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Abstract. Receiver operating characteristic (ROC) curves can be misleading
when they are constructed with selected samples. In this article, we describe
heckroccurve, which implements a recently developed procedure for plotting ROC
curves with selected samples. The command estimates the area under the ROC
curve and a graphical display of the curve. A variety of plot options are available,
including the ability to add confidence bands to the plot.
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1 Introduction

Receiver operating characteristic (ROC) curves are widely used in many fields to measure
the performance of ratings. An advantage of ROC curves over metrics like accuracy
(defined as the portion of cases correctly predicted) is that ROC curves provide the full
range of tradeoffs between true positives and false negatives. Despite their widespread
use, the effects of sample selection on ROC curves was not explored until recently.

Sample selection is common in many areas. Consider a medical test administered
only to patients that are referred by their physicians. We want to know how well the
test correctly diagnoses illness, but we observe test results only for referred patients. A
different but related problem arises in commercial banking. The Basel Accords require
banks to estimate the probability of default for their loans. To assess the predictive
performance of their probability of default models, banks could construct a ROC curve
with the sample of loan applicants that were granted loans.

Hand and Adams (2014) and Kraft, Kroisandt, and Miiller (2014) appear to have
been the first to discuss selection bias for ROC curves. Cook (2017) presents a procedure
to plot a ROC curve that is a consistent estimate of the ROC curve that would be obtained
with a random sample. The heckroccurve command implements Cook’s procedure and
provides confidence intervals for the area under the curve and confidence bands for the
ROC curve.
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There are many existing Stata commands for plotting ROC curves, including rocreg,
roctab, and roccomp, but none of these commands correct for the effects of sample
selection. The syntax of heckroccurve was kept close to existing Stata commands
for sample-selection problems, that is, heckman, heckprobit, and heckoprobit. Like
heckprobit and heckoprobit, heckroccurve is based on assumptions similar to those
of Heckman (1976). The output from heckroccurve was designed to be similar to that
of Stata’s built-in commands for ROC curves.

The next section describes the procedure performed by heckroccurve. Sections 3
and 4 provide the command’s syntax and examples: The first example in section 4
illustrates the syntax. The second example in section 4 shows how selection can affect
ROC curves. The dataset used for this second example is provided with heckroccurve.
Section 5 concludes.

2 ROC curves for selected samples

We assume that each observation belongs to one of two classes (for example, positive
and negative). Our task is to evaluate how well our ordinal rating predicts class. Given a
threshold, we could predict that all observations with a rating value above the threshold
are positive, and all observations below the threshold are negative. To see how well the
rating with the threshold predicts class, we define sensitivity and specificity as

TP
Sensitivity = 5 and (1)
TN
Specificity = — 2
pecificity = (2)

where the confusion matrix in table 1 defines true positives (TP), true negatives (TN),
positives (P), and negatives (N).

Table 1. Confusion matrix

truth

positive negative

positive True False

L. Positives (TP) | Positives (FP)
prediction

negative False True

Negatives (FN) | Negatives (TN)

total Positives (P)  Negatives (V)

ROC curves, which plot sensitivity as a function of specificity for all possible thresh-
olds, illustrate a rating’s tradeoff between true positives and false negatives. A higher
value of sensitivity for a given value of specificity indicates better performance. The area
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under the ROC curve (AUC) is a common metric for evaluating a rating’s performance.
If the rating has no connection to the true class, the expected AUC would be 0.5. An
excellent introduction to ROC curves is provided by Fawcett (2006).

2.1 Notation and setup

We denote the rating’s output as a; for each observation ¢. The unobserved propensity
to be a positive case is denoted as p;. The true outcome is

positive if p; > p*

outcome; = . .
! {negatlve otherwise

where p* is the threshold for an instance to be a positive case. We assume that p; follows
a standard normal distribution. The modeler never observes p;, only outcome;. For a
given threshold ¢, we can give probabilistic definitions of sensitivity and specificity:

Sensitivity = Prob(a; > ¢|p; > p*), and (3)
Specificity = Prob(a; < ¢|p; < p¥) (4)

Evaluating (1) and (2) with the sample at hand provides estimates of these probabilities.

The selection rule is

{ Selected ifb; =0 X;+va;+e; >s (5)

Not selected otherwise

where s is a constant, X; is a vector of variables, and ¢; is a standard normal random
variable. The parameter § is a vector of coefficients, and 7 indicates the degree to
which the rating was incorporated into the selection process. These parameters can
be estimated from a probit regression of selection on X and a. If the vector X does
not contain a constant, then the intercept from the probit regression would provide an
estimate of —s. The procedure that we describe here does not require an estimate of s.

We denote sensitivity and specificity conditional on selection as

Sensitivity | Selection = Prob(a; > ¢|p; > p*,b; > s), and (6)
Specificity | Selection = Prob(a; < ¢|p; < p*,b; > s) (7)

When data are chosen according to (5), the values in (1) and (2) provide estimates of
(6) and (7) instead of (3) and (4). It is possible that the ROC curve implied by (6) and
(7) differs greatly from the curve implied by (3) and (4).

2.2 Procedure for creating ROC curves with selected samples

Cook’s (2017) procedure for creating ROC curves with selected samples infers the predic-
tive power of the classifier (taking selection into consideration), then draws the implied
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ROC curve. After standardizing the classifier’s output, the likelihood for the data can
be expressed as

L = H‘I)2{5 Xz + ya; — s, _(BO + Blai) ;pep}]l(outcomei:positive)

% @2((5 X; + ya; — s, 60 + 51042' ;_psp)]l(outcomei:negative)
~ (I){—((S X, +ya; — S)}]l(outcome,;:NA) (8)
where 1(+) is the indicator function,

*

Bo = p77 and
\/1_/)3;0
L=~ fap

\/1_p3p

This likelihood function contains two correlations: p,, and p.,. The correlation be-
tween the rating’s output and p;, denoted pgp, is crucial for determining the strength
of the classifier. The likelihood also contains p.p, which is the correlation between the
unobserved component of the selection rule (that is, ;) and p;.

The likelihood function in (8) is the same likelihood derived by Van de Ven and
Van Praag (1981), which heckprobit maximizes. To take advantage of heckprobit’s
many built-in features, heckroccurve’s maximum likelihood estimation is performed
by calling heckprobit. Estimates of p* and p,;, are found by applying the appropriate
transformations to the estimates of 5y and ;.

To draw the ROC implied by the estimates of p* and pg, (denoted here as p* and
Pap), We begin with a set of cutoffs with a sufficiently large range (heckroccurve uses
—4 to 4). For each cutoff ¢ € [—4, 4], we find the corresponding value of sensitivity as

Prob(a¢>cp¢>p*)z{1@(ﬁ*)}_l/coqu(a)
[1-@{(&—@@ 1—@2}} da
and specificity as
Prob(ai<c|pi<p*)%‘1>(pA*)_l/c ¢(a)¢>{(ﬁ‘—/fa}a) 1—@2} da
o

Confidence intervals and bands are obtained from confidence intervals for the maximum
likelihood estimates of By and $; and the functional invariance property of maximum
likelihood.
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3 The heckroccurve command

3.1 Syntax

heckroccurve refvar classvar [zf] [m] [weight],
ﬂect([depvar,s =] varlist_s) [collinear table level(#) noci cbands
noempirical nograph norefline irocopts(cline_options)
erocopts (cline_options) rlopts(cline_options) cbands (cline_options)

twoway_options vce (vcetype) robust maa:imz'ze,options}

3.2 Options

select([depvar,s =} varlist_s) specifies the selection equation, dependent and in-
dependent variables, and whether to have a constant term and offset variable.
select () is required.

collinear keeps collinear variables.
table displays the raw data in a 2 X k contingency table.

level (#) specifies the confidence level, as a percentage, for confidence intervals. The
default is level(95) or as set by set level; see [U] 20.8 Specifying the width
of confidence intervals.

noci does not display confidence intervals for the inferred AUC.
cbands displays confidence bands for the inferred ROC curve.
noempirical does not include the empirical ROC curve in the plot.
nograph suppresses graphical output.

norefline does not include a reference line in the plot.

irocopts(cline_options) affects rendition of the inferred ROC curve; see
[G-3] cline_options.
erocopts (cline_options) affects rendition of the empirical ROC curve; see
[G-3] cline_options.
rlopts(cline_options) affects rendition of the reference line; see [G-3] cline_options.

cbands (cline_options) affects rendition of the confidence bands.

twoway_options are any of the options documented in [G-3] twoway_options, excluding
by O).

vce (vcetype) specifies the type of standard error reported, which includes types that are
derived from asymptotic theory (oim, opg), that are robust to some kinds of misspec-
ification (robust), that allow for intragroup correlation (cluster clustvar), and that
use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce_option.
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robust is the synonym for vce (robust).

mazximize_options: difficult, technique (algorithm_spec), iterate (#),
tolerance(#), 1ltolerance(#), nrtolerance(#), nonrtolerance,
from(init_specs); see [R] maximize. These options are seldom used.

4 Examples

b Example 1: lllustration of syntax

Our first example illustrates the command’s syntax. We begin by loading Mroz’s
(1987) well-known dataset on women’s wages and creating a binary variable:

. use http://fmwww.bc.edu/ec-p/data/wooldridge/mroz

. * Creating a binary variable to demonstrate procedure
. generate high_wage = 0 if inlf
(325 missing values generated)

. replace high_wage = 1 if wage > 2.37 & inlf
(311 real changes made)

If we want to see how years of education, educ, predicts “high wage”, we can type
the syntax that follows. Note that inlf is an indicator variable for whether a woman
is in the labor force. For women not in the labor force, their wage is not observed.

. heckroccurve high_wage educ, select(inlf = educ kidslt6 kidsge6 nwifeinc)

Estimating inferred ROC curve...

Empirical Inferred Inferred AUC
ROC area ROC area 95% Conf. Interval
0.6472 0.6606 0.5782 0.7310

A more common use for ROC curves is constructing them after estimating a probit
or logit. Here we provide an example of calling heckroccurve after a logit.

. quietly logit high_wage educ age exper if inlf
. predict predicted_xb, xb

. heckroccurve high_wage predicted_xb,
> select(inlf = predicted_xb educ kidslt6 kidsge6 nwifeinc)

Estimating inferred ROC curve...

Empirical Inferred Inferred AUC
ROC area ROC area 95% Conf. Interval
0.7211 0.7329 0.6377 0.8044

Note that we used the fitted values option xb rather than predicted probabilities, because
Cook’s (2017) assumption that the classifier’s output is normally distributed is more
likely to hold for the fitted values. The following syntax illustrates the command’s plot
options:
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. heckroccurve high_wage predicted_xb,

> select(inlf = predicted_xb educ kidslt6 kidsge6 nwifeinc)

> noempirical cbands irocopts(lcolor(black) lwidth(medthick))
> rlopts(lcolor(gray))

Estimating inferred ROC curve...

Empirical Inferred Inferred AUC
ROC area ROC area 95% Conf. Interval
0.7211 0.7329 0.6377 0.8044
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Figure 1. Plot created using heckroccurve’s plot options

b Example 2: Correcting bias in ROC curves

This example uses a dataset that contains outcomes, two ratings, a selection indi-
cator, and an independent variable z. We first compare the performance of the two
ratings with the full dataset, and then we remove outcomes for the nonselected data:

. sysuse heckroccurve_example, clear

. * Compare ratings using full dataset
. roccomp outcome rating_a rating_b

ROC —Asymptotic Normal—

Obs Area Std. Err. [95% Conf. Intervall

rating_a 1,000 0.8815 0.0103 0.86120 0.90171
rating_b 1,000 0.7557 0.0151 0.72616 0.78515

Ho: area(rating_a) = area(rating_b)
chi2(1) = 46.92 Prob>chi2 = 0.0000
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While the outcome is observed for all 1,000 observations, this dataset contains a vari-
able selected that is equal to 1 for half the observations and 0 for the rest. We set
the outcome to missing when selected equals 0 to see the effect of selection on the
classifiers’ ROC curves:

. * Remove nonselected outcomes and compare ratings again
. replace outcome=. if !selected
(500 real changes made, 500 to missing)

. roccomp outcome rating_a rating_b

ROC —Asymptotic Normal—

Obs Area Std. Err. [95% Conf. Intervall]

rating_a 500 0.7493 0.0238 0.70273 0.79593
rating_b 500 0.7767 0.0256 0.72650 0.82685

Ho: area(rating_a) = area(rating_b)
chi2(1) = 0.63 Prob>chi2 = 0.4262

Rating A performs better than rating B with the full dataset, but with the selected
sample, performance is similar. Notice that the effect of selection differs for the two
ratings. The AUC for rating A has decreased from 0.8815 to 0.7493, while the AUC for
rating B is much less affected by selection. Calling heckroccurve allows us to recover
the AUCs that are obtained with the full sample. Figure 2 provides the graphical output
from the syntax below:

. heckroccurve outcome rating_a, select(x rating_a rating_b) cbands

Estimating inferred ROC curve...

Empirical Inferred Inferred AUC
ROC area ROC area 95% Conf. Interval
0.7493 0.8804 0.8253 0.9149

. heckroccurve outcome rating_b, select(x rating_a rating_b) cbands
Estimating inferred ROC curve...

Empirical Inferred Inferred AUC
ROC area ROC area 95% Conf. Interval

0.7767 0.7781 0.7283 0.8192
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(a) Rating A (b) Rating B

Figure 2. Plots from heckroccurve show an example of the bias that can result from
constructing ROC curves with a selected sample. Selection caused the ROC curve for
rating A to cave in but left the ROC curve for rating B largely unaffected.

The inferred AUC for rating A is 0.8804. This is quite close to the value of 0.8815 that
we obtained with the full dataset. The confidence interval for the inferred AUC does
not contain the AUC that is obtained when only the selected sample is used (that is,
0.7493).

d

5 Discussion and conclusion

Hand and Adams (2014) suggest an alternative approach for comparing ROC curves
that are constructed with selected samples. Realizing that truncation of a rating leads
to biased ROC curves, Hand and Adams explore the effects of reducing the data so that
both ratings are truncated to a similar extent. The goal of truncating both ratings is to
create ROC curves that are biased to a similar extent for both ratings and thus better
facilitate a comparison of the ratings. While an advantage of this procedure is that
it does not make any parametric assumptions, it does not remove the bias induced by
selection. The procedure performed by heckroccurve provides a consistent estimate
when the assumptions are met.

heckroccurve implements Cook’s (2017) procedure for plotting ROC curves with
selected samples and provides the AUC along with a confidence interval. The com-
mand’s maximum likelihood estimation is performed by calling heckprobit. There are
situations for which heckprobit will fail to converge. Changing the specification for
the selection equation may allow for convergence. The inferred ROC curve is based on
parametric assumptions (just as heckman and heckprobit’s estimations are based on
parametric assumptions). Cook (2017) provides an example with wine data for which
distributional assumptions are not met, yet the procedure recovers the AUC that is ob-
tained with the full sample. While this one example is encouraging, the performance of
the procedure when its distributional assumptions do not hold has not been thoroughly
explored.
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