (White and Higgins 2009). This approach allows different assumptions
to be made within each study group at the patient level and not only on average as
metamiss2 (Higgins, White, and Wood 2008). Second, the option to use the Gauss–
Hermite quadrature estimation method is not available in metamiss2. However, the
parametric bootstrap method in metamiss2 is very fast and thus can be used routinely
as an alternative to quadrature. Note that the Monte Carlo method, which is available
in metamiss, is fully Bayesian and thus can show small numerical differences from the
parametric bootstrap method in metamiss2.

A limitation of metamiss2 is that finite-sample correction for standardized mean
difference has not been incorporated in the present code; this correction allows for
uncertainty in the observed study-specific standard deviations when trial sample sizes
are small. Future work will explore the potential to enable an assumption that IMPs
are correlated across different studies (White et al. 2008, 2).

There is no unique best approach to handle missing outcome data in meta-analysis
with aggregate data. ACA is usually a sensible starting point and will often be the
primary analysis. Because the IMP parameters cannot be estimated from the observed
data, values must be given to them based on judgment and on evidence external to
the meta-analysis. Thus, sensitivity analyses using different plausible values of IMPs
are necessary to assess the robustness of results to different assumptions about the
missing data. The sensitivity option in metamiss2 sets the IMP means and correlation
to zero and gradually increases the IMP standard deviations. This reflects a minor
departure from MAR. In practice, we would expect the IMP mean to be nonzero. We
may conduct additional sensitivity analyses changing the value of both mean and SD

(one at a time) of IMP parameters and assuming each of them common and different
across groups and monitor how sensitive results are to these changes. Other sensitivity
analysis strategies were suggested by White, Higgins, and Wood (2008). In all cases,
discussion with subject matter experts is needed to choose sensible distributions for the
IMPs.
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