
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their 
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/


The Stata Journal (2018)
18, Number 1, pp. 262–286

Speaking Stata: Logarithmic binning and
labeling

Nicholas J. Cox
Department of Geography

Durham University
Durham, UK

n.j.cox@durham.ac.uk

Abstract. Histograms on logarithmic scale cannot be produced by an option
like xscale(log). You need first to transform the variable concerned with a loga-
rithm function. That raises small choices: how to select bin start, bin width, and
informative axis labels and titles? Problems and solutions are discussed here in
detail.

In contrast, for logarithmic scales on other graphs, options xscale(log) and
yscale(log) may do most of what you want. But there is usually still scope for
“nicer” axis labels than are given by default and indeed scope for differing tastes
on what “nice” means. This column introduces the niceloglabels command for
helping (even automating) label choice.

Historical notes and references are sprinkled throughout.

Keywords: gr0072, niceloglabels, logarithms, axis scales, axis labels, binning, his-
tograms, quantile plots, transformations, graphics

1 Introduction

Here is a common problem. You look at a histogram of a highly positively skewed
variable and realize that you would be better off with a graph showing magnitudes on
a logarithmic scale. Typically, that means equal widths of histogram bins (classes or
intervals) on that logarithmic scale.

Here is the same problem in another guise. Often, you know in advance to move
straight to logarithmic scale. Economists and others frequently work with income or
wealth on such a scale. Many young children know the wordsmillionaires and billionaires
and so have taken the first steps to appreciating that several orders of magnitude (powers
of ten) separate the very rich from the very poor. Examples in scholarly books aimed
also at general readers include graphs in Atkinson (2015), Milanovic (2016), and Pinker
(2018). Another fundamental variable best thought of on logarithmic scale is plant
height (Moles et al. 2009). The range in height from short herbs through shrubs and
on to the tallest trees is at least 4 orders of magnitude. So your design of a histogram
starts knowing that.
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The nub of a Stata solution for histograms on logarithmic scale is to use a logarithmic
function to generate a transformed variable and then to show a histogram of that new
variable. In practice, you should want to go further and improve the small details of
axis labels and titles. This column focuses first on the choices needed and how to make
them easily. Section 2 explains such binning. It is assumed that you are comfortable
with the idea of logarithms.

If you are not so comfortable, you perhaps should read section 5 first, which assumes
rather less. Alternatively, you understand the idea well, but your students or colleagues
might find more explanation helpful.

Section 3 extends the discussion to labeling using logarithmic scales on other kinds of
graphs, such as scatter or line graphs. The focus is on using “nice” labels. Official Stata
graph commands default to using labels equally spaced on the original scale, which is
often not what you want. A new helper program, niceloglabels, is published with
this column. Section 4 gives a formal statement of its syntax.

The column does not quite extend to underlining how similar ideas could be used for
nonlinear scales other than logarithmic. Such extensions have already been discussed
in previous columns (Cox 2008, 2012).

Similarly, the question of when and why histograms should or should not be used
is not tackled directly. A subversive minor theme, however, is that quantile plots are
generally a good thing.

Various historical details are sprinkled capriciously throughout. Here is the first. The
Oxford English Dictionary, consulted online, has its first example of bin in this sense
as mentioned by the statistically minded geologist William Christian Krumbein (1902–
1979), writing on particle size data from sedimentology: “In setting up a histogram,
we are in effect setting up a series of separate ‘bins’, each of which contains a certain
percent of the grains” (Krumbein 1934, 68).

2 Histogram binning

2.1 Axis scale option is not the solution

At this point, I should underline that the option xscale(log)—or if your bins are
horizontal, the option yscale(log)—is not the answer to histogram binning on log-
arithmic scale. It is often the answer for other needs of logarithmic scales, as I will
discuss in section 3. So why not here?

Either axis scale option takes the histogram that you would otherwise have, from
histogram or twoway histogram, and warps the magnitude axis logarithmically. The
bin boundaries shown are what would have been shown otherwise. The graph com-
mand does not redo the calculation and give you equal-width bins on a logarithmic
scale. Worse than that, areas of bars no longer have the interpretation of showing the
probability distribution geometrically. The key idea behind a histogram that bar area
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encodes bin frequency (or some equivalent) is no longer honored—or rather not hon-
ored consistently, insofar as the scale varies within the histogram. Using this option to
achieve log scale on the magnitude axis is therefore not a solution.

What to do instead is a longer story to which we now turn.

2.2 Sandbox: data on island areas

We use two datasets publicly available as sandboxes for play.

Figure 1 shows the areas of islands above 2,500 km2 using data from Wikipedia. A
data file is posted in the website directory associated with this issue.

. set scheme sj

. use island_areas
(https://en.wikipedia.org/wiki/List_of_islands_by_area 21 Sept 2017)

The histogram syntax is a bare default, apart from pulling the x-axis title downward
a little, given the power 2 inside the variable label.

. histogram area, xscale(titlegap(*5))
(bin=13, start=2535, width=163712.69)

0
2.

0e
−

06
4.

0e
−

06
6.

0e
−

06
D

en
si

ty

0 500000 1000000 1500000 2000000

Area (km2)

Figure 1. Histogram of areas of those islands above 2,500 km2. A highly skewed
distribution is evident.

The histogram illustrates a glaring problem. It conveys clearly that the distribution
is highly skewed. Apart from that, it delivers very little detail. Almost all the islands
fall within the leftmost bin. We could tinker with the possible choices, say, by showing
more bins, but it is predictable that most of the space on the graph would still be
wasted.
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With an outcome or response variable that is always positive, measured on a con-
tinuous scale, and highly positively skewed, statistical experience should indicate that
we try a logarithmic scale.

Before we do that, we should back up and say more about the data. The lower cut-
off of 2,500 km2 arises because the Wikipedia article disclaims completeness of listing
below that island size. The data are also questionable at the upper end. You will recall
the elementary definition that an island is an area of land surrounded by water. You will
also recall that what are conventionally called continents are typically listed separately
in reference works. So we are missing Africa, Asia, and Europe (combined); North and
South America (combined); Antarctica; and Australia. Those are four (not seven!) very
large islands if we respect the criterion of being surrounded by water.

We could digress further and discuss the geographical, geological, and geopolitical
senses of the idea of continents. Ambrose Bierce’s jest (16 April 1881; see Bierce [2002,
19]) unerringly singled out the main absurdity:

Australia, n. A country lying in the South Sea, whose industrial and com-
mercial development has been unspeakably retarded by an unfortunate dis-
pute among geographers as to whether it is a continent or an island.

For more discussion, see the scholarly and incisive analysis by Lewis and Wigen (1997).
At its simplest, the idea of a continent was negative, say, that of land not known to be
an island at one time. Now that the world is mapped fairly completely, all conventional
continents are known to be islands or parts of islands.

We can summarize for our purposes by noting that the distribution in figure 1 is
doubly incomplete, because data are omitted beyond both lower and upper limits. Thus,
the problem of showing the distribution is even worse than the graph implies. Firing
up summarize, detail shows that the ratio of maximum and minimum of the data in
hand is about 840. It would be much larger with more data at lower and upper ends.

2.3 Logarithmic functions

Stata (and Mata too) offers two logarithmic functions:

log(), and synonymously ln(), offers natural (hyperbolic or Napierian) logarithms to
base e ≈ 2.71828. If you do not know e, there is more in section 5 (including some
helpful references).

I note in passing an often quoted remark by a famous mathematician (Paul Richard
Halmos [1916–2006]) that the notation ln is “a textbook vulgarization” (Halmos
1985, 271). That is a natural (indeed) attitude for mathematicians to take, but
applied people should find it useful as a flag to themselves and others that they are
not using logarithms to base 10. Oddly, although many notations and abbreviations
were tried over several centuries, log (lowercase l, no stop or period) for natural
logarithm did not become standard notation until the 20th century (Cajori 1929).
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The ln notation is often attributed to Stringham (1893), following Cajori, but is
older yet. Velleman (2013) found an earlier example in Steinhauser (1875).1

log10() offers logarithms to base 10.

If you ever forget whether log() means to base e or to base 10, the quickest check
is to use display with known answers. display can be abbreviated di.

. display log10(10)
1

. display log(10)
2.3025851

. display ln(10)
2.3025851

If you have need of logarithms to other bases, my guess is that you know that
already and know how to calculate them. What is the base-2 logarithm of 8 (mental
check: 23 = 8)?

. display log10(8)/log10(2)
3

From the first example, and the definition of logarithms discussed in section 5,
it can be said that natural logarithms are just logarithms to base 10 multiplied by
ln 10. The other way round, logarithms to base 10 are natural logarithms multiplied
by log10(e) = log10{exp(1)} or divided by ln 10. Graphs with logarithms to different
bases look the same; it is just the numbers in axis labels that will differ. So, for many
purposes, it does not much matter which base you use, so long as you are consistent
and remember which.

For most of my statistical and scientific work, I reach for ln(). My reasoning is that
this relates more directly to any context with mathematical reasoning using natural
logarithms or exponentials. That said, for the problem in view of choosing bins on
logarithmic scale, I recommend logarithms to base 10. People in most scientific or
practical fields are more likely to relate to powers of 10 than to powers of e (or even 2).

In their excellent books, Cleveland (1985, 1993, 1994) and Robbins (2005, 2013)
encourage the use of logarithmic axis labels using powers of 2. But how many people
would prefer 1,024 to 1,000 or 1,048,576 to 1 million in the graphs they read? For
how many, except possibly computer scientists or experts in combinatorics, does 210

or 220 have more impact and meaning than 103 or 106? Whatever the answers, a new
command to be discussed later does offer some support to those wishing to use powers
of 2.

1. David Velleman is a brother of the statistician Paul F. Velleman.
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2.4 Digression: A binning scheme using base 3

Base 3 may seem surprising as a basis for binning, but consider this intriguing proposal
from the statistical ecologist C. B. Williams (1953; 1964, 9; 1970, 24).2 His work was
also discussed in a previous column (Cox 2005). Williams’s main focus is on counted
data such as the number of insects caught in a light trap or the number of words in
sentences of text, so the data are just counts ≥ 1.

Williams suggests using bins that are 1; 2 3 4; 5 6 7 8 9 10 11 12 13; and so on.
Hence, bin midpoints run 1, 3, 9, . . . , so the kth bin has midpoint 3k−1. The bin widths
(here the number of distinct values) are the same as the midpoints.

Constructing these bins in Mata is engaging. One method is to start with the first
bin, for which lower, middle, and upper values are identically 1; then, we add further
lower limits by adding 1 to the previous upper limit and further upper limits by adding
3k−1 to the previous upper limit.

. mata
mata (type end to exit)

: bin = (1,1,1)

: for(k = 2; k <= 7; k++) bin = bin \ (bin[k-1, 3] + 1, 3^(k-1),
> bin[k-1, 3] + 3^(k-1))

: bin
1 2 3

1 1 1 1
2 2 3 4
3 5 9 13
4 14 27 40
5 41 81 121
6 122 243 364
7 365 729 1093

: end

Alternatively, the upper and lower limits can be given directly as (3k−1 + 1)/2 and
(3k − 1)/2. Compare entries https://oeis.org/A007051 and https://oeis.org/A003462
in the On-line Encyclopedia of Integer Sequences, or sequences M1458 and M3463 in
Sloane and Plouffe (1995).

These limits are not quite geometric progressions, so rounding log3 of the data does
not yield those bins. Rather, binning for a variable y is given directly by

k =
⌈
log3(2y + 1)

⌉
or in Stata terms,

. generate k = ceil(log(2 * y + 1)/log(3))

2. Williams (1889–1981) and I went to the same high school and have one university in common. We
did not overlap.



268 Speaking Stata: Logarithmic binning and labeling

2.5 Island areas

Let us go back to work on our island areas. The first step is to get a log base-10 version
of area into a new variable.

. clonevar log10_area = area

. replace log10_area = log10(area)
variable log10_area was long now double
(180 real changes made)

What I just did is a twist on the more obvious

. generate log10_area = log10(area)

Indeed, I am already looking ahead because I know how I will use this new variable.
Some small details thus need explanation.

Why is clonevar used first? The reasoning is with that command any variable
label will be copied over from the original variable. That saves the labor of looking up
the variable label and retyping it, or working out how to copy it in some other way.
Variable labels can be long and they can be fiddly (mentioning units of measurement,
or whatever), so any gain on this front can be welcome.

The variable label no longer matches the contents of the variable. The label says area
in square km, but the contents are the base-10 logarithm of that area. So I am playing a
little dangerously. That is good reason for making the variable name as informative as
possible, in this case log10 area. I will need to ensure that what readers (me, anybody
else) see on the histogram is consistent: text and numbers should all match.
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Let us look at a rudimentary histogram for this log transformed variable (figure 2):

. histogram log10_area, xscale(titlegap(*5))
(bin=13, start=3.403978, width=.22496652)
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Figure 2. Histogram of areas of those islands above 2,500 km2 using a logarithmic scale.
A reduction in skewness is evident.

That shows progress. The distribution is still skewed, but we are getting a clearer
picture in the histogram. A refinement here (and quite often when magnitudes are
truncated below) is that we might prefer that binning start at (the logarithm base 10
of) 2,500 km2. We already know that display will give us this number:

. display log10(2500)
3.39794

So we could retype (or, more smartly, copy and paste) that number into the histogram
command. But there is an even better way. We can ask Stata to do the calculation on
the fly and then use the result, all in one. An example is easier to understand than an
explanation:

. histogram log10_area, xscale(titlegap(*5)) start(`=log10(2500)´)
(bin=13, start=3.39794, width=.22543098)

To save space, we will not show the graph here; it differs only slightly from figure 2.

Do you get the trick here? One piece of syntax that may be new to you here is the
punctuation surrounding an expression to be evaluated. The syntax form `=exp´ is an
instruction to evaluate the expression exp and insert the result in its place. So Stata
goes off on the side and works out the expression, here just log10(2500). Then, the
histogram command sees and uses the result. A tiny bonus, not usually important in
practice but welcome in principle, is that you get more precision than display shows
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you by default. It turns out that in this example, 3.397940008672 is the result used. The
extra digits make no discernible graphical difference, but using the maximum precision
possible can be important for reproducibility in other nongraphical problems.

We have arranged that the bins start where they should, given the lower cutoff. The
next task is to work a bit at the axis labels. We know that 104 is 10,000, 105 is 100,000,
and 106 is 1 million. Those seem obvious label choices. I would want 2,500 to be a
label, too, and we can use the same trick as before to get that shown as a label. We
show the resulting graph as figure 3.

. histogram log10_area, xscale(titlegap(*5)) start(`=log10(2500)´)
> xlabel(`=log10(2500)´ "2500" 4 "10000" 5 "100000" 6 "1000000")
(bin=13, start=3.39794, width=.22543098)

0
.5

1
1.

5
D

en
si

ty

2500 10000 100000 1000000

Area (km2)

Figure 3. Improved histogram on logarithmic scale with better labeling on the horizontal
axis

The effect of the syntax should seem simple, even if any detail in the xlabel() call
is new to you. We say where the axis labels should go (at 3.39794, or so, and at 4 5 6),
and, crucially, we say what text should appear at those positions. Now the axis labels
make sense to the reader as areas in square km and match the axis title, inherited
automatically from the variable label we arranged earlier.

We are most of the way there, but there is just one more fix that is usually needed.
The densities shown are still calculated with respect to log10 area. Getting axis la-
bels to show areas in the original units has not changed that. Almost always, density
calculated with respect to a variable not even shown directly is not what you want to
see. I would usually reach for one of three options: frequency, fraction, or percent.
For exploratory work on one-off datasets, frequency is often simplest and best. For
comparing with other work, fraction or percent might seem better. Figure 4 shows
where we are now.
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. histogram log10_area, xscale(titlegap(*5)) start(`=log10(2500)´)
> xlabel(`=log10(2500)´ "2500" 4 "10000" 5 "100000" 6 "1000000") frequency
(bin=13, start=3.39794, width=.22543098)
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Figure 4. Histogram with better magnitude axis labeling

Small tweaks are always possible to any graph. Here are some possibilities. Natu-
rally, my own tastes weigh heavily in the suggestions.

More labels. Some people might want more axis labels, say, at 25,000 and 250,000
too. You already have the tricks for doing that.

Text for big numbers. At some point, depending partly on taste and partly on
whether you run out of space, you might prefer to change the text for the biggest
numbers to, say, "1 million" or "1 m".

Change of units. Nothing except possibly taste or convention rules out a change
of units, say, to 1,000 km2, so that the text shown ranges from 2.5 to 1,000.

Horizontal labels. The y-axis labels would look better aligned horizontally. Hor-
izontal text is much easier to read, so long as we do not lose too much space
thereby.

More or fewer bins. Some people might want more or fewer bins. It may be
easier to play with bin(), specifying number of bins, than with width(), which
(remember!) must be expressed on the logarithmic scale.

Align bin bounds and labels. Some find it a little disconcerting whenever axis
labels do not line up with bin boundaries. My advice is not to think that this is
a problem. We will shortly see an example where it is easy to get.
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Colors. Bar colors could be more attractive. Here in the Stata Journal, we are
using scheme sj, but you need not make the same choice.

More explanation. For presentation or publication, we would want to add a good
graph title or caption, but I will stop short of addressing what or how.

What the data are telling us is a good question, which we will also not pursue. If
you know about Pareto distributions, for example, you will know that taking logs of a
Pareto distribution gives you an exponential distribution, but let that be a throwaway
remark.

2.6 Sandbox: Data on country populations

Figure 5 shows the populations of countries, again using data from Wikipedia. A data
file is posted in the website directory associated with this issue. The data are as they
come: see the extensive set of comments on Wikipedia on territories whose status is in
dispute in some sense. We have skipped the pretense of discovering that a logarithmic
scale is the right way to think here. We should know that in advance. That is precisely
why the example is included.

. use country_populations, clear
(https://en.wikipedia.org/wiki/List_of_countries_and_dependencies_by_population)

. describe

Contains data from country_populations.dta
obs: 240 https://en.wikipedia.org/wiki/Li

st_of_countries_and_dependencies
_by_population

vars: 4 5 Oct 2017 13:58
size: 28,080 (_dta has notes)

storage display value
variable name type format label variable label

name str54 %54s
population double %10.0g Population
date str18 %18s
source str37 %37s

Sorted by:

. clonevar log10_pop = population

. replace log10_pop = log10(log10_pop)
(240 real changes made)
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. histogram log10_pop
(bin=15, start=1.7558749, width=.492403)
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Figure 5. Distribution of country populations as reported on Wikipedia, 22 September
2017. Histogram shows populations on logarithmic scale. The histogram is a good start
but needs improvement in several details.

The default—fortuitously but fortunately—illustrates a point small enough not to
worry about but large enough to explain. If we tweak the start of binning to 1.5 and
the bin width to 0.5, then some of the bin boundaries, namely, the integers 2 to 9, will
be “nice” round numbers, as I hope you agree. There will be more on what defines
niceness in the next section. That makes informative labeling quite easy. Much scope
exists for tinkering with the mix of numbers and abbreviations (m for millions?) or for
choosing fewer labels (surely not more?). I will flag (among other cosmetic changes) the
tricks of extended tick length and pulling down the axis title. Figure 6 is the improved
version.
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. histogram log10_pop, start(1.5) width(0.5) xlabel(2 "100" 3 "1000" 4 "10000"
> 5 "100000" 6 "1 m" 7 "10 m" 8 "100 m" 9 "1000 m", tlength(*2))
> xscale(titlegap(*5)) frequency bfcolor(gs15) ylabel(, angle(horizontal))
(bin=16, start=1.5, width=.5)
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Figure 6. Distribution of country populations as reported on Wikipedia, 22 September
2017. Histogram shows populations on logarithmic scale. Note choices of bin start, bin
width, tick length, and title position as indicated by the accompanying syntax.

You can experiment, as I did, with other bin widths, such as 1 or 0.25. As usual,
there is a tradeoff between detail and simplicity. I stopped with the graph you see in
figure 6.

3 Labeling

3.1 Default labeling can be awkward

The main strategy for logarithmic binning for histograms was to transform to a new
variable, yet also to arrange that readers see axis labels and titles in the original units.
Those original units are usually easier to think about. Logarithmic scales that are
conventionally accepted and routinely used (say, decibels, pH for acidity, Richter scale
for earthquake magnitude, stellar magnitude) do not need such transformations. Occa-
sionally, readers do need to be reminded that on logarithm base-10 scales, a step of 1
corresponds to a factor of 10 and so the difference (really, the multiplier) can be a big
deal.

Just using xscale(log) or yscale(log) is much easier when it is the right answer.
Whenever that is done, we still need to think about axis labels. The same kinds of
questions arise with many kinds of graphs, ranging from scatterplots and line graphs
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to more exotic or specialized kinds, but we will not need to look at many examples to
think about the issue. In fact, we will keep going with the minor theme of univariate
distributions.

A quantile plot using the official command quantile shows the problem that can
arise. In passing, I will mention that qplot (Cox 1999, 2005, 2016) is more versatile, but
we do not need it here. Figure 7 shows the country populations we have been looking
at. Log scale warps the reference line for a uniform distribution that appears by default,
so we blank it out as a distraction using no line color.

. quantile population, yscale(log) rlopts(lcolor(none))
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Figure 7. Quantile plot for country populations. The vertical axis labels on logarithmic
scale are squeezed up and unreadable.

The problem is unreadable labels at one end of the scale. An obvious solution is
to reach in and spell out a better choice of labels manually. Experienced users will
often have done that. The contribution of this section is to offer a helper program that
suggests some nice choices given the range of the variable (or, alternatively, a specified
minimum and maximum).

3.2 Nicer labels can be specified

“Nice numbers” for axis labels have been discussed in several places. Heckbert (1990)
commendably tried to make the problem, or its solution, as simple as possible. Ideas
similar if not identical often underlie programs, both in Stata and elsewhere (for exam-
ple, Hardin [1995]). In contrast, and equally commendably, Wilkinson (2005, 95–97) and
Talbot, Lin, and Hanrahan (2010) have spelled out how fully automated choice entails
a delicate tradeoff between several desiderata, chiefly simplicity, coverage, granularity,
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and legibility. Talbot, Lin, and Hanrahan (2010) give a full survey of the problem. The
aim here is more modest, merely to make suggestions given users’ preferences on style.

In this small literature, little attention has been paid to logarithmic scales. It is an
easy start that, for example, integer powers of any base, such as

. . . , 1, 10, 100, 1,000, . . .

or

. . . , 1, 2, 4, 8, . . .

would be equally spaced on logarithmic scale. In what follows, these are called styles 1
and 2. The main issue is what to do if you want more labels, especially with the first
set of choices. This is where the new command niceloglabels provides support.

Various styles of logarithmic labels go beyond integer powers with evident preferences
for using nice numbers as labels, even at the cost of sacrificing equal intervals for slightly
varying intervals. Thus two styles common in various literatures are

. . . , 1, 2, 5, 10, 20, 50, 100, . . .

. . . , 1, 3, 10, 30, 100, . . .

So multiplication steps are alternately 2× and 2.5× in the first set and alternately 3×
and (10/3)× in the second set. In what follows, these are called styles 125 and 13. The
choice between these styles can be based partly on taste and partly on the fact that
125 typically offers more labels than 13 for the same relative range. What they have
in common is approximately equal multiplicative steps combined with single significant
figures. Recall that significant figures are what is left after setting aside leading and
trailing zeros. Thus, 109 has one significant figure and 0.12 has two.

A different style runs

. . . , 1, 4, 7, 10, 40, 70, 100, . . .

with the idea of equal additive steps within each power of 10, given that 4−1 = 7−4 =
10 − 7 = 3. This is less common in my experience, but for an example, see Dupont
(2009, 270).

Finally, I will mention

. . . , 1, 5, 10, 50, 100, . . .

with a similar motivation but showing a preference for 1 and 5 as significant figures.
This is called style 15.
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If you use niceloglabels, you need to do a little work.

1. You need to specify the variable concerned or else a minimum and maximum
defining a range.

2. You need to choose your idea of “nice” given a small catalog of available styles.
As in everyday life, tastes can differ, so you need to specify yours.

3. You need to name a local macro to hold results.

Consider the variable pop shown in figure 7. Here are some examples of using
niceloglabels to suggest labels.

First, we try the pure powers of 10 implied by style 1 for that variable. The output,
echoed to the Results window, shows what many will have realized immediately: there
are far too many zeros for a congenial display.

. niceloglabels pop, style(1) local(yla)
100 1000 10000 100000 1000000 10000000 100000000 1000000000

At that point, we can reach for an option to specify powers using the syntax defined
in help text. Typing this kind of detail is especially tedious and error-prone, quite
apart from the possibility that people need scripts to automate graph production.

. niceloglabels pop, style(1) local(yla) powers
100 "10{sup:2}" 1000 "10{sup:3}" 10000 "10{sup:4}" 100000 "10{sup:5}"
> 1000000 "10{sup:6}" 10000000 "10{sup:7}" 100000000 "10{sup:8}"
> 1000000000 "10{sup:9}"

In each case, the text displayed is echoed to a local macro. The name of that macro
should be specified in a graph option. There is absolutely no need to retype the syntax
or even copy and paste it. As this example shows, we can specify other details at the
same time.

. quantile pop, yscale(log) ylabel(`yla´, angle(horizontal))
> rlopts(lcolor(none))
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Figure 8 shows the result.
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Figure 8. Quantile plot for country populations. The vertical axis labels on a logarithmic
scale were produced using niceloglabels and are congenially spaced and readable.
Compare figure 7.

4 The niceloglabels command

4.1 Syntax diagram

niceloglabels varname
[
if
] [

in
]
, local(macname) style(style)

[
powers

]
niceloglabels #1 #2, local(macname) style(style)

[
powers

]
4.2 Description

niceloglabels suggests axis labels that would look nice on a graph using a logarithmic
scale. It can help when you choose yscale(log) or xscale(log), or both, and wish to
show nicer labels than the default. Results are put in a local macro for later use.

4.3 Remarks

There are two syntaxes. In the first, the name of a numeric variable must be given. The
values selected must all be positive. In the second, two numeric values are given, which
will be interpreted as indicating minimum and maximum of an axis range. Those two
values can be given in any order, but as before, values must both be positive.
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“Nice” is a little hard to define but easier to recognize. For example, it is a bonus if
labels are exactly or approximately equally spaced on a logarithmic scale (or conversely,
on the original scale), and it is a bonus if numbers are powers of 10 or 2 multiplied by
small integers. Users must specify their preferred style, one from the following list:

1 means powers of 10 such as . . . , 0.1, 1, 10, 100, 1,000, . . .

13 means cycling such as . . . , 0.3, 1, 3, 10, 30, 100, 300, . . .

15 means cycling such as . . . , 0.5, 1, 5, 10, 50, 100, 500, . . .

125 means cycling such as . . . , 0.1, 0.2, 0.5, 1, 2, 5, 10, . . .

147 means cycling such as . . . , 0.1, 0.4, 0.7, 1, 4, 7, 10, . . .

2 means powers of 2 such as . . . , 1, 2, 4, 8, 16, . . .

When the ratio of maximum (max) and minimum (min) is an order of magnitude
(power of 10) or less, none of these styles will suggest more than a few labels. In that
case, you are almost certainly better off with labels equally spaced on the original scale,
which is what Stata gives you anyway.

To make this concrete, here are the numbers of labels suggested when the minimum
is 10 = 1e1 = 101 and the power of the maximum is as tabulated in rows. Thus, the
first row is for min = 10 and max = 100 = 1e2 = 102, for which the labels suggested,
for styles 2 147 125 15 13 1, are, respectively, 16 32 64; 10 40 70 100; 10 20 50 100;
10 50 100; 10 30 100; 10 100; hence, the numbers of labels are 3 4 4 3 3 2.

style

2 147 125 15 13 1
2 3 4 4 3 3 2
3 7 7 7 5 5 3

power 4 10 10 10 7 7 4
of 5 13 13 13 9 9 5

max 6 17 16 16 11 11 6
7 20 19 19 13 13 7
8 23 22 22 15 15 8
9 27 25 25 17 17 9

Powers of 2 make most sense in practice when the amounts to be shown are small
positive integers or the problem has some combinatorial flavor, or both.

niceloglabels is conservative in that it typically will not suggest labels outside
the data range. You could add such labels on the fly in your calls to later graphics
commands. Technical hint: The small print behind “typically” is a fudging of minimum
and maximum as a workaround for precision problems.

For an example of 147, see Dupont (2009, 270).

Note the suggestion by Cleveland (1985, 39; 1994, 39) of 3–10 labels on any axis.
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4.4 Options

local(macname) inserts the specification of labels in local macro macname within the
calling program’s space. Hence, that macro will be accessible after niceloglabels
has finished. This is helpful for later use with graph or other graphics commands.
local() is required.

Anyone new to the idea and use of local macros should study the examples in the
help carefully. niceloglabels creates a local macro, which is a kind of bag holding
the text to be inserted in a graph command. The local macro is referred to in that
graph command using the punctuation ` ´ around the macro name. Note that the
opening (left) single quote and the closing (right) single quote are different. Other
single quotation marks will not work. Do not be troubled by the closing single quote
(’) appearing as upright in many fonts.

style(style) specifies a style for axis labels. style() is required. See section 4.3.

powers specifies that labels be specified using syntax interpreted by graph as super-
scripts and ready to be used within a ylabel() or xlabel() option call. Thus, if
the labels were 100, 1,000, and 10,000, the output would be

100 "10{sup:2}" 1000 "10{sup:3}" 10000 "10{sup:4}"

5 Tutorial: Logarithms as powers

Many friendly accounts of logarithms can be found in a great variety of styles. Abbott
(1942) is clear and concise and only slightly old fashioned. Gullberg (1997) combines
simple explanations with historical and biographical details. Axler (2009 or any later
edition) is informatively discursive with many examples of applications. Maor (1994) is
entertaining and enthusiastic on the larger history and mathematical context but also
a little erratic (see the review in Blank [2001]).

Let’s start by focusing on power notation. The 2 and 3 within 102 and 103 are
powers or exponents. In the simplest case with such powers that are positive integers
(whole numbers), this notation is a way to express repeated multiplication:

10 = 101, 100 = 10× 10 = 102, 1000 = 10× 10× 10 = 103

The power or exponent (in this case 1, 2, 3) is the number of times the base (in
this case 10) appears in the product. Multiplication corresponds to adding powers, for
example,

100× 1000 = 102 × 103 = 105 = 100000

and division therefore to subtracting powers, for example,

1000/100 = 103/102 = 101 = 10
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Therefore, 102/102 = 100 = 1, and if we continue dividing by 10,

100/101 = 10−1 = 0.1, 10−1/101 = 10−2 = 0.01, etc.

That extension gives a meaning to powers that are zero or negative integers.

We can extend this to intermediate positive and negative powers. If 100 = 102 and
1000 = 103, then we look for x in 200 = 10x, which is between 2 and 3 because 200 is
between 100 and 1,000. In this broadening, x need not be an integer or whole number:
it could be a real number with a fractional part. If y = 10x, then we call x the logarithm
or log of y to the base 10. That is, x = log10 y. So

log10 100000 = 5, log10 100 = 2, log10 0.01 = −2

We use a calculator or computer function to get

log10 200 = 2.30103

or other logarithms with fractional parts. Logarithms to the base 10 are occasionally
called common or Briggsian logarithms (after the English mathematician Henry Briggs,
1561–1630).

The general definition is that if y = cx, then x is the logarithm or power of y to
the base c, which must be positive. Two frequently used bases apart from 10 are 2
and e ≈ 2.71828. Powers of 2 are met in binary arithmetic, and also in sedimentology,
where particle size is often reported on the phi scale (φ), which is − log2 of particle size
in mm. The number e has many special properties, particularly those encountered in
differential and integral calculus, such as that the derivative with respect to x of ex is
also ex. Logarithms to the base e are often called natural or Napierian logarithms, after
the Scottish mathematician John Napier (1550–1617), and denoted loge or ln. If we
have logarithms to two different bases a and b, then

loga y = loga b× logb y

loga b is always a constant: for example, log10 e ≈ 0.43429.

We have two rules already, that multiplying corresponds to adding logarithms and
dividing to subtracting them. In general,

log(y1 × y2) = log y1 + log y2

and
log(y1/y2) = log y1 − log y2

so that

log
(
y2
)
= log(y × y) = log y + log y = 2 log y

log
(
y3
)
= log(y × y × y) = 3 log y
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and in fact
log
(
yk
)
= k log y, for any value of k

Sometimes, we want to reverse the process and return to the original scale, which is
called antilogging:

antilog(log y) = y

The appropriate function will be cx or clog y for base c, for example, 10x, 2x, ex for bases
10, 2, e.

If x2 = y, then x is the square root of y, denoted
√
y,

√
y ×√

y = y1

so the power or logarithm of the square root is given by

log (
√
y) + log (

√
y) = 2 log (

√
y) = 1

and is therefore 1/2, so that
√
y = y1/2. Similarly, if x3 = y, then x is the cube root of

y or 3
√
y = y1/3.

Many processes are physically multiplicative (growth or decline depends on the
amount present, such as growth under compound interest or radioactive decay) and
are rendered mathematically additive by representation on logarithmic scales. Many
variables vary over several orders of magnitude (which means powers of 10) but are
compressed toward the lower end of the scale. Taking logs squeezes high values to-
gether relative to low values: hence, this reduces positive skewness of single variables
and crowding near the origin of scatterplots, which are both common in data analysis.
Another reason for taking logarithms is that power functions y = axb are converted to
straight lines because

log y = log a+ log xb = log a+ b log x

which is a straight line on a plot of log y against log x. Hence, many curved relationships
(convex or concave) can be straightened.

For any readers particularly interested in the history of ideas, I now add further notes
and references. Kaunzer (1994) gives a scholarly and thorough outline of the history.
The term logarithm, as a portmanteau creation based on Greek roots logos (here best
translated as ratio) and arithmos or number, was introduced by John Napier. Napier’s
life and works have received much attention (Napier 1834; Knott 1915; Gladstone-Millar
2003; Havil 2014). Incidentally, Havil (2014, ix) lists 12 variant spellings of his family
name, which helps to explain why variants such as “Naperian” persist to the present.

Some key points from the longer history deserve emphasis. The ideas of powers and
exponents as notation and as easing multiplication, division, and rooting go back many
centuries. Napier’s major contribution was practical provision of tables of logarithms,
yet his tables were at most implicitly of logarithms to base 1/e: calling natural log-
arithms Napierian is thus a little stretch, or even a large one. Honors to Napier for
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introducing logarithms as calculation aids should be shared to some degree with Henry
Briggs; the Swiss Jost Bürgi (1552–1632); and indeed several others who produced fuller
tables until well into the twentieth century.

However, these major practical advances did not mean that the ideas of logarithms
as merely exponents, the scope for many different bases, and ideas of logarithmic and
exponential functions were born in modern form just like that. They grew erratically
and unevenly but were well formed and well explained in the work of the great Swiss
mathematician Leonhard Euler (1707–1783). His expository works (notably Euler [1748,
1770]) remain highly accessible to modern readers, so look out for versions in your first
language (for example, Euler [1822, 1988, 1990]). Dunham (1999) gives a splendid
introduction to Euler’s mathematical work, while Calinger (2016) is a scholarly but
highly readable biography.

6 Conclusion

In statistical computing (and in anything worthwhile?), details matter in getting the
best results. Seeing or knowing that a logarithmic scale would be a good idea is, with
a little experience, an easy first step in designing a graph. Binning for histograms and
getting nice labels on graph axes can be trickier. This column has tried to provide some
clear paths through the swamps of syntax and the thickets of taste and technique.
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