
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their 
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/


The Stata Journal (2018)
18, Number 1, pp. 76–100

Testing for serial correlation in fixed-effects
panel models

Jesse Wursten
Faculty of Economics and Business

KU Leuven
Leuven, Belgium

jesse.wursten@kuleuven.be

Abstract. Current serial correlation tests for panel models are cumbersome to
use, not suited for fixed-effects models, or limited to first-order autocorrelation.
To fill this gap, I implement three recently developed tests.

Keywords: st0514, xtqptest, xthrtest, xtistest, serial correlation, panel time series,
fixed effects, higher-order serial correlation

1 Introduction

The issue of serial correlation in panel models has been largely ignored in recent decades
(Inoue and Solon 2006), and the discussion is generally dismissed by using robust or
clustered standard errors. However, as shown in Pesaran and Smith (1995), serial cor-
relation can lead to inconsistent estimates in dynamic panels, and omitting or includ-
ing time trends can dramatically change parameter estimates (for example, Allegretto,
Dube, and Reich [2010]; Solon [1984]). Serial correlation tests can help to identify which
model is most credible from a statistical perspective to complement arguments based
on theory.

The two main commands currently implemented in Stata, xtserial and abar, are
limited in their usability. xtserial implements theWooldridge–Drukker (WD) (Drukker
2003; Wooldridge 2010) test, which is limited to first-order autocorrelation1 and assumes
a constant variance over time. Additionally, it is cumbersome to use when working with
many or large models. I show in section 6 that the tests described in this article have
considerably higher power than the WD test using Monte Carlo simulations.

The abar command, developed by Arellano and Bond (1991) and implemented in
Stata by Roodman (2009), can test for any order of serial correlation but is not appro-
priate for fixed-effects regressions. In its current implementation, abar cannot be used
after xtreg.

Instead, I propose using tests developed by Inoue and Solon (2006) and Born and
Breitung (2016), which I have implemented as xtistest, xtqptest, and xthrtest.
They are residual-based tests, which makes them fast and easy to use. Moreover, both
xtistest and xtqptest can test for serial correlation up to any order. xthrtest is
suited to detect first-order correlation only but relaxes the constant variance assumption.

1. More precisely, it can detect differences only between first- and second-order correlation.
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By making serial correlation testing more accessible, I hope it will be used more
frequently to test model specifications and refine the empirical framework. Often, the
barrier of manually implementing such tests prevents theoretical advances from be-
ing used in applied research (Pullenayegum et al. 2016; Choodari-Oskooei and Morris
2016).

The remainder of this article is structured as follows. Section 2 describes the econo-
metrics behind the tests, focusing on what they do and how they work. Section 3
discusses the syntax of the implemented commands. Section 4 demonstrates each test
with a worked example. Section 5 provides some short guidelines on when to use which
test. The relative strengths and shortcomings are detailed further using Monte Carlo
evidence in section 6, where we also investigate the tests’ performance when their as-
sumptions are not met. Section 7 concludes.

2 Econometrics

2.1 xtistest: Inoue–Solon test for serial correlation

xtistest implements the portmanteau test for serial correlation introduced by Inoue
and Solon (2006). More specifically, it tests whether any off-diagonal element of the
autocovariance matrix E(εi, ε

′
i) is nonzero, where εi = [εi1, εi2, . . . , εiT ]

′ is a vector
of error terms. Thus, the unrestricted alternative hypothesis (Ha) is the presence of
“some” serial correlation, without restricting the order at which it might occur, much
like the ubiquitous Ljung–Box test used in time series. The drawback of this method is
that as the number of elements in the covariance matrix increases quadratically with the
length of the panel (T ), so does the number of implicit hypotheses tested. Therefore,
the test requires the number of panel units (N) to be large relative to the number of
time periods.

Figure 1, panel A illustrates this graphically for a T = 5 panel, where the axes
represent the time period and the lines represent the corresponding autocovariances
tested. Different patterns indicate the covariances are used to test a different implicit
hypothesis. In the current case, each covariance corresponds to a separate hypothesis. In
total, there are (T−1)×(T−2)/2 = 6 hypotheses.2 Under the null hypothesis of no serial
correlation, the IS statistic converges to a χ2 distribution with (T − 1)× (T − 2)/2 = 6
degrees of freedom as N goes to infinity. We refer to the original article for an exposition
on how the test statistic is constructed concretely.3

2. Because of the fixed-effects framework, the covariances have to be demeaned first, which leads to a
singular covariance matrix. To overcome this problem, Inoue and Solon (2006) drop one row and
column from the covariance matrix. In the visual example (and in the code), I drop the last column
to retain as much data as possible. The choice of column does not affect the test statistic ex ante.

3. Alternatively, Born and Breitung (2016) provide a more applied explanation.
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Figure 1. Visual representation of the various serial correlation tests. Each line rep-
resents the demeaned covariance between residuals at two different time periods. For
example, a line between (1, 1) and (1, 3) refers to the covariance between t = 1 and
t = 3. Likewise, (3, 3) to (3, 4) refers to the covariance between residuals at time t = 3
and t = 4. Different line patterns indicate that the covariances are used to test a differ-
ent underlying hypothesis. The b’s and f ’s relate to backward- and forward-demeaned
residuals (see section 2.3).
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As in the Ljung–Box test, the lag lengths considered in the IS test can be restricted to
keep the number of hypotheses in check. Under the restricted H0 of no autocorrelation
up to lag p, the modified IS(p)-statistic is χ2{pT − p(p + 1)/2} distributed, growing
only linearly in T . This is visually illustrated in panel B of figure 1 for p = 1. Only
autocovariances of the first order are considered, leading to four underlying hypotheses
to evaluate.

2.2 xtqptest

The xtqptest command calculates the two bias-corrected test statistics introduced by
Born and Breitung (2016), referred to as LM(k) and Q(p). The first tests for autocor-
relation of order k, whereas the second looks for autocorrelation up to order p.

Lagrange multiplier (LM) test of serial correlation at order k

The LM(k) statistic is fairly straightforward and comes down to a heteroskedasticity-
and autocorrelation-robust t test of ς = −1/(T − 1), with ς as the coefficient on the
kth-order demeaned residuals in (1). The eit residual includes the fixed effects; that is,
it is produced in Stata by predict, ue.

eit − ei = ς(ei,t−k − ei) + εit (1)

This leads to the asymptotically equivalent test statistic L̃M(k) defined by (2) and
(3), which under the null hypothesis of no serial correlation at order k has a standard
normal limiting distribution and is calculated by xtqptest, order(k).

zk,i =
T∑

t=k+1

{
(eit − ei) (ei,t−k − ei) +

1

T − 1
(ei,t−k − ei)

2

}
(2)

L̃Mk =

∑N
i=1 zk,i√∑N

i=1 z
2
k,i − 1

N

(∑N
i=1 zk,i

)2 (3)

Figure 1, panel D illustrates this visually for k = 2. There is now just one underlying
hypothesis as the information from all autocovariances of lag length 2 is pooled. Note
the contrast with the IS test, where they were considered separately.

Q test of serial correlation up to order p

The Q(p) statistic, which tests for autocorrelation up to order p is more complicated be-
cause of finite-sample bias induced by correlation among the variously lagged demeaned
residuals. Born and Breitung (2016) eliminate this bias by transforming the residuals
as per (4).
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Lkei =

⎛⎜⎜⎜⎝
0k

ei1 − ei
...

ei,T−k − ei

⎞⎟⎟⎟⎠+

(
T − k

T 2 − T

)
ei (4)

The first vector on the right-hand side represents the lagged demeaned residuals (0k

is a column vector of k zeros). The second term, which involves the residuals including
the fixed effects, removes the bias. It converges to zero as T increases and hence mainly
plays a role in shorter panels. Ordinary least-squares estimates of the coefficients in (5)
converge to zero for all T and N → ∞ under the null hypothesis of no serial correlation.

M = IT − iT i
′
T

Mei = φ1L1ei + φ2L2ei + · · ·+ φpLpei + vi (5)

The matrix M demeans the fixed-effect residuals (IT is the identity matrix, iT a
column vector of ones). Figure 1, panel C visualizes this test for p set to 2. As obser-
vations are pooled per lag length, there are two implicit hypotheses to test, φ1 = 0 and
φ2 = 0. The xtqptest, lags(p) command calculates the asymptotically equivalent
Q̃(p) statistic, defined in (6). Under the null of no serial correlation up to order p, it
follows a χ2 distribution with p degrees of freedom.

Zi = (L1ei, . . . , Lpei)

Ai = e′iMZi

Q̃p =

(
N∑
i=1

Ai

){(
N∑
i=1

A′
iAi

)
− 1

N

(
N∑
i=1

A′
i

)(
N∑
i=1

Ai

)}−1( N∑
i=1

A′
i

)
(6)

2.3 xthrtest

xthrtest implements the heteroskedasticity-robust test statistic, also introduced in
Born and Breitung (2016). It is based, respectively, on the forward- and backward-

transformed residuals efit and e
b
it defined in (7) and (8).

efit = eit −
1

T − t+ 1
(eit + · · ·+ eiT ) (7)

ebit = eit −
1

t
(ei1 + · · ·+ eit) (8)

The statistic can then be seen as a heteroskedasticity- and autocorrelation-robust t
test on the ψ coefficient in (9).

efit = ψebi,t−1 + ωit t ∈ {3, 4, . . . , T − 1} (9)
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Subtracting, respectively, the forward- and backward-looking mean in (7) and (8)
ensures the test is robust to time-varying variances. Under the null of no first-order au-
tocorrelation, it has a standard normal limiting distribution. Figure 1, panel E presents
a visual representation of the heteroskedasticity-robust (HR) test. The dots have been
replaced by b’s and f ’s to highlight that the statistic is not based on the same demeaning
process as the other tests.

3 Syntax

xtistest
[
varlist

] [
if
] [

in
] [

, lags(integer | all) original
]

xtqptest
[
varlist

] [
if
] [

in
] [

, lags(integer) order(integer) force
]

xthrtest
[
varlist

] [
if
] [

in
] [

, force
]

The three commands share a similar syntax, which calculates their respective test
statistics and p-values for the variables specified in varlist . Alternatively, they can be
used as xtreg postestimation commands by omitting the varlist .

xtistest has two options. The first, lags(), indicates the maximum number of
lags to check for autocorrelation. All lags up to this maximum are checked. Specifying
lags(all), leads to the unrestricted IS test, which checks for serial correlation of any
order (see section 2.1). The test defaults to a maximum lag length of two (lags(2)).4

By default, the command uses the faster Born and Breitung (2016) implementation,
but the initial Inoue and Solon (2006) method can be requested by using the original
option. The results should be identical.

xtqptest takes the mutually exclusive lags() and order() options. The first will
calculate the Q(p) test statistic for serial correlation up to order p, whereas the latter
refers to the LM(k) test for serial correlation of order k. For example, if there is first-
but not second-order autocorrelation, the test should reject the null if lags(2) was
specified but not when the user opted for order(2). The test requires varlist to be
residuals including the fixed effect (‘ue’ residuals in predict terminology). There is
some internal machinery to check whether you actually supplied ‘ue’ residuals, but it
is not infallible (in both directions). Specifying force skips this check.5

xthrtest can detect only first-order serial correlation and thus does not ask for any
lag specification. The force option again bypasses the check described above.

4. The choice for lag length two is arbitrary. The alternative—making the unrestricted test the
default—is unattractive because in very large datasets, calculating this statistic can take a signifi-
cant amount of time.

5. Note that as T increases, the difference between using the standard residuals and the ‘ue’ residuals
converges to zero.
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4 Example

This section serves two purposes. First, it shows how the commands work in prac-
tice and how to interpret their output. Second, it highlights that coefficients can vary
strongly depending on the modeling assumptions. Serial correlation measures by them-
selves cannot tell us which estimates are more credible; nonetheless, they are one of the
elements that can guide this decision. For example, ceteris paribus, one would put more
stock in a “correctly” specified model than one that exhibits clear statistical issues.

The example is based on a publicly available dataset of UK firms’ yearly employ-
ment, wages, capital, and output between 1976 and 1984.6 The same data were used
in Arellano and Bond (1991) to illustrate the famous Arellano–Bond estimator and in-
troduce their serial correlation test, implemented in Stata as abar (see section 1). As
a first step, we regress the level of log employment (n) on the logs of wages (w), capital
(k), and industry output (ys). We include year and firm fixed effects.

. webuse abdata

. xtreg n w k ys yr*, vce(cluster id) fe
note: yr1984 omitted because of collinearity

Fixed-effects (within) regression Number of obs = 1,031
Group variable: id Number of groups = 140

R-sq: Obs per group:
within = 0.6321 min = 7
between = 0.8481 avg = 7.4
overall = 0.8349 max = 9

F(11,139) = 48.94
corr(u_i, Xb) = 0.5930 Prob > F = 0.0000

(Std. Err. adjusted for 140 clusters in id)

Robust
n Coef. Std. Err. t P>|t| [95% Conf. Interval]

w -.2968768 .1262997 -2.35 0.020 -.5465938 -.0471597
k .5475598 .050709 10.80 0.000 .4472991 .6478204

ys .2648254 .1529614 1.73 0.086 -.0376065 .5672574

(output omitted )

We find elasticities of −0.3, 0.55, and 0.26 for earnings, capital, and industrial out-
put, respectively. However, our simple equation in levels might be misspecified. Perhaps
there are strong trends in firm employment. If these are correlated to any of our inde-
pendent variables, this would bias their coefficient estimates. One way to check whether
this could be an issue is to look for serial correlation in the residuals. Let’s start with
first-order auto correlation, using the Q(1) test.

6. The dataset is loaded in the first line of the example.
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. xtqptest, lags(1)
Bias-corrected Born and Breitung (2016) Q(p)-test as postestimation
Panelvar: id
Timevar: year
p (lags): 1

Variable Q(p)-stat p-value N maxT balance?

Post Estimation 65.17 0.000 140 9 unbalanced

Notes: Under H0, Q(p) ~ chi2(p)
H0: No serial correlation up to order p.
Ha: Some serial correlation up to order p.

The output of xtqptest, lags(1) lists the specific test performed, the structure of
your panel, and the number of lags used (p = 1). Because no varlist was specified, the
command predicted the fixed-effect residuals for us, based on the last regression. The
test strongly rejects the null hypothesis, indicating the residuals are serially correlated.
Next, we look at the output from the other tests [LM(1), IS(1), and HR].

. xtqptest, order(1)
Bias-corrected Born and Breitung (2016) LM(k)-test as postestimation
Panelvar: id
Timevar: year
k (order): 1

Variable LM(k)-stat p-value N maxT balance?

Post Estimation 8.05 0.000 140 9 unbalanced

Notes: Under H0, LM(k) ~ N(0,1)
H0: No serial correlation of order k.
Ha: Some serial correlation of order k.

. xtistest, lags(1)
Inoue and Solo (2006) IS-test as postestimation
Panelvar: id
Timevar: year
p (lags): 1

Variable IS-stat p-value N maxT balance?

Post Estimation 62.08 0.000 140 9 unbalanced

Notes: Under H0, IS ~ chi2(p*T-p(p+1)/2)
H0: No auto-correlation up to order 1.
Ha: Auto-correlation up to order 1.

. xthrtest
Heteroskedasticity-robust Born and Breitung (2016) HR-test as postestimation
Panelvar: id
Timevar: year

Variable HR-stat p-value N maxT balance?

Post Estimation 1.31 0.190 140 9 unbalanced

Notes: Under H0, HR ~ N(0,1)
H0: No first-order serial correlation.
Ha: Some first-order serial correlation.
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The output is organized in the same way as before. Both the LM and IS tests strongly
suggest first-order serial correlation is present in the residuals. Rather surprisingly, the
HR test suggests the residuals are not correlated at the first order. If there are good
reasons to assume the variance changed significantly over the sample, then a conflicting
result from the HR test should not be discarded easily.7 In this case, however, there
is no reason to assume the variance would change over time. Additionally, the other
tests firmly rejected the null, with very extreme statistics. Combined, this makes the
presence of first-order serial correlation more plausible than its absence.

The remainder of this section is summarized in table 1, where I present coefficient
estimates for various specifications and their respective serial correlation results.8 The
numbers in parentheses represent the p-values corresponding to the coefficient estimates
and serial correlation tests. Column (1) recapitulates the discussion above.

Table 1. Summary of various specifications

(1) (2) (3) (4)
Levels Trends Differences Differences with Lags

Coefficient estimates
w −0.30 (0.02) −0.39 (0.02) −0.49 (0.00) −0.43 (0.11)
k 0.55 (0.00) 0.41 (0.00) 0.33 (0.00) 0.52 (0.00)
ys 0.26 (0.09) 0.43 (0.09) 0.60 (0.00) 0.52 (0.14)

Serial correlation tests
Q(1) 65.17 (0.00) 13.57 (0.00) 4.85 (0.03) 0.39 (0.53)

LM(1) 8.05 (0.00) 3.73 (0.00) 2.21 (0.03) 0.73 (0.47)
IS(1) 62.08 (0.00) 36.54 (0.00) 25.39 (0.00) 5.98 (0.31)

HR(1) 1.31 (0.19) 4.77 (0.00) 1.72 (0.09) 1.38 (0.17)

Q(2) 73.51 (0.00) 42.42 (0.00) 6.31 (0.04) 7.37 (0.03)
LM(2) 3.89 (0.00) −6.47 (0.00) −1.33 (0.18) −2.21 (0.03)
IS(2) 72.63 (0.00) 56.46 (0.00) 27.74 (0.01) 13.29 (0.15)

IS(all) 77.89 (0.00) 69.63 (0.00) 36.31 (0.13) 16.02 (0.38)

The numbers in parentheses represent p-values.
(1): xtreg n w k ys yr*, vce(cluster id) fe

(2): xtreg n w k ys yr* id#c.year, vce(cluster id) fe

(3): xtreg D.n D.(w k ys) i.year, vce(cluster id) fe

(4): xtreg D.n DL(0/2).(w k ys) i.year, vce(cluster id) fe

In column (2), I refit the model with firm-specific trends. The coefficient estimates
have changed considerably. The wage elasticity has increased (in absolute value) by
25%, and the elasticity with respect to industry output is almost twice as large as
before. The residuals still appear to be serially correlated. The four statistics above
the dashed line all point toward the presence of first-order correlation. The Q(2) and
IS(2) tests indicate there is serial correlation up to the second order as well; the LM(2)

test suggests there is correlation of the second order (it does not say anything about
first-order correlation, unlike the previous two).

7. An example would be stock data, which can be stable for years and suddenly enter a turbulent
phase. Figure 3 in the appendix provides an example of a time series whose variance changes over
time.

8. I limit this to second-order serial correlation for the sake of brevity.
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Finally, the unrestricted IS test [IS(all)] tests for serial correlation of any order, with-
out limiting the lag length at which it might occur. In this sense, it is less arbitrary
than the previous tests, which require the researcher to indicate a cutoff point. Unfor-
tunately, it can be used only in panels that are much wider than they are long and is
less powerful than the restricted tests (see section 6).9

An alternative option is to fit the model in differences [column (3)]. Again, the
coefficients have changed. The elasticity of earnings on employment is now almost
−0.5, and the coefficient on industrial output has increased by another 37%. The serial
correlation statistics look a lot better. The unrestricted IS statistic at the bottom of
the table no longer rejects the null of no serial correlation (at any order). The other
tests show more mixed signals, with p-values skirting on both edges of the common 0.05
rejection threshold. Still, we cannot say with confidence that our estimation is free of
serial correlation.

Finally, in column (4) we add two lags of the independent variables.10 I do not
introduce lags of the dependent variable for simplicity, because such (short) dynamic
panels cannot be estimated consistently with standard fixed-effects regressions.11 The
values presented in the top half of the table refer to the sum of the coefficient estimates
and are in line with the previous results, although only the coefficient on capital remains
significant.

The residuals seem fairly free of autocorrelation. The tests above the dashed line all
point to a lack of first-order serial correlation. The presence of correlation at the second
order is less clear, with the Q(2) and LM(2) tests still rejecting the null at 5%, unlike the
IS(2) test. The unrestricted IS test points to a complete absence of serial correlation.

Is this last set of estimates more credible than those presented in columns (1)–
(3)? Serial correlation statistics by themselves cannot answer that question. However,
they are definitely one indicator that these coefficients are less vulnerable to model
misspecification than the others.

5 Usage guidelines

The various tests are frequently in disagreement with one another, as can be seen in
the example in section 4. Below I provide a few guidelines that might help to reach an
informed conclusion in such situations. In section 6, I provide Monte Carlo evidence to
support the rules of thumb presented here. Note that all three tests assume that the

9. As a rule of thumb, the unrestricted IS test requires that N > T 2/2, where N is the number of
panel units and T is the number of time periods. The equivalent requirement for the restricted IS
test is N > p× T , where p is the order up to which to test. Section 2 provides more details.

10. The choice of the number of lags is based on the serial correlation tests. In other cases, theory is
likely to be the prime guideline. Here we have only a short panel of yearly data, so there are few
cues from theory to guide the lag selection (does capital lead to changes in employment with one
year’s delay? two years’? five years’?).

11. The biggest contribution of the earlier mentioned Arellano and Bond (1991) article is that it intro-
duces a generalized method of moments estimator that can do so.
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idiosyncratic errors are uncorrelated with the regressors.12 This means that including
predetermined or endogenous regressors might lead to unreliable test statistics, although
the Monte Carlo evidence suggests this is not always the case.

• Use xtistest

– if the data contain gaps (the IS test accommodates them without requiring
further action).

– if you are concerned about higher-order serial correlation, common when
individual time trends should be included but are not.

– only if the panel dimension (N) is significantly larger than the time dimension
(T ).13

• Use xthrtest

– if you suspect the variance changes significantly over time, for example, when
studying stock indexes that can be stable for years and turn volatile when a
shock happens.

– only if you are just concerned about first-order serial correlation.

• xtqptest is the most reliable in all other situations.

– The power of the Q(p) (the lags() option) increases with N and T , making
it suitable for situations where either N or T or both are small. It also
performs best in the Monte Carlo simulations (see section 6).

– The Q(p) test can be complemented with the LM(k) test (the order option)
to identify at which order the serial correlation is present. For example, if
the Q(2) test for serial correlation up to the second order is near the edge of
rejection or acceptance territory but the other tests cannot reject the null,
then it can be interesting to use the LM(1) and LM(2) tests to check for,
respectively, first- and second-order autocorrelation separately.

6 Monte Carlo

In this section, we examine the finite sample performance of the four tests presented
in this article and compare them with the existing WD (xtserial) and Arellano–Bond
(abar) commands. The tests are evaluated under seven different scenarios, inspired by
issues the practitioner might face. In each scenario, we investigate whether the tests
detect serial correlation if it is present (their “power”) and accept the null of no serial
correlation if there is indeed none (their “size”).

12. For xtqptest and xthrtest, the actual assumption made is a bit more involved, but for all practical
purposes, it comes down to the same thing.

13. As a rule of thumb, N should be larger than pT , where N is the number of panel units, T the time
length, and p the order up to which you want to test for serial correlation (the lags() option).
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6.1 Setup

The basic framework defining the panel is described in (10)–(13). Size results are based
on uit = f(εit), where εit follows a standard normal distribution. Power results are
based on an AR(2) process, such that uit = f(vit, εit), where vit = 0.1× vi,t−1 + 0.05×
vi,t−2+εit.

14 Both size and power might depend on the dimension of the panel. To that
extent, we set the number of panel units N to 20, 50, or 500 and the time length T to 7
or 50. This way, we capture both typical macro panels (for example, N = 20, T = 50)
and representative micro panels (N = 500, T = 7) as well as some intermediate forms.

yit = ci + xitβ + uit (10)

ci ∼ N(5, 10) (11)

xit ∼ N(0, 1) (12)

β = 1 (13)

Table 2 provides a summary of the various scenarios. In the baseline scenario [1],
the panel is balanced, and the variance is constant over time. We apply the fixed-
effect estimator to obtain the residuals. In scenario [2], the error terms are multiplied
by ht = e0.2t, causing the variance to explode over time.15 Time-varying volatility is
particularly common in the financial literature. In scenario [3], the variance is constant
once again, but now the panel is unbalanced, with individual panels missing up to a
fifth of their first and last observations (uniformly distributed).

Table 2. Scenarios used in Monte Carlo simulations

Extension

[1] Constant variance Baseline
[2] Temporal heteroskedasticity uit = εit × ht and ht = e0.2t

[3] Unbalanced panel Ti �= Tj (but no gaps)
[4] No fixed effects ci = 0 = cj
[5] Heterogeneous slopes βi ∼ U [0, 2]
[6] Dynamic panel yit = 0.5yi,t−1 + 0.25yi,t−2 + ci + xitβ + uit
[7] Cross-sectional dependence uit = λi × vt + εit and λi ∼ U [−1, 3] and

vt ∼ N(0, 1)

In scenario [4], we set all fixed effects to zero. Such a situation might occur when
working with first-differenced data or in a panel regression without error component.
Scenario [5] imposes panel-specific βi coefficients (uniformly distributed over [0, 2]). We
fit this heterogeneous slope model using the mean-group estimator (Pesaran and Smith
1995).

14. In the appendix, I show power results for an MA(1) process.
15. Figures 2 and 3 in the appendix show example time series with constant and time-varying variances.
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The final two scenarios put the serial correlation statistics to the test when their
assumptions are not met. In scenario [6], yit itself follows an AR(2) process with yit =
0.5yi,t−1 + 0.25yi,t−2 + ci + xitβ + uit. Fixed-effects estimation no longer consistently
estimates each coefficient (Nickell 1981), one of the requirements of the serial correlation
tests.

Scenario [7] introduces cross-sectional dependence into the error structure by intro-
ducing a common factor with panel-specific factor loadings [see (14)–(16)].

uit = λi × vt + εit (14)

λi ∼ U [−1, 3] (15)

vt ∼ N(0, 1) (16)

This cross-sectional correlation violates the assumption of independently distributed
errors. Comovement across panel units is a growing concern, especially in the macroe-
conomic literature (for example, Eberhardt, Helmers, and Strauss [2013]; Chudik, Pe-
saran, and Tosetti [2011]; Allegretto, Dube, and Reich [2010]). Note that in this spec-
ification, fixed-effects estimation is still consistent because the error term remains un-
correlated with the regressors (Eberhardt, Banerjee, and Reade 2010).

6.2 Results

Results for scenarios [1]–[3] are presented in tables 3–4. The LM(1), HR, and WD tests
look for first-order correlation only. LM(2) tests look just for second-order correlation.
Three tests—IS(2), Q(2), and second-order Arellano–Bond [AB(2)]—look for serial cor-
relation up to the second order. Finally, I also test for serial correlation up to the fourth
order with Q(4) to investigate whether the power of the Q(p) test declines if you allow
for longer serial correlation than is actually present in the data.
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Table 3. Monte Carlo results, scenario [1]–[3], size

T = 7 T = 50
N = 20 N = 50 N = 500 N = 20 N = 50 N = 500

No serial correlation Ideal: 0.05
[1] Constant variance
- IS(2) 0.00 0.04 0.05 . . 0.04
- Q(2) 0.11 0.06 0.05 0.09 0.07 0.05
- Q(4) 0.20 0.09 0.05 0.15 0.09 0.05
- LM(1) 0.08 0.05 0.05 0.06 0.06 0.05
- LM(2) 0.07 0.06 0.04 0.07 0.07 0.06
- HR 0.08 0.06 0.05 0.06 0.06 0.05
- AB(2) 0.43 0.79 1.00 0.09 0.19 0.88
- WD 0.07 0.06 0.06 0.05 0.06 0.05

[2] Time-varying variance
- IS(2) 0.00 0.39 1.00 . . 1.00
- Q(2) 0.09 0.06 0.08 0.10 0.06 0.07
- Q(4) 0.18 0.08 0.10 0.17 0.10 0.14
- LM(1) 0.07 0.06 0.09 0.08 0.06 0.05
- LM(2) 0.07 0.07 0.23 0.06 0.05 0.05
- HR 0.06 0.06 0.05 0.07 0.05 0.05
- AB(2) 0.42 0.80 1.00 0.39 0.40 0.70
- WD 0.09 0.14 0.82 0.13 0.27 0.99

[3] Unbalanced panel
- IS(2) 0.00 0.05 0.06 . . 0.04
- Q(2) 0.10 0.06 0.04 0.09 0.07 0.06
- Q(4) 0.18 0.09 0.04 0.15 0.10 0.06
- LM(1) 0.07 0.06 0.05 0.06 0.06 0.05
- LM(2) 0.07 0.05 0.04 0.08 0.06 0.05
- HR 0.07 0.05 0.05 0.07 0.06 0.05
- AB(2) 0.50 0.86 1.00 0.10 0.21 0.93
- WD 0.07 0.06 0.05 0.06 0.06 0.05

Simulations performed with 2,000 replications.
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Table 4. Monte Carlo results, scenario [1]–[3], power

T = 7 T = 50
N = 20 N = 50 N = 500 N = 20 N = 50 N = 500

AR(2) (α1 = 0.10, α2 = 0.05) Ideal: 1.00
[1] Constant variance
- IS(2) 0.00 0.08 0.77 . . 1.00
- Q(2) 0.14 0.18 0.96 0.85 1.00 1.00
- Q(4) 0.21 0.18 0.91 0.83 1.00 1.00
- LM(1) 0.12 0.20 0.94 0.85 1.00 1.00
- LM(2) 0.07 0.07 0.07 0.40 0.77 1.00
- HR 0.09 0.06 0.23 0.73 0.99 1.00
- AB(2) 0.19 0.36 1.00 0.69 0.97 1.00
- WD 0.09 0.10 0.37 0.19 0.35 1.00

[2] Time-varying variance
- IS(2) 0.00 0.54 1.00 . . 1.00
- Q(2) 0.13 0.20 0.98 0.34 0.66 1.00
- Q(4) 0.20 0.20 0.96 0.37 0.58 1.00
- LM(1) 0.11 0.14 0.82 0.32 0.61 1.00
- LM(2) 0.07 0.07 0.11 0.14 0.25 0.98
- HR 0.08 0.07 0.22 0.18 0.33 1.00
- AB(2) 0.21 0.38 1.00 0.64 0.82 1.00
- WD 0.07 0.07 0.22 0.06 0.09 0.43

[3] Unbalanced panel
- IS(2) 0.00 0.09 0.61 . . 1.00
- Q(2) 0.12 0.14 0.85 0.76 0.99 1.00
- Q(4) 0.20 0.15 0.76 0.73 0.98 1.00
- LM(1) 0.10 0.15 0.83 0.75 0.99 1.00
- LM(2) 0.07 0.06 0.05 0.33 0.65 1.00
- HR 0.09 0.06 0.13 0.59 0.93 1.00
- AB(2) 0.27 0.56 1.00 0.53 0.88 1.00
- WD 0.08 0.09 0.31 0.16 0.29 0.99

Simulations performed with 2,000 replications.
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Do the tests falsely reject the null (no serial correlation) when there actually is no
serial correlation (table 3)?16 In the baseline scenario [1], with a constant variance and
a balanced panel, we find that all tests are decently sized, apart from the Arellano–Bond
test, which is not suited for fixed-effects models. Note that the IS(2) test is not valid for
two of the dimension combinations. When we introduce temporal heteroskedasticity in
scenario [2], both the IS test and the WD test become oversized, worsening as the sample
gets larger. The HR test honors its name and stays very close to the optimal size of 0.05
regardless of N and T . The other tests perform worse than in the constant variance
case, but the distortions remain relatively minor overall. Moving to an unbalanced panel
in scenario [3], we find no significant differences with the balanced case.

As for the power results (do they reject the null when it is indeed false?) in table 4,
we find that in the baseline scenario [1], the Q tests have noticeably more power than the
standard WD test. The LM(2) and HR tests have fairly little power when T = 7, though
they improve considerably as the panel gets longer.17 Introducing time-variation in the
variance [2] leads to relatively similar results. The WD test loses even more power, and
the Q tests still perform best overall. Surprisingly, the HR test, which was developed for
this scenario, has fairly little power, although it does improve as the sample gets bigger
in both dimensions. As with the size results, the balance of the sample [3] does not
have a large impact on the power of the tests. The minor reductions in power across
the board can be attributed to the reduced effective time length of the individual panels
(between 0.6× T and T ).

Results for the more challenging scenarios [4]–[7] are presented in tables 5–6. Given
the bad performance of the Arellano–Bond test, we omit it in these tables to reduce the
number clutter.

16. As is common in the literature, we reject at p = 0.05. Thus, a “correctly sized test” will reject the
null hypothesis 5% of the time when it is true.

17. It is unclear what to make of the Arellano–Bond power results, given that it was so oversized in
these scenarios.
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Table 5. Monte Carlo results, scenario [4]–[7], size

T = 7 T = 50
N = 20 N = 50 N = 500 N = 20 N = 50 N = 500

No serial correlation Ideal: 0.05
[4] No fixed effects
- IS(2) 0.00 0.49 1.00 . . 0.28
- Q(2) 0.10 0.07 0.06 0.10 0.07 0.05
- Q(4) 0.18 0.10 0.06 0.16 0.09 0.05
- LM(1) 0.07 0.05 0.06 0.07 0.06 0.05
- LM(2) 0.06 0.06 0.05 0.07 0.06 0.05
- HR 0.07 0.06 0.05 0.08 0.05 0.06
- WD 0.07 0.05 0.04 0.05 0.05 0.05

[5] Heterogeneous slopes
- IS(2) 0.00 0.04 0.06 . . 0.03
- Q(2) 0.09 0.07 0.06 0.09 0.07 0.05
- Q(4) 0.17 0.10 0.05 0.16 0.09 0.06
- LM(1) 0.07 0.05 0.05 0.07 0.06 0.05
- LM(2) 0.06 0.05 0.05 0.07 0.06 0.05
- HR 0.06 0.05 0.05 0.07 0.05 0.06
- WD 0.07 0.05 0.05 0.06 0.05 0.05

[6] Dynamic panel
- IS(2) 0.02 0.07 0.68 . . 0.07
- Q(2) 0.08 0.09 0.90 0.05 0.07 0.61
- Q(4) 0.08 0.05 0.79 0.13 0.10 0.69
- LM(1) 0.05 0.09 0.90 0.03 0.03 0.36
- LM(2) 0.06 0.05 0.09 0.06 0.08 0.49
- HR 0.05 0.04 0.04 0.03 0.02 0.06
- WD 0.97 1.00 1.00 1.00 1.00 1.00

[7] Cross-sectional dependence
- IS(2) 0.00 0.90 1.00 . . 1.00
- Q(2) 0.72 0.88 0.98 0.79 0.93 0.99
- Q(4) 0.83 0.96 1.00 0.90 0.99 1.00
- LM(1) 0.58 0.72 0.91 0.64 0.76 0.92
- LM(2) 0.57 0.71 0.91 0.62 0.77 0.93
- HR 0.55 0.72 0.91 0.63 0.77 0.92
- WD 0.58 0.73 0.91 0.64 0.77 0.94

Simulations performed with 2,000 replications.
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Table 6. Monte Carlo results, scenario [4]–[7], power

T = 7 T = 50
N = 20 N = 50 N = 500 N = 20 N = 50 N = 500

AR(2) (α1 = 0.10, α2 = 0.05) Ideal: 1.00
[4] No fixed effects
- IS(2) 0.00 0.80 1.00 . . 1.00
- Q(2) 0.13 0.19 0.96 0.87 1.00 1.00
- Q(4) 0.22 0.19 0.91 0.82 0.99 1.00
- LM(1) 0.13 0.20 0.94 0.86 1.00 1.00
- LM(2) 0.06 0.06 0.07 0.41 0.76 1.00
- HR 0.07 0.07 0.25 0.73 0.97 1.00
- WD 0.08 0.10 0.39 0.20 0.36 1.00

[5] Heterogeneous slopes
- IS(2) 0.00 0.07 0.57 . . 1.00
- Q(2) 0.11 0.15 0.86 0.86 1.00 1.00
- Q(4) 0.20 0.15 0.76 0.81 0.99 1.00
- LM(1) 0.11 0.16 0.83 0.85 0.99 1.00
- LM(2) 0.07 0.06 0.07 0.40 0.74 1.00
- HR 0.07 0.06 0.18 0.72 0.97 1.00
- WD 0.08 0.10 0.39 0.20 0.36 1.00

[6] Dynamic panel
- IS(2) 0.02 0.11 0.98 . . 1.00
- Q(2) 0.10 0.19 1.00 0.69 0.99 1.00
- Q(4) 0.09 0.10 0.99 0.63 0.96 1.00
- LM(1) 0.08 0.18 1.00 0.53 0.94 1.00
- LM(2) 0.06 0.04 0.08 0.51 0.89 1.00
- HR 0.05 0.04 0.04 0.35 0.74 1.00
- WD 0.99 1.00 1.00 1.00 1.00 1.00

[7] Cross-sectional dependence
- IS(2) 0.00 0.93 1.00 . . 1.00
- Q(2) 0.73 0.91 0.99 0.79 0.92 0.99
- Q(4) 0.84 0.98 1.00 0.92 0.99 1.00
- LM(1) 0.59 0.72 0.92 0.59 0.75 0.93
- LM(2) 0.58 0.74 0.91 0.62 0.78 0.93
- HR 0.58 0.73 0.92 0.60 0.78 0.92
- WD 0.62 0.76 0.92 0.66 0.78 0.93

Simulations performed with 2,000 replications.
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Regarding table 5, in scenario [4], we set the fixed effects to zero. The IS test
becomes highly oversized, rejecting the null of no serial correlation far more often than
it should (28–100% of the time rather than the ideal 5%). The other statistics are
unaffected. Panel-specific coefficients [5] do not appear to trouble any of the tests. On
the other hand, including lags of the dependent variable [6] is detrimental to the size
of all tests considered, apart from the HR statistic. Performance remains acceptable
in smaller panels but gets progressively worse as N and T increase. The WD test
completely breaks down.18 Introducing cross-sectional dependence [7] leads to even
worse size results. Every test is now majorly oversized. To my knowledge, there is no
serial correlation test that is robust to cross-sectional dependence.19

Finally, we move to the power results in table 6. As with the sizes in the previous
table, setting the fixed effects to zero [4] does not affect the power of any of the tests,
except for the IS test. The introduction of heterogeneous slopes [5] has no discernible
impact on the power of the test statistics. Turning to the dynamic panel scenario
[6], we find that only the small-sample results are meaningful, given that all the tests
became oversized as the sample grew in either dimension. We also find that the power
of the tests holds in these small samples. The values presented for the cross-sectional
dependence case [7] are entirely meaningless, given that none of the tests “accepted”
the null hypothesis of no serial correlation even when it was true.

All in all, we find that, at least in the common scenarios we considered, the Q test
is the most robust overall. It has decent size and is generally more powerful than the
alternatives, especially compared with the standard WD test.

7 Conclusion

I believe that serial correlation tests can help researchers understand their data and
correctly specify their empirical models. Currently, however, serial correlation testing
is far from accessible with panel data. Thus, serial correlation testing is often neglected
altogether or postponed until the very end of the research cycle. In contrast, the three
tests I introduced are easy to use and interpret, making it feasible to test for serial
correlation in earlier, exploratory phases of research. Moreover, I provided Monte Carlo
evidence indicating they have considerably more power in finite samples than the current
generation of tests.

18. In a certain sense, these bad results are inevitable. The bias induced by the lagged dependent
variables mainly affects the autoregressive (AR) coefficients. These incorrectly estimated AR pa-
rameters in turn lead to serial correlation in the residuals (even if the true errors are serially
uncorrelated), which is then detected by the test statistics. In table 9 in the appendix, we intro-
duce endogeneity by correlating the regressor xit with the error term as an alternative specification.
Then, the tests are oversized for small samples but approach 5% as the sample gets longer.

19. Table 9 in the appendix shows results for the cross-sectional dependence scenario when we fit the
model with the common correlated effects pooled (CCEP) estimator (Pesaran 2006) instead of
standard fixed effects. The CCEP estimator filters out the common trends by including the cross-
sectional mean of all variables as regressors with panel unit-specific coefficients. We find decent-size
results for all tests in that case.
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A Appendix

A.1 Example time series

Figures 2–3 illustrate the difference between residuals with a constant variance and those
whose variance increases exponentially over time. The top panel shows an example time
series without serial correlation, the bottom panel one with mild first- and second-order
autocorrelation.
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Figure 2. Constant variance, with and without serial correlation
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Figure 3. Time-varying (“heteroskedastic”) variance, with and without serial correlation

A.2 Monte Carlo evidence: Moving averages

Tables 7–8 present power results for errors following a first-order moving-average [MA(1)]
process, with θ1 = 0.10. There are no major differences compared with the AR(2) results,
with the Q test performing best overall. We include the unrestricted IS test in these
tables. Overall, its performance is very similar to that of the IS(2) test, with a mild
reduction in power, but note that in many cases, it cannot be estimated because the
dimension of the test is too large.
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Table 7. Monte Carlo results, MA(1)-process, scenario [1]–[3], power

T = 5 T = 50
N = 20 N = 50 N = 500 N = 20 N = 50 N = 500

MA(1) (θ1 = 0.10) Ideal: 1.00
[1] Constant variance
- IS(2) 0.00 0.08 0.89 . . 1.00
- IS(all) 0.00 0.07 0.80 . . .
- Q(2) 0.16 0.25 0.99 0.81 1.00 1.00
- Q(4) 0.23 0.23 0.97 0.78 0.99 1.00
- LM(1) 0.14 0.30 0.99 0.86 1.00 1.00
- LM(2) 0.08 0.11 0.53 0.07 0.07 0.11
- HR 0.10 0.17 0.89 0.81 0.99 1.00
- AB(2) 0.13 0.29 1.00 0.66 0.97 1.00
- WD 0.14 0.21 0.95 0.59 0.95 1.00

[2] Time-varying variance
- IS(2) 0.00 0.52 1.00 . . 1.00
- IS(all) 0.00 0.35 1.00 . . .
- Q(2) 0.15 0.26 0.99 0.30 0.54 1.00
- Q(4) 0.24 0.23 0.98 0.34 0.48 1.00
- LM(1) 0.12 0.23 0.97 0.32 0.61 1.00
- LM(2) 0.11 0.17 0.90 0.07 0.06 0.06
- HR 0.10 0.16 0.86 0.26 0.51 1.00
- AB(2) 0.15 0.31 1.00 0.61 0.81 1.00
- WD 0.07 0.06 0.11 0.07 0.07 0.16

[3] Unbalanced panel
- IS(2) 0.01 0.08 0.82 . . 1.00
- IS(all) 0.01 0.08 0.72 . . .
- Q(2) 0.13 0.20 0.96 0.72 0.98 1.00
- Q(4) 0.21 0.21 0.92 0.68 0.96 1.00
- LM(1) 0.12 0.24 0.98 0.79 0.99 1.00
- LM(2) 0.09 0.11 0.59 0.07 0.07 0.11
- HR 0.09 0.12 0.73 0.70 0.98 1.00
- AB(2) 0.20 0.46 1.00 0.50 0.91 1.00
- WD 0.12 0.18 0.89 0.50 0.90 1.00

Simulations performed with 2,000 replications.
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Table 8. Monte Carlo results, MA(1)-process, scenario [4]–[7], power

T = 7 T = 50
N = 20 N = 50 N = 500 N = 20 N = 50 N = 500

MA(1) (θ1 = 0.10) Ideal: 1.00
[4] No fixed effects
- IS(2) 0.00 0.73 1.00 . . 1.00
- IS(all) 0.00 0.63 1.00 . . .
- Q(2) 0.15 0.24 0.99 0.80 0.99 1.00
- Q(4) 0.23 0.22 0.97 0.77 0.98 1.00
- LM(1) 0.15 0.30 0.99 0.86 1.00 1.00
- LM(2) 0.09 0.11 0.53 0.07 0.06 0.10
- HR 0.10 0.17 0.88 0.80 0.99 1.00
- WD 0.13 0.22 0.95 0.59 0.95 1.00

[5] Heterogeneous slopes
- IS(2) 0.00 0.06 0.71 . . 1.00
- IS(all) 0.00 0.05 0.58 . . .
- Q(2) 0.12 0.18 0.94 0.79 0.99 1.00
- Q(4) 0.21 0.18 0.88 0.75 0.98 1.00
- LM(1) 0.11 0.22 0.96 0.85 1.00 1.00
- LM(2) 0.07 0.09 0.40 0.07 0.07 0.10
- HR 0.08 0.13 0.73 0.80 0.99 1.00
- WD 0.13 0.22 0.95 0.59 0.95 1.00

[6] Dynamic panel
- IS(2) 0.02 0.10 0.98 . . 1.00
- IS(all) 0.02 0.10 0.92 . . .
- Q(2) 0.10 0.20 1.00 0.37 0.83 1.00
- Q(4) 0.09 0.12 1.00 0.39 0.74 1.00
- LM(1) 0.09 0.26 1.00 0.48 0.91 1.00
- LM(2) 0.07 0.11 0.55 0.08 0.11 0.73
- HR 0.05 0.07 0.28 0.35 0.76 1.00
- WD 1.00 1.00 1.00 1.00 1.00 1.00

[7] Cross-sectional dependence
- IS(2) 0.00 0.93 1.00 . . 1.00
- IS(all) 0.00 0.81 1.00 . . .
- Q(2) 0.73 0.89 0.99 0.79 0.93 0.99
- Q(4) 0.84 0.97 1.00 0.92 0.99 1.00
- LM(1) 0.56 0.74 0.91 0.62 0.77 0.93
- LM(2) 0.59 0.73 0.91 0.60 0.77 0.93
- HR 0.55 0.72 0.92 0.63 0.76 0.93
- WD 0.62 0.76 0.92 0.67 0.79 0.94

Simulations performed with 2,000 replications.
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A.3 Monte Carlo evidence: Endogenous regressor and cross-section-
al dependence

If we introduce a bias in the coefficient of the regressor xit by correlating it to the error
term, we find that in longer panels, the size still remains acceptable (top half of table 9).
This is in contrast with the lagged dependent variable approach in table 5. The good
performance of the WD test is due to a lack of serial correlation in the endogenous
regressor and may not extend to more realistic situations.

Table 9. Monte Carlo results, endogenous regressor and CDP, size

T = 7 T = 50
N = 20 N = 50 N = 500 N = 20 N = 50 N = 500

No serial correlation Ideal: 0.05
Endogenous regressor
- IS(2) 0.00 1.00 1.00 . . 0.76
- Q(2) 0.43 0.61 0.94 0.13 0.09 0.13
- Q(4) 0.73 0.85 1.00 0.21 0.12 0.16
- LM(1) 0.28 0.41 0.76 0.09 0.08 0.11
- LM(2) 0.28 0.39 0.76 0.09 0.07 0.10
- HR 0.27 0.39 0.76 0.10 0.07 0.11
- WD 0.07 0.06 0.05 0.05 0.05 0.05

Cross-sectional dependence
Estimated with CCEP-estimator
- IS(2) 0.00 0.04 0.05 . . 0.03
- Q(2) 0.10 0.07 0.05 0.09 0.06 0.05
- Q(4) 0.22 0.10 0.06 0.17 0.09 0.05
- LM(1) 0.07 0.05 0.05 0.07 0.06 0.05
- LM(2) 0.07 0.05 0.05 0.07 0.05 0.05
- HR 0.07 0.06 0.04 0.07 0.06 0.05

Simulations performed with 2,000 replications.

In the bottom half of table 9, we see that if we estimate our cross-sectionally depen-
dent panel with the common correlated effects pooled (CCEP) estimator (Pesaran 2006),
sizes of all tests return to normal. The CCEP estimator adds the cross-sectional averages
of each variable (dependent and independent) as regressor, with cross section-specific
coefficients. This filters out the cross-sectional dependence if N is sufficiently large.


