%‘““‘“\N Ag Econ sxes
/‘ RESEARCH IN AGRICUITURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.


https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

W) Check for updates

The Stata Journal (2018)
18, Number 1, pp. 287—-289

Stata tip 129: Efficiently processing textual
data with Stata’s new Unicode features

Alexander Koplenig
Department of Lexical Studies
Institute for the German language (IDS)
Mannheim, Germany
koplenig@ids-mannheim.de

Prior to Stata 13 and especially Stata 14, Stata’s abilities to process natural language
data were limited because of the string length limit of 244 characters and the lack
of Unicode support. To extract basic descriptive information from unformatted text
data (for example, word frequency information), one needed to rely on workarounds
such as Benoit’s (2003) wordscores implementation. With Stata 14, this situation
has changed. To demonstrate why the new string-processing capabilities of Stata are
highly relevant and useful for anyone who deals with natural language data, let us
consider, for example, that we want to extract the five most frequent words of the English
Universal Declaration of Human Rights. We can do this by first downloading the text file
from http://www.unicode.org/udhr/ using the copy command. Then, we can use the
new string functions ustrwordcount () and ustrword() to produce language-specific
Unicode words that are based on word-boundary rules or dictionaries for languages that
do not use spaces between words (for example, for Thai, see below):

. copy "http://unicode.org/udhr/d/udhr_eng.txt" udhr.raw, replace
. clear
. local words=ustrwordcount(fileread("udhr.raw"))

. set obs “words~
number of observations (_N) was O, now 1,963

. generate word=ustrword(fileread("udhr.raw"),_n)
. contract word

. gsort -_freq

. list in 1/5
word _freq
1. the 120
2. and 106
3. , 95
4. of 93
5. to 83

Note that Stata automatically separates punctuation tokens from actual word tokens.
In many situations, this is convenient because it makes (effortful) cleaning procedures
unnecessary.

© 2018 StataCorp LLC dm0093



http://crossmark.crossref.org/dialog/?doi=10.1177%2F1536867X1801800117&domain=pdf&date_stamp=2018-03-01

288 Stata tip 129

In a similar vein, it is easy to extract frequency statistics for n-grams that are
sequences of n-consecutive word tokens. Let us say we want to extract the five most
frequent word pairs (that is, 2-grams) from the data above. We can do this by generating
a word identifier that records the position of each word in the text. The resulting file
consisting of all first words of each 2-gram is temporarily stored and then merged with
all second words:

. generate long wordidentifier=_n
. rename word wordl
. tempfile TEMP

. save "TEMP~, replace
(note: file F:\ST_0j000002.tmp not found)
file F:\ST_03j000002.tmp saved

. replace wordidentifier=wordidentifier-1
(1,963 real changes made)

. rename wordl word2

. merge 1:1 wordidentifier using “TEMP~, keep(3)

Result # of obs.
not matched 0
matched 1,962 (_merge==3)

. contract wordl word2
. gsort -_freq

. order wordl word2 _freq

. list in 1/5
wordl word2 _freq
1. . Article 30
2. right to 28
3. the right 28
4. has the 25
5. of the 23

Note that another possibility to extract the most frequent n-grams and correspond-
ing (absolute or relative) frequencies would be to use the groups command written by
Cox (2017), instead of using the contract command before sorting and listing.

As written above, for languages that do not use spaces between words, using the
functions ustrwordcount () and ustrword() has the additional advantage that Stata
takes care of the word segmentation. For example, if we want to extract the five most
frequent words of the Thai Universal Declaration of Human Rights, we just down-
load the Thai text file. Interestingly, we do not have to change the loc argument in
the ustrwordcount () and ustrword() functions. This is because Stata uses the ICU
tokenizer, which automatically switches to dictionary-based rules when it identifies par-
ticular Unicode script input.




A. Koplenig

. copy "http://unicode.org/udhr/d/udhr tha.txt" udhr.raw, replace
. clear
. local words=ustrwordcount (fileread("udhr.raw"))

. set obs “words'
number of observations (_N) was 0, now 2,385

. generate word=ustrword(fileread("udhr.raw"), n)
. contract word
. gsort - freq

. list in 1/5

word _freq
1. Iay 107
2. 1S 91
3. QW 75
4. a 72
5. T 71

289

While the 1CU documentation (http://userguide.icu-project.org/boundaryanalysis)
lists dictionary-based support for Japanese, Khmer, Chinese, and Thai, one can find
that other languages, such as Burmese (language-specific IS0 639-3 code: mya), Lao
(Lao), or Tibetan (bod), are also supported by using the corresponding 1SO code in the

copy command above (udhr_IS0.txt).

1 References

Benoit, K. 2003. Wordscores: Software for coding political texts. http: // www.ted.ie /

Political Science / wordscores / software.html.

Cox, N. J. 2017. Speaking Stata: Tables as lists: The groups command. Stata Journal

17: 760-773.



http://www.tcd.ie/Political_Science/wordscores/software.html
http://www.tcd.ie/Political_Science/wordscores/software.html

