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Abstract. In this article, we present a simple-to-use framework for assessing the
agreement of cost-effectiveness endpoints generated from different sources of data.
The aim of this package is to enable the rapid assessment of routine data for use
in cost-effectiveness analyses. By quantifying the comparability of routine data
with “gold-standard” trial data, we inform decisions on the suitability of routine
data for cost-effectiveness analysis. The rapid identification of informative routine
data will increase the opportunity for economic analyses and potentially reduce
the cost and burden of collecting patient-reported data in clinical trials.
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1 Introduction

With healthcare budgets under increasing scrutiny, the economic analysis of clinical
decision making is of growing importance. This extends to the collection of evidence
(Petrou and Gray 2011b,a). There is increasing pressure to gather information and
make cost-effective decisions. Health economists routinely use data generated from clin-
ical trials to assess the cost effectiveness of interventions. However, it can take months
or years for patient follow-up to be completed. This delay, alongside the cost and burden
placed on patients to complete lengthy study questionnaires, provides opportunities to
consider alternative approaches.

There is increasing interest in the use of routine data to inform clinical decision
making because of its potential for identifying cost-effective solutions rapidly and inex-
pensively (Gates et al. 2017; Raftery, Roderick, and Stevens 2005). However, the utility
of routine data for this purpose remains uncertain. This issue can be informed by identi-
fying the level of agreement between routine data and a “gold standard” such as existing
trial data. While questions remain over what is an acceptable level of agreement, this
article introduces a simple-to-use tool that quantifies the agreement between final eco-
nomic endpoints generated using alternative sources of cost-effectiveness data. The
routines implemented within this tool are suitable for use in a wide variety of decision-
making contexts. For example, they can be used to compare and validate routine data
for use in trial-based economic evaluations when alternative sources of information on
costs and effects are available for trial participants.
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Achana et al. (2018) introduced a methodological framework for the assessment of
agreement using Lin’s (1989) concordance correlation coefficient (CCC), the difference in
incremental net benefit (INB) estimates, the probability of miscoverage (PMC), and the
probability of cost effectiveness (PCE). Building on this work, we present generalizable
commands allowing these analyses to be performed with relative ease. The commands
are designed for use when data similar to those generated by a typical two-arm clinical
trial are available.

Using individual patient data, the commands assist with the calculation of the in-
cremental cost-effectiveness ratio (ICER) and INB. Briefly, the ICER is the ratio of incre-
mental costs (that is, the difference in mean costs between the treatment and control
interventions) to incremental effectiveness (that is, the corresponding difference in mean
effectiveness between treatment and control interventions),

Cost 4 — Costp
Effect 4 — Effectp

ICER =

where Cost, and Effect 4 represent the means of the cost and effect in treatment A,
and Costp and Effectp represent the equivalent in treatment group B (where B is the
control intervention). The ICER is normally the main summary measure of interest in
most economic evaluations. However, as a ratio statistic, ICERs can be problematic to
work with mathematically (Glick et al. 2007). The INB transforms comparisons of cost
and effect instead to a linear scale and is given by

INB = A(Effect 4 — Effectp) — (Cost4 — Costp)

where ) is the cost-effectiveness (or willingness-to-pay) threshold, which is the maximum
threshold at which a decision maker is willing to pay per unit of effectiveness gained.
INBs can be framed in net monetary terms (as given by the equation above) or net health
terms, which are equivalent (see, for example, Glick et al. [2007] for further discussion
of cost-effectiveness ratios and INBs).

In the applications that follow, the INB is used as the statistic for assessing agreement
because of the mathematical convenience of working on a linear scale. If two sources of
data are available, Lin’s CCC of the two INB estimates will be calculated alongside the
difference between the two INB estimates with a 95% confidence interval. Compatible
with bootstrapping, the commands allow the calculation of the PMC and the PCE, and
they produce a simple plot assessing the cost effectiveness.

The current version of the package allows only for assessment of two datasets where
the comparison involves analysis of individual participant data on costs and effects
(binary or continuous measures) such as that from simple two-arm randomized con-
trolled trial data. Future development will focus on extending the routines to allow
for i) randomized controlled trials with more complex designs (cluster-randomized,
multiple-treatment comparisons, etc.); ii) inclusion of adjustment covariates in a re-
gression so that routines can be applied to comparisons involving nonrandomized study
designs; and iii) greater customization of the graphical output.
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2 The commands

2.1 Description

The heabs command calculates the ICER and INB for up to two pairs of cost-effectiveness
data. The command is flexible; if just one pair of cost and effect variables are entered,
then only the ICER and INB will be calculated. However, if two sets of cost and effect
variables are entered, then the command calculates the ICER and INB for both data
sources and performs a simple comparison of the INB scores, calculating the cCC and
the difference in INB estimates and relative confidence interval. In addition to cost and
effect data, the function also requires the user to input the willingness-to-pay threshold
and whether a higher score in the effect variable is beneficial (for example, quality of life)
or detrimental to the health of the individual (for example, mortality). The command
also requires the treatment indicator variable to be encoded as 0 and 1. heabs stores a
range of calculated values, allowing for simple use alongside Stata’s built-in bootstrap
command.

Lin (1989) introduced his CCC as a means of quantifying agreement between two
measures. It follows traditional correlation coefficients, with a score of 1 suggesting
perfect agreement, —1 suggesting perfect inverse agreement, and 0 suggesting no agree-
ment. McBride (2005) suggests that moderate agreement could be identified if the lower
95% confidence interval of the CCC estimate was above 0.90. However, Cicchetti (2001)
suggests a score as low as 0.4 can be taken as a measure of fair agreement. With such
a wide range of views, we recommend that the user decide his or her own suitable ccc
threshold for determining agreement.

Similarly, the difference in INB has no firm interpretation in terms of its assessment
of agreement. The standard errors (SEs) will often be large, reflecting the wide range
of costs associated with a typical health economic analysis. Hence, it is unlikely that a
significant difference will be found between the two sources of data. Again, we recom-
mend that the user establish an acceptable level of difference between the two sources
of data and examine the results of the bootstrap accordingly.

The heapbs command calculates the PMC and PCE for a set of cost-effectiveness data
that have been generated through the heabs command combined with the bootstrap
prefix. It can also produce a scatterplot of the cost-effectiveness data by fitting a
confidence ellipse around them. The command is flexible, calculating only the scores
specified by the user.

The PMC is recommended by Achana et al. (2018) to be implemented by taking the
INB from the routine data source and the confidence intervals of the gold-standard trial
data. This will then yield the probability that the confidence intervals do not contain
the INB estimate, allowing for assessment of the agreement between the sets of data.
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The PCE, while not a direct assessment of agreement, allows the user to assess what
percentage of the bootstrapped INB estimates for a dataset are positive (that is, cost
effective). A comparison of the PCE for both sets of cost-effectiveness data could yield
further insight into the agreement of the two sources.

Finally, the optionally generated graph allows for the visual interpretation of a set
of cost-effectiveness data through a scatterplot, complete with a 95% confidence el-
lipse. The ellipse is generated using an incorporated version of the command ellip
(Alexandersson 2004). This command calculates the confidence ellipse assuming the
costs and effects are elliptically distributed, drawing the ellipse with a twoway line. The
fitted ellipse should contain roughly 95% of the scattered points.

2.2 Syntax

heabs costl effectl [ cost2 eﬁect?] , intervention(warname) response(string)
[w2p () |

costl and effectl represent the cost and effect variables obtained from the first
dataset.

cost2 and effect2 are the variables from the second dataset, which are required if
a comparison is to be performed. If the second pair of variables is not provided, the
command performs a simple routine cost-effectiveness analysis. All of these variables
must be numeric without any missing data.

heapbs [, lci(varname) uci(varname) ref (#) inb(wvarname) draw

cost (varname) effect(varname) twoway,options]

2.3 Options

intervention(varname) specifies the variable that indicates which treatment arm in-
dividuals are in. It requires that 0 and 1 be used to distinguish between the two
treatment arms. intervention() is required.

response (string) specifies whether a higher effect score is positive (bene) or negative
(detr). response() is required.

w2p (#) is the willingness-to-pay threshold, which is used in the calculation of the INB.
This reflects how much the decision maker is willing to pay per unit of effect. The
default is w2p(0).

1lci(warname) specifies the variable containing the bootstrapped estimates of the lower
95% confidence interval of the INB. This option is needed for PMC calculation.

uci(varname) specifies the variable containing the bootstrapped estimates of the upper
95% confidence interval of the INB. This option is needed for PMC calculation.
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ref (#) is the reference INB to be used in the PMC. Achana et al. (2018) suggest using
the INB from one dataset as the reference and comparing it with the 95% confidence
intervals of the other dataset.

inb (varname) specifies the variable containing the bootstrapped estimates of the INB.
This option is needed for PCE calculation.

draw specifies if the user would like to generate a plot of the cost-effectiveness boot-
strapped data with a confidence ellipse.

cost (varname) specifies the variable containing the bootstrapped cost estimates. This
option is needed to draw the plot.

effect (varname) specifies the variable containing the bootstrapped effect estimates.
This option is needed to draw the plot.

twoway_options allow the control of title, legend, axis, and ellipse settings. See the
ellip command for further details (Alexandersson 2004).

2.4 Stored results

heabs stores the following in r():

Scalars

r(costl) incremental cost from the first set of cost-effectiveness data

r(outcomel) incremental effect from the first set of cost-effectiveness data

r(cost2) incremental cost from the second set of cost-effectiveness data

r (outcome2) incremental effect from the second set of cost-effectiveness data

r(NB1) INB from the first set of data

r(seNB1) SE of the INB from the first set of data

r (1oCINB1) lower 95% confidence interval of the INB from the first set of
data

r (upCINB1) upper 95% confidence interval of the INB from the first set of
data

r(NB2) INB from the second set of data

r (seNB2) SE of the INB from the second set of data

r(1loCINB2) lower 95% confidence interval of the INB from the second set of
data

r (upCINB2) upper 95% confidence interval of the INB from the second set of
data

r(diffNB) difference in the INB estimates of the two sets of data

r(ICER1) ICER from the first set of data

r (ICER2) ICER from the second set of data

r (cccNB) CCC estimate of the two sources of data

r(zcccNB) z score of CCC estimate; can be used in hypothesis testing

heapbs stores the following in r():

Scalars
r(pce) PCE
r (pmc) PMC
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3 Example

An example of the commands is shown through manipulation of the bpwide.dta built-
in dataset, which can be reproduced using the do-file included in the package. Blood
pressure is the outcome of interest, with a higher score associated with poorer health.
Gender is recoded as the intervention indicator, and artificial cost data are created
based loosely on the blood pressure data. The “before” variable is treated as the first
gold-standard trial dataset, and the “after” variable is treated as the comparator. The
full list of changes is shown through the commands below:

. sysuse bpwide

(fictional blood-pressure data)
. set seed 123
. _strip_labels _all
. drop agegrp

. generate costl = (200-bp_before)*rnormal(50,10)
(250-bp_after) *rnormal (50,10)

. rename bp_before bpl

. generate cost2 =

. rename bp_after bp2

. rename sex intervention

Once the dataset is prepared, the functions can be applied as follows.

With no second source of data indicated, the command performs a simple routine
cost-effectiveness analysis. The output displays a summary of the data, followed by
estimates of the ICER, INB, and INB SE.

. heabs costl bpl, intervention(intervention) response(detr) w2p(10)

Summary: Int O Int 1

N 60 60

Min Cost 98.84935 667.84313

Max Cost 3700.2055 3592.1422

Min Effect 140 138

Max Effect 185 185

Cost Effect Inc Cost Inc Effect ICER
Int O 2049.930 159.267
262.202 5.633 46.545
Int 1 2312.132 153.633
INB INB SE

INB Results -205.869 118.961

If a second set of data is added, then a comparison is performed with the routine
analysis. Here the estimates for the first dataset are unchanged from above, but the
corresponding estimates for the second data source are also displayed. In addition,
the CCC estimate and the difference of the INB estimates are shown. Note that if a
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willingness-to-pay threshold of £10 per unit decrease in blood pressure is used, both
sources of data agree that the intervention is not cost effective, yielding negative INB
scores. The CCC suggests very weak agreement between the two sources of data, and
we can see the difference in the INB estimates is 110.85 units. However, the ICERs are
very similar, with less than two units’ difference.

. heabs costl bpl cost2 bp2, intervention(intervention) response(detr) w2p(10)

Summary: Data 1 Data 2
Int O Int 1 Int O Int 1
N 60 60 60 60
Min Cost 98.84935 667.84313 2947 .6459 2947 .6459
Max Cost 3700.2055 3592.1422 7765.9072 7765.9072
Min Effect 140 138 125 127
Max Effect 185 185 185 178
ICER INB INB SE ccc Diff INB
DATA 1 46.545 -205.869 118.961
0.075 -110.853
DATA 2 48.083 -316.722 197.863

The relationships between the CCC estimate and the INB estimate can be shown by
changing the willingness-to-pay threshold. Below the threshold is increased to £100,
and while the ICERs and INB estimates suggest that the treatment is now cost effective,
the CCC is negative, and the difference between the INB estimates has increased. A
negative CCC implies that the datasets are closer to drawing opposite conclusions than
perfect agreement. While this appears strange given the apparent agreement of the INB
estimates and ICERs, an investigation of the costs and blood pressure scores explains
why. In figure 1, we see that while the data are paired, there is very little correlation
between the two sources of data for both the costs and blood pressure scores. It just
so happens that the populations agree. It is reasonable to expect a higher correlation
between real paired individual-level data.

. heabs costl bpl cost2 bp2, intervention(intervention) response(detr) w2p(100)
(output omitted )

ICER INB INB SE ccC Diff INB

DATA 1 46.545 301.131 123.958
-0.041 130.647

DATA 2 48.083 431.778 208.976
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Figure 1. Scatterplots showing the relationship between the costs and blood pressure
scores of the sources of data

The command can be implemented simply within the bootstrap prefix of Stata,
as demonstrated below. The key variables used for the heapbs command are shown;
however, additional outputs can be added.

bootstrap costl=r(costl) cost2=r(cost2) effectl=r(outcomel)
effect2=r(outcome2) NB1=r(NB1) NB2=r(NB2) NBiLo=r(1loCINB1) NB1Up=r (upCINB1)
NB2Lo=r (1oCINB2) NB2Up=r (upCINB2), saving(dummybpbs, replace) reps(100)
seed(24): heabs costl bpl cost2 bp2, w2p(10) intervention(intervention)
response (detr)

vV VV V.

(output omitted )

Observed Bootstrap Normal-based
Coef . Std. Err. z P>|z]| [95% Conf. Intervall]
costl 262.2022 136.2642 1.92 0.054 -4.870768 529.2751
cost2 399.8885 203.18 1.97 0.049 1.663059 798.1139
effectl 5.633333  1.824368 3.09 0.002 2.057638 9.209029
effect2 8.316667  2.338167 3.56 0.000 3.733945 12.89939
NB1 -205.8688  122.2152 -1.68 0.092 -445.4063 33.66862
NB2 -316.7218 190.0119 -1.67 0.096 -689.1382 55.69465
NB1iLo -439.0318  120.8765 -3.63 0.000 -675.9454  -202.1182
NB1Up 27.29416 124.7917 0.22 0.827 -217.293 271.8813
NB2Lo -704.5338 186.0972 -3.79  0.000 -1069.278 -339.79
NB2Up 71.09025 197.8324 0.36 0.719 -316.6542 458.8347

Once a bootstrapped dataset has been created, stored, and loaded into Stata, the
heabps command can be applied. Here the second dataset is treated as our routine
dataset, and the first dataset is treated as the gold-standard data. The text output
from the command shows that the PMC is 21%, meaning that the INB estimate from
the second source of data fails to appear within the 95% confidence interval from the
bootstrapped dataset for the first source of data 21% of the time. The PCE estimate
suggests that for the willingness-to-pay threshold selection during the bootstrap run,
the drug is cost effective only 4% of the time.
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. use dummybpbs.dta, clear
(bootstrap: heabs)

. heapbs, 1ci(NB1Lo) uci(NB1Up) ref(-316.722) inb(NB2) draw cost(cost2)
> effect(effect2) graphregion(color(white))

Probability of Miscoverage = 21
Probability of Cost Effectiveness = 4

Figure 2 shows the graphical output. Here the scatterplot for the second source
of cost-effectiveness data depicts the intervention showing the treatment to be more
effective and more expensive in the majority of bootstrap runs, with a 95% confidence
ellipse and mean values clearly indicated.
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Figure 2. Plot of cost-effectiveness data for second source of data with 95% confidence
ellipse

4 Conclusion

The heabs and heapbs commands described and demonstrated in this article are simple
tools to aid with the evaluation of individual-level cost-effectiveness data. They also
give users the opportunity to compare two sources of cost-effectiveness data with the
aim of enabling more efficient clinical trial designs in the future. The flexibility of the
commands allows users to calculate only the values they require and to customize the
graphical output accordingly.
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