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Abstract.  Xu and Cheung (2015, Stata Journal 15: 135-154) introduced the
strmcure command, which fits frailty models and frailty-mixture models in the
analysis of recurrent event times. In this article, we provide an update to strmcure.
The update implements a two-step estimation procedure for a frailty-mixture
model that allows the estimation of the effect of an intervention on the probability
of cure and on the total effect on event rate in the noncured. To illustrate, we
will use the same example dataset on respiratory exacerbations from the original
article.
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1 Introduction

Xu et al. (2012) and Xu and Cheung (2015) described a class of frailty models and
frailty-mixture models for regression analysis of recurrent event times. Xu and Cheung
(2015) also described the strmcure command, which implements these models. Briefly,
this command fits frailty models for recurrent event times with or without stratification
for event order and with or without a cured fraction. Introducing frailty into recur-
rent event-times modeling enables differentiation between cured (nonsusceptible) sub-
jects and low-risk subjects. Both frailty and event dependence generate within-subject
correlation in event times. Therefore, frailty cannot be accurately estimated without
controlling for event dependence. As such, when frailty-mixture models are fit to the
data, analysts need to control for the effect of event dependence on the event hazard,
using the event-order stratification so that the effect of event dependence is incorpo-
rated into the unspecified event-specific baseline hazard. Otherwise, event dependence
confounds heterogeneity, which in turn will distort the estimation of the cured fraction.
The strmcure command has been coded following this rationale to require users to
specify the strata() option for a frailty-mixture model (Xu and Cheung 2015).

“Event dependence” is when one’s past event history may affect one’s present and
future event rate. As such, an intervention may have a primary effect on a person’s event
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rate that is not mediated by his or her event history and may have a secondary effect
that is mediated by the event history. “Primary” and “secondary” are used here to refer
to first and second in order, respectively, without referring to degree of importance. In
addition, the two effects are not necessarily in the same direction; that is, one may be
beneficial while the other is harmful. (We do not call the effects “direct” and “indirect”
to avoid confusion in some contexts where these terms have other meanings, for example,
regarding herd immunity.)

In the biostatistics literature, a recurrent event model with frailty and stratification
for event order is known as the conditional frailty model (Box-Steffensmeier and De Boef
2006). Because in this model the comparison is between event times with the same
event history, the effect of event dependence is isolated out and the coefficients are
estimates of the primary effect. The primary and secondary effects reflect two pathways
that an intervention impacts on the event rate. The primary effect combined with the
secondary effect is the total effect (Cheung et al. 2010; Xu, Lam, and Cheung 2014).
The primary effect is one mechanism through which an intervention may affect the
outcome. Its evaluation is important for biological or product development, and the
strmcure command with the strata() option fits this purpose.

On the other hand, the total effect examines what happens in a pragmatic study
(Hand 1994). In the pragmatic paradigm, an intervention effect is the sum of all the
effects the intervention may have, whether the effects were intended or not. For example,
people acquire natural immunity from malaria disease episodes. A vaccine that prevents
malaria disease episodes may also prevent the acquisition of natural immunity, which in
turn may increase future malaria disease risk, that is, a secondary effect that is harmful.
The beneficial primary effect may be canceled out by the harmful secondary effect and
result in null total effect. In the early phase of developing a malaria vaccine, the
investigators may mainly want to find out whether the body responds to the vaccine
candidate. In this case, the secondary effect arising from disease episode history is
distractive. However, to policy makers, a null total effect means the intervention is
not worth deploying. Therefore, the total effect is a useful parameter from a public
health viewpoint and can be obtained from the two-step estimation procedure for the
frailty-mixture model proposed by Xu, Lam, and Cheung (2014). In essence, in the
first step, the effect of intervention on the probability of cure, as well as the conditional
probabilities of being noncured for all subjects given their observed data, is estimated.
In the second step, these estimated conditional probabilities are plugged into a model
that estimates the total effect in the noncured.

In this article, we introduce an update to the strmcure command: the new twostep
option, which implements the aforementioned two-step estimation procedure. To illus-
trate the new option, we will use the same example dataset from the rhDNase trial of
respiratory exacerbations as in the main article (Xu and Cheung 2015).
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2 The frailty-mixture model with the two-step estimation
procedure

Details about frailty-mixture models for estimating a cured fraction and the total effect
on event rate in the noncured can be found in Xu, Lam, and Cheung (2014). Briefly,
consider the setting of a randomized controlled trial with n subjects. For subject i
(¢t =1,...,n), let z; denote the binary intervention variable (1 for intervention and 0
for control), let t;; denote the jth event time (j = 1,...,n;), let n; denote the number
of observed event times, and let §;; denote the event indicator, which takes a value of 0
if the jth event time is right-censored and takes a value of 1 otherwise.

We further define a binary latent variable k; such that k; = 0 if subject 7 is cured, and

k; = 1if subject ¢ is noncured and will eventually experience the event. To accommodate

the effect of intervention on the cured fraction, the latent variable k; can be modeled
by

m; = Pr(k; = 1|Z;) = g(Z;0") (1)

where ¢(+) is a link function, Z; = (1,z;), and 8 = (6y,0;) is the regression coefficient
vector. The strmcure command supports three link functions: the logit, probit, and
complementary log-log links.

For subject i, conditional on k;, the intensity at time ¢ is defined as
Ai{tlYi(t), @i, ki} = kiYi(t)Ao(t) exp(Bra;) (2)

where the at-risk indicator Y;(¢) = 1 if subject ¢ is at risk for the event at time ¢ since
study entry and equals 0 otherwise, A\g(¢) is the unspecified baseline hazard function,
and the log hazard-ratio parameter S represents the total effect of intervention on the
event rate in the noncured subjects (Cheung et al. 2010; Xu, Lam, and Cheung 2014).

Estimation of regression parameters in (1) and (2) is not as straightforward as that
for a typical frailty-mixture model that jointly models frailty, event dependence, and
the cured fraction (Xu et al. 2012; Xu and Cheung 2015). Here, to estimate the total
effect in the noncured fraction, event-order stratification is not used. Otherwise, the
intensity equation would estimate the primary effect instead. Without stratification,
frailty cannot be accurately estimated. Without the frailty term, accurate estimation of
the cured fraction is difficult because of poor differentiation between cured and low-risk
subjects (Xu, Lam, and Cheung 2014). To enable the estimation of both the total effect
(among the noncured) and the cured fraction, Xu, Lam, and Cheung (2014) proposed a
two-step estimation procedure that splits the parameter estimation for (1) and (2) into
the following two steps.
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2.1 Step 1: Estimation of the cured fraction

In step 1, we build a frailty-mixture model with a cured fraction and event-order strat-
ification, using the same time scale as (2). The model for the cured fraction is the
same as (1). For a noncured subject ¢, the hazard for the jth event time at time ¢ is
formulated following Xu, Lam, and Cheung (2014),

hij{tY 5 (1), wi, @i, ki = 1} = Y (t)wiho; () exp(Bpa;) (3)

where Y/i(t) is the at-risk process for the step-1 model [Y;5(t) = 1 if subject i has
experienced (j — 1) events prior to time ¢ and is still at risk for the event at time ¢, and
Yé(t) = 0 otherwise]; w; is the subject-specific frailty term that is gamma distributed
with a mean of 1 and a variance of 1; and hg;(t) is the unspecified baseline hazard
function specific to the jth event. Note that (3) is formulated to control for the effects
of heterogeneity and event dependence via the frailty term and event-order stratification.

This entails an interpretation of “primary effect” to the regression parameter Sp in (3).

The iterative expectation-maximization algorithm is used to estimate the regression
parameters @ = (6p,01) and Sp in (1) and (3), as well as the frailty variance parameter
1. Furthermore, the conditional probability of being noncured for each subject, given
the observed data, can be estimated based on the formula

n; n;g
- - mi{l + Y Hi (tin)} /Y
" ) 32::1 ’ ;2::1 ’ 1—m +m{l+ ¢ H ()} VY

(4)

where H;y (1) = fg“ Y (s)ho1(s) exp(Bpx;)ds.

2.2 Step 2: Estimation of the total effect

The regression parameter S is estimated by solving the following score function derived
for (2):

NN [, S Yl eXP(ﬁTfEi)xl} _
UBr) =22 {xl 11 Yi(tij)ke exp(Braz) | "

i=1 j=1
where the value of k; is substituted by its conditional probability (or conditional expec-
tation) given in (4).

The standard errors of the parameter estimates are estimated using the bootstrap
method, and the 95% confidence intervals are obtained using the asymptotic normal
distribution theory. For more details on the estimation procedure, see Xu, Lam, and
Cheung (2014). Note that the two-step estimation uses bootstrapping instead of Louis’s
(1982) formula because there is uncertainty at both steps. The model not using the two-
step procedure can possibly use either bootstrapping or Louis’s formula, but the latter
is faster.




Y. Xu and Y. B. Cheung 481
3 Update to the strmcure command

3.1 Syntax
strmcure varlist [zf} [zn], shared (varname) [original,options twostep}

Users are referred to Xu and Cheung (2015) for the list of original options for the
strmcure command. Users must now specify the strata() option together with the
zlist () option when they fit a frailty-mixture model to the data. In particular, the
strata() and zlist () options have been updated as follows:

strata(varname) stratifies the recurrent event times according to the specified event-
order variable varname. Observations with the same value belong to the same stra-
tum, and the baseline hazard function is unique to each stratum. Not specifying
strata() means fitting a model without stratification when the model does not
involve a cured fraction. strata() must be specified for the frailty-mixture model.

zlist (varlist) specifies the list of variable names to be included in modeling the prob-
ability of being noncured in the frailty-mixture model. When you specify z1ist (),
you must also specify strata(); otherwise, the error message “strata() option
must be specified for estimation of frailty-mixture models” will be dis-
played.

The new twostep option

twostep invokes the two-step estimation procedure for the estimation of total effect
(that is, primary effect plus secondary effect) in the noncured population for a frail-
ty-mixture model. Specification of the twostep option will void options including
log, dots, saving, and all those related to variance based on Louis’s formula.

4 Application

We use the dataset from the rhDNase trial of respiratory exacerbations described in
Cook and Lawless (2007) to illustrate the use of strmcure with the new twostep option.
Xu, Lam, and Cheung (2014) and Xu and Cheung (2015) used the same dataset in their
application sections. Users are referred to the previous articles for details about the trial;
we skip that here to avoid redundancy.

There are some suspected errors in the data (Xu and Cheung 2015), so we begin by
correcting these data points.

. use data_rhdnase

. recode etype 1=2 2=1 if i1d==951319 | id==985308 | id==985316 | id==986310
(etype: 14 changes made)

We declare the data to be survival-time data, adopting the counting-process time
scale.

. stset time2 if etype==1, fail(status) id(id) timeO(timel) exit(time .)
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In the stset command, we conditioned out the data records with etype = 2 because
they represent the acute treatment duration initiated by exacerbation, during which
the patient was, in principle, not at risk of another exacerbation. We drop records with
etype = 2 from now on. With the dataset at hand, we fit a frailty-mixture model with
stratification (with the fourth and higher event strata being collapsed into one stratum
because of data sparsity) and a cured fraction. The logit link function and zero-tail
constraint for tail completion are used. The twostep option is specified for estimation
of the total effect of the intervention in the noncured, which is our primary interest.
One hundred bootstrapping replicates were used for variance estimation. We execute
the following commands:

. stgen event_order=nfailures()

(361 missing values generated)

. replace event_order=event_order+1

(965 real changes made)

. bootstrap, seed(1234) cluster(id) idcluster(newid) reps(100): strmcure trt,
> shared(newid) strata(event_order) lastpool(4) zlist(trt) link(logistic)

> tailcm(zerotail) iter(500) tolerance(0.0001) twostep

(output omitted )

Observed Bootstrap Normal-based
_t Coef. Std. Err. z P>|z| [95% Conf. Intervall
Theta_stepl
trt -.4405835 .179392 -2.46 0.014 -.7921853  -.0889817
_cons -.1565902 .1388646 -1.13 0.259 -.4287597 .1155794
Beta_stepl
trt -.0086713 .1959342 -0.04 0.965 -.3926954 .3753527
frailty_stepl
_cons 1.208458 .5931335 2.04 0.042 .045938 2.370979
Beta_step2
trt .0367756 .0986752 0.37 0.709 -.1566242 .2301753

The above table reproduces part of the results from table V in Xu, Lam, and Cheung
(2014). The first three rows of the table show the estimation results from step 1, and
the last row shows the estimation result for total effect from step 2. To summarize,
the estimate for the log odds-ratio is about —0.4406, which is statistically significant
(P = 0.014 and the estimated 95% confidence interval excludes the null value of 0),
suggesting that subjects in the intervention (rhDNase) group are more likely to be
noncured than those in the control group. On the other hand, the estimated primary
effect from step 1 and total effect from step 2 are, respectively, —0.0087 and 0.0368,
both practically 0 and statistically insignificant. The intervention appears to have been
impactful mainly by curing a fraction of the patients instead of reducing the event rate
in the noncured.
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5 Conclusion

We presented an update to the recently published strmcure command that encompasses
a new option, twostep. This update implements the previously introduced methodology
in Xu, Lam, and Cheung (2014) and Xu and Cheung (2015). This method can provide
insight into the details of how an intervention impacts a population. The method was
evaluated for robustness by simulation. Despite model complexity, the method was
shown to be robust to misspecifications of frailty distribution and the event dependence
function (Xu, Lam, and Cheung 2014). The impact of misspecifications on other as-
pects, for example, the choice of link function in the cured fraction equation, has not
yet been assessed.

The update should also be useful to fit simpler models, such as the Andersen—Gill
model, which estimates the total effect in the whole population without intending to ob-
tain details about cured or noncured (Cheung et al. 2010). Furthermore, improvement
in data collection may help. For example, clinical evaluation or biomarkers of cured
status or nonsusceptibility can be collected, if feasible. They may have the potential to
remove the need for complex modeling involving unobserved characteristics.
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