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Abstract. Understanding the central limit theorem is crucial for comprehend-
ing parametric inferential statistics. Despite this, undergraduate and graduate
students alike often struggle with grasping how the theorem works and why re-
searchers rely on its properties to draw inferences from a single unbiased random
sample. In this article, I outline a new command, sdist, that can be used to
simulate the central limit theorem by generating a matrix of randomly generated
normal or nonnormal variables and comparing the true sampling distribution stan-
dard deviation with the standard error from the first randomly generated sample.
The user also has the option of plotting the empirical sampling distribution of
sample means, the first random variable distribution, and a stacked visualization
of the two distributions.
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1 Introduction

Virtually every introductory statistics course discusses the central limit theorem (CLT).
Far from simply being an abstract mathematical concept that can be relegated to a
footnote or a term in statistics history to which instructors pay a fleeting tribute, the
CLT is the bedrock upon which parametric inferential statistics stand. Without the
CLT, parametric tests—from the simple t test to advanced statistical models—make
little sense as tools for estimating population dynamics. Put simply but seriously, the
CLT is what allows frequentist statisticians to do what they do.

Despite the theorem’s prevalence in the classroom, there is no guiding method for
teaching the subject. The CLT can often be difficult to communicate effectively in a class-
room setting with a textbook (Dyck and Gee 1998), and numerous pedagogical tools
have been proposed to promote hands-on learning (for example, Aberson et al. [2000];
Dinov, Christou, and Sanchez [2008]; Matz and Hause [2008]; Price and Zhang [2007];
Schoenfelder et al. [2007]). A number of these tools involve field exercises, such as hav-
ing students collect data outside the classroom. While innovative and kinesthetically
engaging, these strategies can be difficult to implement if the material must be cov-
ered quickly (such as in statistics “boot camps” or short courses) or if other contextual
factors preclude the instructor from being able to use such involved and time-intensive
strategies. Further, given that the power of the CLT becomes more evident as the
number of samples (and number of observations within the samples) grows asymptoti-
cally, strategies that involve the collection or distribution of physical materials are con-
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strained by the number of material items at hand (for example, M&Ms [Dyck and Gee
1998] or rose blooms [Schoenfelder et al. 2007]). Furthermore, though a number of
computer-based tools are available for simulating the CLT (for example, Caro [2015];
Rice Virtual Lab in Statistics [2017]; Dinov, Christou, and Sanchez [2008]), these still
tend to be either restrictive in terms of the number of random samples that can be
generated or web based and therefore not applicable on machines without an Internet
connection. Finally, what both material- and computer-based methods lack is hands-on
interaction with the statistical software that students will inevitably be using during
(and hopefully after) their statistics course.1

In this article, I outline a simple new command, sdist, that can be used to simulate
the CLT within the Stata environment. This is accomplished by 1) generating a matrix
of randomly generated normal or nonnormal variables, 2) plotting the associated empir-
ical sampling distribution of sample means, 3) comparing the true sampling distribution
standard deviation with the standard error from the first randomly generated variable,
and 4) producing a side-by-side comparison of the two distributions. The command
allows the student to alter the number of random samples, the number of observations
per sample, the type of distribution from which the samples are drawn, and the pa-
rameters of the distribution. The code is purposefully kept simple to promote student
experimentation of the simulator outside the classroom.

In what follows, I first describe the simulation procedure performed by sdist. I then
outline the syntax, options, and outputs of the command. I close with an illustration
of sdist in action.

2 Simulation procedure

The sdist command compares an empirical sampling distribution of means from a
matrix of randomly generated variables (samples) with an empirical distribution of one
of the random variables used to generate the sampling distribution. Let X be an n× r
matrix consisting of n observations and r random variables,

X =

⎡⎢⎢⎢⎣
x11 x21 x31 · · · xr1
x12 x22 x32 · · · xr2
...

...
...

. . .
...

x1n x2n x3n · · · xrn

⎤⎥⎥⎥⎦
where each xij cell entry is a randomly generated number from some distribution (nor-
mal or nonnormal). Each cell entry is independent of every other cell.

1. The Statistical Consulting Group at the UCLA Institute for Digital Education and Research (2015)
provides an interactive GUI-based CLT simulator in Stata called clt. Although clt offers more
parent distribution types and is considerably faster than sdist when more samples are drawn, it
does not offer the ability to visualize or report the mean, standard deviation, or standard error for
one of the observed variables that goes into the sampling distribution of sample means. This feature,
which sdist has, is particularly important when trying to illustrate the asymptotic normality
characteristics of the CLT with nonnormal variables. clt also does not appear to be functional on
Mac operating systems (or at least newer versions of them).
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From here, a row vector, x, of sample (column) means is generated from X, where
the ith sample mean in the vector is found with

xi =
xi1 + xi2 + · · ·+ xin

n

This row vector is then transposed to make a column vector xT of xr means:

xT =

⎡⎢⎢⎢⎢⎢⎣
x1
x2
x3
...
xr

⎤⎥⎥⎥⎥⎥⎦
The frequency distribution of xT is the empirical sampling distribution of r random-
sample means, each generated from n observations.

The standard deviation of this sampling distribution, σx, is then calculated as

σx =

√∑r
i=1(x− μx)2

r

where μx is the mean of the empirical sampling distribution.

This “true” standard deviation of the sampling distribution is then compared with
the standard-error estimate from x1 : sex = s1/

√
n, where s1 is the standard deviation

of x1. In addition to σx and sex, a Δ estimate is also reported,

Δ = |σx − sex|

where Δ is simply the absolute difference between the true standard deviation of the
sampling distribution and its standard-error estimate—the value of which, per the
asymptotic properties of the CLT, will shrink as r, n, or both increase.

3 The sdist command

sdist performs the above simulation using a combination of base Stata functions native
to at least Stata 13.1. The reliance on base functions is intentional and meant to promote
quick classroom implementation. The syntax for sdist, outlined below, was also kept
simple for this purpose. A consequence of this emphasis on simplicity is that only a
selection of graphical parameters from the histogram and graph combine commands
are available for customization. Future updates to the command may increase the
number of customizable graphical parameters.
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3.1 Syntax

sdist
[
, samples(#) obs(#) type(string) par1(#) par2(#) round(#)

histplot saveplot1(string) saveplot2(string) repplot combine

lcolor(string) fcolor(string) bckg(string) nlcolor(string) nlwidth(#)

nlpattern(string) dots
]

3.2 Options

samples(#) specifies the number of r random samples to generate. The default is
samples(200).

obs(#) is the number of n observations per sample. The default is obs(500).

type(string) is the type of distribution from which the random samples should be
drawn. The default is type(uniform), which generates random samples from a rect-
angular uniform distribution. Normal and Poisson distributions are also available,
indicated by type(normal) and type(poisson), respectively. The distributions
are created through calls to Stata’s random-number generators (see [FN] Random-
number functions).

par1(#) is the first parameter to be specified depending on the distribution selected in
type(). Because the default type() is the rectangular distribution, the default is the
lower end of the [a, b) interval. The samples are generated through the runiform()
function (see [M-5] runiform( )), so the default for a is 0, but this can be changed.
If type(normal) is selected, this parameter is the mean, with a default of par1(0).
This parameter does not specify anything if type(poisson) is selected; use par2()
to specify the mean of the Poisson distribution instead.

par2(#) is the second parameter to be specified depending on the distribution selected
in type(). Because the default type() is the rectangular distribution, the default
is the higher end of the [a, b) interval. The samples are generated through the
runiform() function, so the default for b is (an approximation of) 1, but this can
be changed. If type(normal) is selected, this parameter is the standard deviation,
with a default of par2(1). If type(poisson) is selected, this parameter is the mean,
also with a default of par2(0).

round(#) is the decimal point to which μx, σx, x1, s1, sex, and Δ should be rounded.
The default is round(0.001).

histplot indicates whether histograms of the xT and x1 frequency distributions should
be plotted. The plots are generated through Stata’s histogram command (see
[R] histogram). The default is no histogram.

saveplot1(string) indicates whether the xT histogram should be saved and the name
for the plot. The default is saveplot1(plot1.gph) if repplot is specified. This is
ignored if histplot is not specified. The default is to not save the plot.
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saveplot2(string) serves the same purpose as saveplot1(), but with reference to the
x1 histogram. The default is saveplot2(plot2.gph) if repplot is specified. This
is ignored if histplot is not specified. The default is to not save the plot.

repplot specifies whether the saved histograms should replace existing saved histograms
in the same directory with the same name. repplot will default to saving both
plots if neither saveplot1() nor saveplot2() is specified, using plot1.gph and
plot2.gph as the filenames, respectively. The default is to not replace plots.

combine indicates whether the two histograms should be stacked to form a third plot.
This is a call to the graph combine command (see [G-2] graph combine). Both
histograms have to be saved for the graphs to be combined, either by specifying
both saveplot1() and saveplot2() simultaneously or by specifying repplot with-
out either the saveplot1() or the saveplot2() option (though repplot can still
be used in conjunction with both saveplot1() and saveplot2() if both are spec-
ified). Requiring that both saveplot1() and saveplot2() or repplot only be
specified prevents the program from erroneously stacking histograms from different
simulations. The default is to not stack the plots.

lcolor(string) indicates the outline color of the histogram bars. This is a call to the
lcolor() option of the histogram command. The default is lcolor(black).

fcolor(string) indicates the interior color of the histogram bars. This is a call to the
fcolor() option of the histogram command. The default is fcolor(gs6).

bckg(string) indicates the color of the graph region background. This is a call to
the graphregion(fcolor()) option (see [G-3] region options) of the histogram

command. The default is bckg(white).

nlcolor(string) indicates the color of the normal curve line. This is a call to the
normopts(lcolor()) option of the histogram command. The default is
nlcolor(black).

nlwidth(#) indicates the thickness of the normal curve line. This is a call to the
normopts(lwidth()) option of the histogram command. The default is
nlwidth(0.5).

nlpattern(string) indicates the pattern of the normal curve line. This is a call to
the normopts(lpattern()) option of the histogram command. The default is
nlpattern(solid).

dots indicates whether the program should show simulation progress using the dots

command. The default is no dots.
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3.3 Output2

By design, sdist will not run if there are any data in memory. If data are in memory,
the program will error out and inform users that they need to clear any data before
running sdist. After users clear all data and execute the command, sdist returns a
simple table with σx, sex, and Δ. The table also includes a note on the Δ estimate,
explaining why the difference between σx and sex may be as large (or small) as it is (for
example, if r or n is large or small). Below is an example of the output printed to the
Results window.

. set seed 544

. sdist, histplot samples(500) type(poisson) par2(1)
> saveplot1(emp_dist.gph) saveplot2(single_dist.gph) repplot combine

sd/se

sig_Xb .045
se_Xb .047

abs(diff) .002

The difference between sig_Xb and se_Xb is .002. The larger
this difference, the poorer the single X variable standard error approximates
the standard deviation of the sampling distribution. This may be due to one
of two things: a small number of samples and/or a small sample size.

By issuing the histplot option, users generate ready-made plots of the xT and x1
distributions—complete with μx and σx for the sampling distribution and x1, s1, and
sex for the variable distribution. An example of the plot is provided in figure 1 below,
which was generated from the above command. While figure 1 (the combined plot one
gets after specifying the combine option) is not automatically saved, the two histograms
composing it would have been saved because the user specified the saveplot1() and
saveplot2() options. In this case, the hypothetical user chose to name the xT his-
togram emp dist.gph and the x1 histogram single dist.gph.

2. The examples in this article were created on a machine running Stata 14.2. The examples will
output slightly different results when using a Stata version earlier than 14 because a new random-
number generator was introduced with Stata 14 (Gopal 2016).
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Figure 1. The empirical sampling distribution (top) and the first variable distribution
(bottom) from a Poisson parent distribution

If the user had specified repplot without explicitly saving either of the histograms,
sdist would have defaulted to the assumption that the user was wanting to save the
plots (otherwise, he or she would not have attempted to replace other existing files by
issuing repplot in the first place). Therefore, the two plots would have been saved with
the generic names plot1.gph and plot2.gph. Note, however, that the combine option
will never work when the two histograms are not saved in some way (through some
combination of saveplot1(), saveplot2(), or repplot), because combine assumes
that the plots have been saved. If repplot had been issued with saveplot1() but not
saveplot2(), then only the first graph would overwrite any preexisting file with the
same name in the directory. The reverse would also be the case if one issues repplot
with saveplot2().
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4 Example

sdist requires an empty dataset to maximize sample-size flexibility and prevent other
variables from inadvertently being implemented into the simulation procedure. If the
user attempts to execute the sdist command with data loaded in memory, the command
will error out with the following explanation:

. sdist
Save and/or clear existing data before running -sdist-.
r(4);

The random variables and any of their associated classes of objects are wiped from
memory after the simulation is completed. The user may also use the set seed com-
mand before executing sdist to re-create any results.

As a hypothetical example, let us say an instructor wishes to illustrate the CLT

property of asymptotic normality by comparing the differences between the standard
deviation of an empirical sampling distribution of sample means and the standard error
from a single sample using two sampling distributions of different sizes: one with an r
of 500 and another with an r of 10,000 (both with a sample size of 2,000 and both from
a rectangular parent distribution). To run the first simulation, the instructor would
simply run sdist and set the samples() parameter to 500 and the obs() parameter to
2,000. The program would then return the following:

. set seed 2144

. sdist, histplot samples(500) obs(2000) repplot combine

sd/se

sig_Xb .007
se_Xb .006

abs(diff) .001

The difference between sig_Xb and se_Xb is .001. The larger
this difference, the poorer the single X variable standard error approximates
the standard deviation of the sampling distribution. This may be due to one
of two things: a small number of samples and/or a small sample size.

The output tells us that the standard deviation of the empirical sampling distribu-
tion, σx, is 0.007, and the standard-error estimate of that standard deviation, sex,
from the first sample in the simulation is 0.006. The absolute difference between
these two numbers, Δ, highlights the fact that the standard error from just one of
our samples—which is nonnormal (see figure 2 below, which we get after combining
histplot, repplot, and combine)—is nonetheless a good estimate of the sampling
distribution standard deviation that it seeks to approximate.
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Figure 2. The empirical sampling distribution and variable distribution from a simula-
tion with r = 500 and n = 2000

The key property of the CLT—that the sampling distribution of sample means for a
variable with a sufficiently large-sample size will be approximately normal, regardless of
the shape of the variable’s population distribution or observed sample distribution—is
visualized in the plots that can be generated through sdist. The main parameters of
interest from the sdist table are also featured in the plot, along with the sampling
distribution mean, the individual sample mean, and the individual sample standard
deviation.

Though the example with an r of 500 does a decent job by itself of illustrating how
large-sampling distributions with sufficient sample sizes approach normality, the CLT

property of asymptotic normality is made that much clearer when juxtaposing figure 2
with the simulation featuring an r of 10,000:
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. set maxvar 32767

. set seed 4816

. sdist, samples(10000) obs(2000) histplot saveplot1(emp_dist.gph)
> saveplot2(single_dist.gph) repplot combine

sd/se

sig_Xb .006
se_Xb .006

abs(diff) 0

The difference between sig_Xb and se_Xb is 0. The larger
this difference, the poorer the single X variable standard error approximates
the standard deviation of the sampling distribution. This may be due to one
of two things: a small number of samples and/or a small sample size.

In addition to noting the smoothness around the normal curve with the larger sim-
ulation (see figure 3), the instructor could also point out the diminishing presence of
outliers and explain how, when taking averages from multiple samples, the impact of
influential observations diminishes as sample means cluster around the center of the
sampling distribution—especially when the sampling distribution grows larger.
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Figure 3. The empirical sampling distribution and variable distribution from a simula-
tion with r = 10000 and n = 2000



M. A. Taylor 355

5 Conclusion

The CLT is fundamental to statistical practice and education. Without quality knowl-
edge of how and why it works, the inferential power of parametric statistics can be dif-
ficult to grasp. Though numerous pedagogical tools are available to promote hands-on
learning, these strategies are often constrained by the availability of material resources
or, if computer based, are not featured within the statistical computing environments
within which students will inevitably have to gain experience. The command detailed
here, sdist, addresses both of these shortcomings by 1) using simulations that are
constrained only by the memory allowances of the user’s Stata software and 2) using
a simple syntax structure that promotes in-class and at-home experimentation among
students new to the Stata environment.

There are, of course, aspects of sdist that can be improved. For instance, be-
cause the program requires variable space, larger simulations can be performed only in
Stata/SE or Stata/MP. At a certain point in the simulation, Stata must be able to hold
r × 3 variables in memory. As such, the 10,000 sample example above required space
for 30,000 variables—something that Stata/IC and Small Stata cannot provide.3 This
memory demand also means the processing speed decreases with larger simulations;
thus, users are encouraged to prerun larger simulations prior to instruction. Hopefully,
these limitations will be addressed in future iterations of the command.

The CLT is simultaneously deceptively simple and deceptively complex. sdist can
hopefully provide those students and practitioners working within Stata an opportunity
to experiment and play around with the theorem, figuring out what exactly makes it
tick.
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