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Abstract. In this article, we introduce clusteff, a community-contributed com-
mand for checking the severity of cluster heterogeneity in cluster–robust analyses.
Cluster heterogeneity can cause a size distortion leading to underrejection of the
null hypothesis. Carter, Schnepel, and Steigerwald (2017, Review of Economics
and Statistics 99: 698–709) develop the effective number of clusters to reflect a
reduction in the degrees of freedom, thereby mirroring the distortion caused by
assuming homogeneous clusters. clusteff generates the effective number of clus-
ters. We provide a decision tree for cluster–robust analysis, demonstrate the use
of clusteff, and recommend methods to minimize the size distortion.
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1 Model

The basic setting is to consider a specification for n observations grouped into G clusters
of the form

yig = xTigβ + uig (1)

where observation i belongs to cluster g with ng observations in cluster g. We assume
E(uig|xig) = 0, so (1) captures the conditional mean of yig. The error term uig is
allowed to have arbitrary correlation within a cluster, where Ωg is the covariance matrix
for cluster g conditional on xg but is assumed to be independent across clusters. In this
article, we provide a command that estimates the effective number of clusters, which
is a diagnostic tool used to measure severity of cluster heterogeneity (including lack of
balance in the covariate matrix) derived by Carter, Schnepel, and Steigerwald (2017).

The question of interest is to test the null hypothesis H0 : a
Tβ = aTβ0, where β0

is the value of β under the null hypothesis and a is a vector selecting the coefficients
to be included in the test. We focus on the conventional test statistic constructed from
β̂—the ordinary least-squares (OLS) estimator of β in (1),

t =
aT

(
β̂ − β0

)
√

aT V̂a
(2)
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where V̂ is a cluster–robust estimator of V—the variance of β̂ conditional on the
covariate matrix X. The cluster–robust estimator of V is

V̂ = c
(
XTX

)−1

(
G∑
g=1

XT
g ûgû

T
gXg

)(
XTX

)−1

where Xg and ug are the covariate matrix and error, respectively, for cluster g and

c = {G(n−1)}/{(G−1)(n−k)} is designed to partially offset the downward bias in V̂.

The consistency of V̂ and the asymptotic normality of t is established under general
conditions in Carter, Schnepel, and Steigerwald (2017). As they describe, consistency

of V̂ cannot be established simply by allowing the number of observations n to grow
without bound but rather depends crucially on allowing the number of clusters G to
grow without bound. To understand why this is so, consider a dataset with a fixed
number of clusters but an increasing number of observations in each cluster. As more
observations are added to each cluster, the dimension of ûg grows and more parameters

are added to Ωg. Consequently, ûgû
T
g := Ω̂g is not a consistent estimator of Ωg, and

consistency of V̂ can be obtained only by averaging Ω̂g over an increasingly large number
of clusters. Thus, the size of G is often advocated as a guide to inference. According
to this guide, if G is large (say, greater than 50), then the appropriate critical values to
use when assessing t are obtained from a normal distribution.

The standard practice of using G as the sole criterion when selecting critical values
relies on an assumption that clusters are homogeneous in the sense that E

(
XT
gΩgXg

)
is

identical over clusters. A sufficient condition for this assumption is that all clusters have
identical size, ng = n/G; covariate matrices,Xg, that are identical over g; and covariance
matrices, Ωg, that are identical over g. Because these sufficient conditions rarely occur in
practice, Carter, Schnepel, and Steigerwald (2017) investigate the behavior of t when
clusters are heterogeneous. They find that the test often falsely rejects (that is, the
critical values from a normal distribution are too small) under cluster heterogeneity.

Importantly, Carter, Schnepel, and Steigerwald (2017) report a simple measure that
can detect the extent to which cluster heterogeneity affects the test statistic. The mea-
sure adjusts the number of clusters downward to reflect the degree of cluster hetero-
geneity such that the larger amounts of cluster heterogeneity correspond to greater
downward adjustment in the number of clusters. The resultant adjusted measure is the
effective number of clusters. If the effective number of clusters is small regardless of the
magnitude of G, critical values that are larger than those from a normal distribution
should be used. These critical values may be obtained from a Student’s t distribution
or from bootstrapping, as explained below.

Observe that V = (XTX)−1
∑
g(X

T
gΩgXg)(X

TX)−1 with

γg = aT (XTX)−1(XT
gΩgXg)(X

TX)−1a. Thus aTVa =
∑
g γg. Following Carter,

Schnepel, and Steigerwald (2017), we denote the effective number of clusters as G∗ and
define it as
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G∗ =
G

1 + Γ
Γ =

1

G

G∑
g=1

(
γg − γ

γ

)2

with γ = G−1
∑
g γg. Simply put, cluster homogeneity requires γg = γ for all clusters,

so variation in γg arises from cluster heterogeneity. If the clusters are homogeneous,
then Γ = 0 and G∗ = G. If the clusters are heterogeneous, then Γ > 0 and G∗ < G. A
greater difference between G∗ and G is indicative of more heterogeneous clusters.

Here special attention is required to a, which is a selection vector of length k. The
selection vector is derived from the hypothesis to be tested, H0 : a

Tβ = aTβ0. Conse-
quently, a unique value of G∗ is generated based on each hypothesis to be tested. To
be clear, the method is appropriate for tests of hypotheses on single coefficients, for
example, H0 : β1 = 0, as well as for linear combination of coefficients, H0 : β1 + β2 = 0.

If G∗ is small, inference should be undertaken with care. Carter, Schnepel, and
Steigerwald (2017) show that t is asymptotically normal as G∗ → ∞, which means the
normal approximation should work well if G∗ is large. If G∗ is small, then the appro-
priate critical values are larger than those from a normal distribution, and mistakenly
applying the normal critical values leads to incorrectly rejecting the null hypothesis far
too often (the empirical size of the test exceeds the nominal size of the test). They find
that the empirical size of a test remains close to the nominal size using normal critical
values for G∗ greater than 25.

In practice, G∗ must be estimated because it is a function of the unknown within-
cluster error covariance matrix Ω. Unfortunately, we cannot use the residuals to esti-
mate G∗, because use of the residuals to construct both the critical values and the test
statistic induces pretest bias. Rather, G∗ is estimated by G∗A, which is constructed
under the assumption of perfect within-cluster error correlation.1 Because increasing
the within-cluster correlation tends to increase cluster heterogeneity, the estimate G∗A

is designed to guard against this “worst-case scenario” in which the errors are perfectly
correlated within clusters.

We recommend estimating G∗ as a first step in testing a model with a clustered
error structure to credibly rule out size distortion from cluster heterogeneity. Appli-
cation of the effective number of clusters need not be limited to small to moderate
G, because a large G does not guarantee G∗ to be large under cluster heterogeneity.
Carter, Schnepel, and Steigerwald (2017) demonstrate the fallibility of assuming large
G∗ based on large G using the dataset clustered at the industry level from Hersch (1998).
The dataset contains 5,960 observations in 211 clusters. Conventional wisdom suggests
that the number of clusters in this case is large enough to assume an approximately
normal distribution for the test statistic. However, calculating the effective number of
clusters reveals that the dataset suffers from severe cluster heterogeneity with G∗A = 19,
and the normal critical values are likely too small. In essence, variation in the covariate
matrix across clusters yields substantial variability in the estimator of the standard er-
ror that appears in the denominator of the test statistic. Accounting for this variability

1. The estimation procedure for G∗A used by the program is further discussed in the next section.
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enlarges the critical values. We also note that in applications where the key question of
interest involves the response to treatment in specific clusters, the key criterion is not
the overall value of G∗A but rather the effective number of treated clusters (and the
effective number of control clusters).

In section 2, we detail the command. In section 3, we follow with a decision tree for
selecting the appropriate method of inference. In section 4, we present an example on
use of the decision tree.

2 The clusteff command

2.1 Syntax

clusteff varlist
[
if
] [

in
]
, cluster(varname)

[
test(varname)

selection(string) noconstant covariance(real)
]

2.2 Description

clusteff estimates the effective number of clusters (G∗) devised by Carter, Schnepel,
and Steigerwald (2017) using a vector of independent variables, a clustering variable, and
a selection vector. The command uses varlist as a list of variables to be included in the
estimation procedure with the data clustered by the variable specified in the cluster()
option and the hypothesis test of interest defined by either the selection() option or
the test() option.

2.3 Options

cluster(varname) states the clustering variable. cluster() is required.

test(varname) specifies a selection vector if the null hypothesis of interest involves a
single covariate. Suppose a user aims to test the null hypothesis, H0 : β2 = 0, using
a linear model of the following form: y = β0 + β1x+ β2z + u. Then,

clusteff x z, cluster(clustervar) test(z)

generates the relevant effective number of clusters.

selection(string) allows users to define their own selection vector. The string is a
vector of values selecting the coefficients to be tested corresponding to the vector a
in the null hypothesis, H0 : a

Tβ = 0. The order of covariates in varlist must match
the order of elements in the selection vector. This option is especially useful if the
null hypothesis of interest involves more than one covariate. For example, if a user
is testing the null, H0 : β1 + β2 = 0, stating

clusteff x z, cluster(clustervar) selection(1 1)

estimates the appropriate effective number of clusters.
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The test() and selection() options may not be specified simultaneously. If both
the selection() and test() options are specified, the selection() option over-
rides the test() option by generating a selection vector based on the selection()
option while ignoring the test() option.

The number of elements in a selection vector may not exceed the number of vari-
ables. However, the number of specified elements in a selection vector is allowed to
be smaller than the number of variables. The program fills empty elements with
zeros such that selection(1 0) or selection(1) generates the effective number of
coefficients under the null hypothesis, H0 : β1 = 0.

If a user omits both the test() and selection() options, the program estimates
an effective number of clusters under an assumption that the first variable in varlist
is the covariate of interest. In the above example, omitting both of the options is
equivalent to specifying test(x), selection(1), or selection(1 0).

noconstant determines whether a linear model to be tested contains a vector of con-
stants. If this option is specified, the program estimates an effective number of
clusters without a vector of constants. Use this option when testing a linear model
whose intercept is restricted at zero.

covariance(real) allows users to specify any real number between zero and one as
the within-cluster covariance of the error used to estimate the effective number of
clusters. The default is covariance(1).2 A covariance of less than one estimates a
less conservative effective number of clusters relative to the default in which perfect
within-cluster error correlation is imposed.

2.4 Estimation procedure

Generating a true value of an effective number of clusters (G∗) requires the underlying
error structure, E(ugu

T
g ), to be known. However, using residuals from a regression

ûg to construct critical values renders a test invalid (Carter, Schnepel, and Steigerwald
2017). Instead, Carter, Schnepel, and Steigerwald (2017) suggest using a 1-by-ng vector
of ones, ιg, in place of ug to impose a perfect within-cluster error correlation as a
conservative approach. clusteff uses the above estimation procedure to generate an
estimate of G∗, G∗A, as outlined below.

G∗A =
G

1 + ΓA

2. The program limits the maximum covariance at 0.9999 instead of 1 because of limits on floating-
value precision in Mata. This produces a more stable estimator.
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where

ΓA =
1

G

G∑
g=1

(
γAg − γA

γA

)2

and
γAg = aT

(
XTX

)−1 (
XT
g ιgι

T
gXg

) (
XTX

)−1
a

Any valid input in selection(string) or test(string) is converted to a selection vec-
tor, a, used to generate G∗A. The program performs a matrix multiplication estimating
a scalar value of G∗A.

3 Decision tree

What is the correct approach for a practitioner with clustered data? As noted above,
a key quantity in determining the best method of inference is the effective number of
clusters. Thus, the decision begins with an estimate of this quantity for a given sample.
If the estimated effective number of clusters, G∗A, is at least 50, then one should use the
statistic (2) with critical values from a normal distribution. If G∗A is less than 50, then a
leading approach would be to use (2) but with critical values obtained in a different way.
Cameron, Gelbach, and Miller (2008) and MacKinnon and Webb (2017) find that the
wild bootstrap, which delivers critical values that are larger than those from a normal
distribution, brings the empirical size of the test much closer to the nominal size.

Note that for models where the coefficient of interest is a cluster-level treatment, G∗A

should be calculated separately for both the treated clusters and the control clusters.
If either of these measures of G∗A is less than 25, even if the overall effective number of
clusters exceeds 50, then again the wild bootstrap could be used to obtain more accurate
critical values.3

The wild bootstrap begins by drawing, with replacement, from the collection of
cluster residual vectors {ûg}Gg=1. Each residual vector is multiplied by either 1 or −1
with equal probability. Then, the resultant residual vectors are combined with the
observed regressors to produce bootstrap samples. Complete details are provided in
Cameron, Gelbach, and Miller (2008); Cameron and Miller (2015); and MacKinnon and
Webb (2017). Community-contributed commands cgmwildboot by Caskey (2010) and
boottest by Roodman (2015) can be used to generate p-values via wild bootstrap.

3. With clusters identical to the size of U.S. states, MacKinnon and Webb (2017) show that severe un-
derrejection can occur if there are fewer than seven treated or untreated clusters. Ferman and Pinto
(2015) study the case of a small number of treated clusters in a difference-in-differences setting.
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For datasets that have a small effective number of clusters, either overall or within
the treatment group (while rare, a similar issue arises if the control group has a small
effective number of clusters), there are alternatives to the wild bootstrap. If interest
centers on the coefficient of a covariate that varies within clusters and there are a large
number of observations in each cluster, then Ibragimov and Müller (2010) propose an
alternative test statistic. To illustrate their method, we first rewrite (1) to distinguish
an observation-level covariate, xig, from a cluster-level covariate, zg,

yig = α+ βxig + δzg + uig (3)

The test statistic is derived by first estimating β̂g separately for each cluster. Note
that α and δ are both absorbed in the cluster level intercept and so are not separately
identified. The test statistic is

tIM =

√
G
(
β̂ − β

)
s
̂β

where β̂ = 1/G
∑G

g=1 β̂g and s2 = 1/(G − 1)
∑G

g=1(β̂g − β̂)2. Under the cluster as-

sumption, β̂g is independent of β̂h, and if ng is sufficiently large, then β̂g has a normal

asymptotic null distribution with mean β and variance σ2
g . Of course, if β̂g is a normal

random variable and σ2
g = σ2, then tIM ∼ t(G− 1). One would think that allowing σ2

g

to vary would result in a test statistic with larger critical values than those from the
Student’s t (G− 1). Surprisingly, for a test with a nominal size of 5%, the critical values
for tIM are smaller than the critical values from a Student’s t (G− 1). Thus, combining
tIM with the critical values from a t (G− 1) yields a test whose size will not exceed the
nominal size of 5%. Note that such a result does not hold for a test with a nominal size
of 10%, so selection of a nominal size of 5% is important. In comparing this method with
the wild bootstrap, Ibragimov and Müller (2016) find that tIM is better at eliminating
the size distortion for a very small number of heterogeneous clusters with large ng.

If interest centers on the coefficient of a covariate that does not vary within clusters,
and ng is large, then Donald and Lang (2007) propose an alternative test statistic. To
illustrate their method, we begin with the regression (3), where the error has an error-
components structure

uig = ρg + εig

The first step is to construct the OLS fixed-effects estimator from

yig = βxig + cg + εig

yielding {ĉg}Gg=1. The second step is to construct the OLS estimator of δ from

ĉg = a+ δzg + vg

yielding δ̂. For the H0 : δ = δ0, the test statistic is

tDL =

(
δ̂ − δ0

)
s
̂δ
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where s2
̂δ
= s2/{∑G

g=1 (zg − z)
2} and s2 = 1/(G− 2)

∑G
g=1(v̂

2
g). The distribution of tDL

is approximately Student’s t (G− 2), so again the critical values are larger than those
from a normal distribution.

There are two caveats to using this test statistic. The first is that, as in the case of
tIM, the number of observations in each cluster must be large. The second is that the
distribution of the test statistic depends crucially on homogeneity across clusters (in
essence, ng and xg are both identical across clusters). Thus, if G∗A differs substantially
from G, indicating that these homogeneity conditions do not hold, then it may not be
appropriate to use tDL.

MacKinnon and Webb (2017) investigate the relative performance of the wild boot-
strap and tDL. For data in which each cluster has 40 observations, but varying covariates
across clusters, the wild bootstrap and tDL can have comparable empirical size. Impor-
tantly, the comparable size requires the use of G∗A rather than G when constructing
the critical values from a Student’s t distribution. In other words, if tDL is used with
critical values from the t(G − 2) distribution, then the wild bootstrap outperforms it
in the sense of more accurate size. A second set of simulations allows the cluster sizes
to vary together with varying covariates across clusters. In these models with more
pronounced cluster heterogeneity, the wild bootstrap outperforms tDL and delivers the
most accurate size.
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In figure 1, we provide a decision tree that encapsulates this discussion.

Figure 1. Decision tree

4 Example

We recommend using clusteff as a simple check to verify validity of analyses and to
find an optimal method to use to minimize both the amount of computational power
required and the size distortion. This section uses an example from the economics
literature to demonstrate the use of clusteff in analyses of clustered samples.

4.1 Clustering at the state level

Voena (2015) studies changes in the employment decisions of married women that result
from the introduction of unilateral divorce laws. The introduction of unilateral divorce,
under which divorce can be initiated without mutual consent of both partners, increases
the probability of divorce. If women have fewer resources in divorce than in marriage,
they may need to insure themselves against this potential loss of resources by working
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while married (thereby building their human capital). Because states have different rules
governing the distribution of property upon divorce, the strength of this effect is likely
to vary across states. In states with “equitable distribution”, under which women often
have fewer resources after divorce, this effect is likely to be most pronounced. In states
with community property, under which each partner gets an equal share of the resources,
this effect is likely to be weaker. Female labor market participation, therefore, is likely
to be more responsive to the divorce law reform in states with “equitable property”
division.

To test the theory, we fit a linear probability model for the labor force participation
by women in household i, state s, and year t. Key coefficients of interest are on the
interaction covariates, which are indicators for whether state s has unilateral divorce
and (say) community property in year t. The corresponding component of the regression
model is

β1 ({unist} × {compropst}) + β2 ({unist} × {eqdistrst})
where {unist} takes the value 1 if unilateral divorce is legal in state s in year t,
{compropst} takes the value 1 if community property rules are used to govern divorce,
and {eqdistrst} takes the value 1 if equitable distribution rules are used to govern di-
vorce. The individual hypotheses being tested are H0 : βi = 0, where i = 1, 2.

The conventional cluster–robust t statistic (2) is estimated where clustering is at
the state level. The number of clusters is 51, corresponding to the 50 states and the
District of Columbia. The number of observations from each state varies widely, from 3
to 3,552. This large variation in cluster size indicates substantial cluster heterogeneity.
As an initial indicator, we compute the effective number of clusters accounting only for
variation in cluster sizes (that is, ignoring how the covariates change over clusters).4

Such a calculation provides a quick indicator of the degree of cluster heterogeneity.
For this dataset, G∗A = 13, well below the cutoff for Gaussian inference. As noted
above, this approximation of G∗ is likely to be conservative because it is based on an
intracluster correlation of 1. An alternative approximation, which assumes no intra-
cluster correlation and so is much less conservative, can be constructed by replacing
the unit matrix in γAg with the identity matrix. For this dataset, this less conservative

approximation yields G∗A = 20, again below the cutoff for Gaussian inference. All
initial evidence points to the need to move away from the use of critical values from the
normal distribution.

Because the form of the conditional expectation function is not known, Voena (2015,
table 2, columns 5–8, 2,314) provides four regression approximations that differ in the
number of controls. In the following table, we present the OLS estimate and the cluster–
robust standard error reported by Voena, followed by the effective number of clusters
and the bootstrapped confidence interval (CI) in brackets.

4. This computation corresponds to a test on the intercept.
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Table 1. Replication results

(1) (2) (3) (4)
Variables Employed Employed Employed Employed

uni × comprop −0.0377 −0.0389 −0.0575 −0.0488
(0.0164) (0.0175) (0.0175) (0.0177)

G∗A 1.9191 1.9227 4.9457 5.0394
Bootstrapped 95% CI [−0.0868, 0.0056] [−0.1096, 0.0073] [−0.1205,−0.0204] [−0.1181,−0.0092]

uni × eqdistr −0.0279 −0.0263 −0.0265 −0.0298
(0.0306) (0.0314) (0.0387) (0.0414)

G∗A 4.9574 4.9630 13.3717 12.8005
Bootstrapped 95% CI [−0.1089, 0.0372] [−0.1018, 0.0360] [−0.1235, 0.0553] [−0.1228, 0.0541]

Year fixed effects Yes Yes Yes Yes
Age dummies Yes Yes Yes Yes
Children dummies No Yes Yes Yes
State fixed effects No No Yes Yes
Polyn yrs. married No No No Yes
Observations 44,808 44,808 44,808 39,824
Individual fixed effects 3,437 3,437 3,437 2,607

Note: Replication of columns 5–8 from table 2 of Voena (2015). Standard errors are clustered
at the state level, and critical values are generated by the wild bootstrap procedure with 1,000
replications. The third row estimates the effective number of clusters, while the fourth row presents
the wild bootstrap CI between 2.5 and 97.5 percentiles. Although standard errors reported here
are generated using data and codes provided by Voena (2015), they slightly differ from table 2 of
Voena (2015). However, the size of the difference does not change the inference significantly.

For each of the null hypotheses under test, the effective number of clusters is obtained
within Stata using clusteff. For example, consider the test of β1 in column 1, for which
the command is

. clusteff uni_comprop uni_title uni_eqdistr comprop eqdistr d_age*
> yrd* i.person, cluster(state) test(uni_comprop)

We list all covariates included in the model in varlist, specify state as the clustering
variable, and include the null hypothesis to be tested. A portion of the output is

Number of clusters: 51
Estimated effective number of clusters: 1.919089
Warning: G* estimated to be below 50.

where the effective number of clusters corresponds to the coefficient being tested.

With such a small value for G∗A, and such substantial cluster heterogeneity, there
are two potential methods of inference from the decision tree. The first is to combine
the standard test statistic t with critical values obtained from the wild bootstrap. A
second possibility, appropriate for regressors that vary within states, is to use tIM with
critical values from the Student’s t(50) distribution. To construct tIM, we must be able to
estimate β1 and β2 for each state separately. Yet, for some states, {unist}×{compropst}
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is always 0, rendering β1 unidentified for these states.5 Hence, we report wild bootstrap
critical values for t below the approximations of G∗ in table 1.

We use boottest, the aforementioned community-contributed command for Stata,
to obtain the wild bootstrap critical values. The first line of the code runs a regression,
and the second line of the code performs wild bootstrap to generate critical values for
the specified null.

regress participation uni_comprop uni_title uni_eqdistr comprop ///
eqdistr d_age* yrd* i.person chd*, cluster(state)

boottest uni_comprop=0 uni_eqdistr=0

In this case, using wild bootstrap instead of conventional t critical values yields a
wider CI. The difference in CI is less relevant for the estimated coefficients on uni×eqdistr
because they remain insignificant regardless of the method used to infer the significance.
On the other hand, the estimated coefficients on uni × comprop, which are significant
at the 5% level under conventional t critical values, lose significance in two of the four
columns with bootstrapped CI. The change in significance suggests that alternative
methods, such as wild bootstrap, are necessary when drawing inference from a dataset
with a small effective number of clusters.
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A Appendix

A.1 Ibragimov and Müller

Although the test using the Ibragimov and Müller (IM) test statistic is unlikely to be
valid, we show how to derive the IM test statistic, tIM, to demonstrate implementation
of tIM using Stata.

As discussed in section 3, tIM is derived by calculating the coefficient of interest
individually and then assuming the derived coefficients to be approximately t distributed
with G−1 degrees of freedom. Note that this exercise does not have an analytical power,
because the covariates of interest vary in some but not all clusters.6 As far as we are
aware, there is no Stata code for IM-type analysis. It is, however, fairly simple to
implement in Stata without a dedicated program.

First, we keep states with within-cluster variation in the covariate of interest uni×
comprop, define the cluster variable clustvar, and find the number of clusters (denoted
maxclustvar here):

. use psid_women.dta

. egen mean_uni_comprop = mean(uni_comprop), by(state)

6. Only five states had adopted unilateral divorce law and community property regime in the data.
Thus, all states without any variation in the interaction term must be eliminated to estimate tIM
for β1.
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. drop if mean_uni_comprop==0 | mean_uni_comprop==1
(39,126 observations deleted)

. egen clustvar = group(state)

. sort clustvar

. local maxclustvar = clustvar[_N]

Next, we use a loop to calculate the coefficients individually for each group, store
the results, and calculate tIM using the dataset from Voena (2015).

. generate bhat = .
(7,006 missing values generated)

. forvalues i= 1(1)`maxclustvar´ {
2. quietly regress participation uni_comprop comprop uni_title uni_eqdistr

> eqdistr d_age* yrd* i.person if clustvar==`i´
3. quietly replace bhat = _b[uni_comprop] if clustvar==`i´
4. }

. collapse bhat, by(clustvar)

. quietly summarize bhat

. local t_im = r(mean)/(r(sd)/sqrt(r(N)))

. display "Mean of betahat is " r(mean)
Mean of betahat is -.31166391

. display "Standard error of betahat is " r(sd)/sqrt(r(N))
Standard error of betahat is .41951136

. display "Test statistic is " `t_im´ " distributed t with " r(N)-1
> " degrees of freedom."
Test statistic is -.74292127 distributed t with 4 degrees of freedom.


