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Abstract. In settings that exhibit selection on both levels and gains, marginal
treatment effects (MTE) allow us to go beyond local average treatment effects and
estimate the whole distribution of effects. In this article, I survey the theory behind
MTE and introduce the package mtefe, which uses several estimation methods to fit
MTE models. This package provides important improvements and flexibility over
existing packages such as margte (Brave and Walstrum, 2014, Stata Journal 14:
191–217) and calculates various treatment-effect parameters based on the results.
I illustrate the use of the package with examples.

Keywords: st0516, mtefe, margte, heterogeneity, marginal treatment effects, in-
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1 Introduction

Well-known instrumental variables (IVs) methods solve problems of selection on lev-
els, estimating local average treatment effects (LATEs) for instrument compliers even
with nonrandom selection into treatment. However, in the more reasonable case with
selection into treatment based both on levels and gains, LATEs may represent average
treatment effects (ATEs) for very particular subpopulations, and we learn little about
the distribution of treatment effects in the population at large.

Marginal treatment effects (MTEs) allow us to go beyond LATEs in settings that
exhibit this sort of selection. MTEs are the ATEs for people with either a particular
resistance to treatment or at a particular margin of indifference. Thus, MTEs capture
heterogeneity in the treatment effect along the unobserved dimension we call resistance
to treatment. This is precisely what generates selection on unobserved gains: people who
choose treatment because they have a particularly low resistance might have different
gains than those with high resistance. Usually at the cost of stronger assumptions
than required under standard IVs, we can estimate the full distribution of (marginal)
treatment effects and back out the parameters of interest. These include ATEs, ATEs on
the treated (ATT) and untreated (ATUT), and policy-relevant treatment effects (PRTEs)
from a hypothetical policy that shifts the propensity to choose treatment.

The most common way of estimating MTEs is via the method of local IVs (Heckman
and Vytlacil 2007). Alternatively, MTEs can be estimated using the separate approach
(Heckman and Vytlacil 2007; Brinch, Mogstad, and Wiswall 2017) or, in the baseline
case with joint normal errors, maximum likelihood. When we estimate MTEs using the
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separate approach or maximum likelihood, similarities to selection models are apparent;
we are basically fitting a traditional selection model. MTEs thus represent old ideas in
new wrapping, but they still provide substantial contributions to the interpretation and
estimation of models in settings with essential heterogeneity. Unfortunately, commands
for flexibly estimating MTEs and using their output are not easily available in popular
software such as Stata. Brave and Walstrum (2014) document the package margte,
which estimates MTEs, but this package has some important limitations.

In this article, I introduce the package mtefe, which fits parametric and semipara-
metric MTE models. These include the joint normal, polynomial, and semiparametric
models like Brave and Walstrum (2014); mtefe additionally adds the option of spline
functions in the MTE for increased flexibility. It can fit all models using either local IVs
or the separate approach as well as maximum likelihood for the joint normal model,
while the estimation method in margte depends on the model. Furthermore, mtefe
allows for fixed effects using Stata’s categorical variables, which is important to isolate
exogenous variation in many applications and provides gains in computational speed
over generating dummies manually. mtefe supports frequency and probability weights,
which is important to obtain population estimates in many datasets.

In addition, mtefe exploits the full potential of MTEs by calculating treatment-effect
parameters as weighted averages of the MTE curve, shedding light on why, for example,
the LATE differs from the ATE. Other improvements include calculation of analytic stan-
dard errors (that admittedly ignore the uncertainty in the propensity-score estimation),
large improvements in computational speed when fitting semiparametric models, and
reestimation of the propensity score when bootstrapping for more appropriate inference.

Although quickly becoming a part of the toolbox of the applied econometrician,
applied work using MTEs often imposes restrictive parametric assumptions. The Monte
Carlo simulations in appendix B illustrates how conclusions might be sensitive to these
choices, at least under the particular data-generating processes used. This illustrates the
importance of correct functional form and highlights that researchers should probe their
results to functional form assumptions when using MTEs as well as base the choice of
functional form on detailed knowledge about the case at hand—what might constitute
the unobservables and sound economic arguments for the nature of the relationship
between these unobservables and the outcome.

This article proceeds as follows: Section 2 reviews the theory behind MTEs, identi-
fying assumptions, estimation methods, and derivation of treatment parameter weights.
Section 3 presents the mtefe command, its most important options, and examples of its
use. Section 4 concludes. Appendix A details the estimation algorithm of mtefe, and
appendix B contains the Monte Carlo simulations.
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2 Estimation of MTEs

MTEs are based on the generalized Roy model:

Yj = μj(X) + Uj for j = 0, 1 (1)

Y = DY1 + (1−D)Y0 (2)

D = � {μD(Z) > V } where Z = (X,Z−) (3)

Y1 and Y0 are the potential outcomes in the treated and untreated state, such as log
wages with and without a college degree. They are both modeled as functions of ob-
servables X, which may contain fixed effects.

Equation (3) is the selection equation and can be interpreted as a latent index
because � is the indicator function. It is a reduced-form way of modeling selection into
treatment as a function of observables X and instruments Z− that affect the probability
of treatment but not the potential outcomes.

The unobservable V in the choice equation is a negative shock to the latent index
determining treatment. It is often interpreted as unobserved resistance to or negative
preference for treatment. As long as the unobservable V has a continuous distribution,
we can rewrite the selection equation as P (Z) > UD, where UD represents the quantiles
of V and P (Z) represents the propensity score. UD, by construction, has a uniform
distribution in the population.1

Identification of this model requires the following assumption:

Assumption 1: Conditional independence (U0, U1, V ) ⊥ Z−|X

The model described by (1)–(3), together with Assumption 1, implies and is implied by
the standard assumptions in Imbens and Angrist (1994) necessary to interpret an IV as
a LATE. Vytlacil (2002) shows how the standard IV assumptions of relevance, exclusion,
and monotonicity2 are equivalent to some representation of a choice equation as in (3).
Thus, the model described above is no more restrictive than the LATE model used in
standard IV analysis.

In principle, it is possible to estimate MTEs with no further assumptions. How-
ever, this requires full support of the propensity scores in both treated and untreated
samples for all values of X. In practice, this is rarely feasible, as shown, for example,
in Carneiro, Heckman, and Vytlacil (2011). Instead, most applied articles (Carneiro,
Heckman, and Vytlacil 2011; Maestas, Mullen, and Strand 2013; Carneiro and Lee 2009;
Cornelissen et al. Forthcoming; Felfe and Lalive 2014) proceed by assuming a stronger
assumption:

1. This normalization also ensures that UD is uniform within cells of X. For details, see Mogstad and
Torgovitsky (2017) and Matzkin (2007).

2. Or rather, uniformity, because it is a condition across people, not across realizations of Z; this
assumption requires that Pr(D = 1|Z = z) ≥ Pr(D = 1|Z = z′) or the other way around for all
people, but it does not require full monotonicity in the classical sense.
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Assumption 2: Separability E(Uj | V,X) = E(Uj | V )

This can be a strong assumption and must be carefully evaluated by the researcher for
each application. Nonetheless, it is clearly less restrictive than, for example, a joint
normal distribution of (U0, U1, V ) as assumed by traditional selection models. This
article, along with the applied MTE literature3 and the mtefe command, proceeds by
imposing this stronger assumption, as well as working with linear versions of μj(X) =
Xβj and μD(Z) = γZ.4

This assumption has two important consequences: First, the MTE is identified over
the common support, unconditional on X. Second, the MTEs are additively separable in
UD and X. This implies that the shape of the MTE is independent of X; the intercept,
but not the slope, is a function of X.

Using this model, we find that the returns to treatment are simply the difference
between the outcomes in the treated and untreated states. MTEs were introduced by
Björklund and Moffitt (1987), later generalized by Heckman and Vytlacil (1999, 2001,
2005, 2007), and with the above assumption and index structure, can be defined as

MTE(x, u) ≡ E(Y1 − Y0|X = x, UD = u)

= x(β1 − β0)︸ ︷︷ ︸
heterogeneity in observables

+ E(U1 − U0|UD = u)︸ ︷︷ ︸
k(u): heterogeneity in unobservables

They measure average gains in outcomes for people with particular values of X and
the unobserved resistance to treatment UD. Alternatively, the MTE can be interpreted
as the mean return to treatment for individuals at a particular margin of indifference.
The above expression shows how the separability assumption allows us to separate the
treatment effect into one part varying with observables and another part varying across
the unobserved resistance to treatment.

MTEs are closely related to LATE. A LATE is the average effect of treatment for
people who are shifted into (or out of) treatment when the instrument is exogenously
shifted from z to z′. In the above choice model, these people have UD in the interval
(P (z), P (z′)). Note how, when z − z′ is infinitesimally small, so that P (z′) = P (z), the
LATE converges to the MTE. A MTE is thus a limit form of LATE (Heckman and Vytlacil
2007).

3. Some articles apply a stronger full independence assumption: (U0, U1, V ) ⊥ X,Z−. This implies
the separability in Assumption 2 but is stricter than necessary. In particular, the separability as-
sumption places no restrictions on the dependence between V and X. See Mogstad and Torgovitsky
(2017, in particular sec. 6) for a review and a detailed discussion of the differences between these
assumptions.

4. Note, however, that you are free to specify fixed effects, so that a fully saturated model may be
specified.
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2.1 Estimation using local IV

One way of estimating MTEs is using the method of local IV developed by Heckman and
Vytlacil (1999, 2001, 2005). This method identifies the MTE as the derivative of the
conditional expectation of Y with respect to the propensity score.

First, consider the intuition for why the derivative identifies the MTE using figure 1a.
Abstracting from covariates, the dotted line represents the expected Y for each value of
the propensity score, which can be estimated from data given a propensity-score model.
When p increases, the probability of getting the treatment increases. If the treatment
effect is constant, E(Y |p) is linear in p. In contrast, under essential heterogeneity,
the increase in p has the additional effect that the expectations of the error terms
change, resulting in nonlinearities in E(Y |p). Local IVs therefore identify the MTEs
from nonlinearities in the expectation of Y given p.

Now, consider two particular instrument values z and z′, generating propensity scores
P (z) = 0.4 and P (z′) = 0.8, respectively. This shift of the instrument induces people
with unobserved resistance P (z) < UD ≤ P (z′) to switch intro treatment. The change
in E(Y |p) relative to the change in propensity scores, {E(Y |p’) − E(Y |p)}/(p′ − p),
identifies the average of the MTE for UD in the interval p, p′. The slope of the long
dash dot line depicted in the figure is the average derivative over this interval, which is
equal to the average of the MTE in the same interval—the short dash dot line. Take
this reasoning to the limit by looking at closer and closer values of p and p′, and the
above expression collapses to the derivative of E(Y |p). At the point where p′ is just
an infinitesimal increase over p, the derivative identifies the MTE at the point where
UD = p.
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Figure 1. Identification of MTEs
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Formally, using p = P (Z), the index structure, and the separability assumption, we
can show that

E {Y |X = x, P (Z) = p} = E {Y0 +D(Y1 − Y0)|X = x, P (Z) = p}
= xβ0 + x(β0 − β1)p+ pE (U1 − U0|UD ≤ p)︸ ︷︷ ︸

K(p)

(4)

where we can normalize E(Uj) = 0 as long as X includes an intercept. K(p) is a
nonlinear function of p that captures heterogeneity along the unobservable resistance
to treatment UD; if people with different resistances to treatment have different ex-
pectations of the error terms, the MTE will be nonlinear. The K(p) notation follows
Brinch, Mogstad, and Wiswall (2017).

Taking the derivative of this expression with respect to p and evaluating it at u, we
get the MTE

∂E {Y |X = x, P (Z) = p}
∂p

|p=u = x(β1 − β0) +
∂ {pE(U1 − U0|UD ≤ p)}

∂p
|p=u

MTE(x, u) = (β1 − β0)x+ E (U1 − U0|UD = u)︸ ︷︷ ︸
k(u)

where k(u) = E(U1 − U0|UD = u).

The above suggests the following estimation procedure: We start by identifying the
selection into treatment based on (3), using a probability model, such as probit or logit;
the linear probability model; or even a semiparametric binary choice model. With this
estimate of P (Z) in hand, what remains is to make an assumption about the unknown
function K(p) = pE(U1 −U0|UD ≤ p),5 estimate the conditional expectation of Y from
(4), and form its derivative to get the MTE. The different functional form assumptions
commonly made onK(p) are summarized in table 1. Alternatively, if we are unwilling to
make parametric assumptions, the MTE can be estimated using semiparametric methods
as summarized in table 2 by estimating (4) as a partially linear model.

2.2 Estimation using the separate approach

Alternatively, as suggested by Heckman and Vytlacil (2007), MTEs can be estimated
using the separate approach. This has the benefit of estimating all the parameters of
both the potential outcomes so that we can plot these over the distribution of UD.

First, consider the intuition using figure 1b. Abstracting from covariates, the solid
line depicts the true E(Y1|UD = u), the expected value of the outcome in the treated
state for a given value of u. Likewise, the dashed line depicts the expected value of the
outcome in the untreated state. Next, imagine comparing two particular values of the
instrument, z versus z′. Individuals with Z = z have a predicted propensity score of
P (z) = 0.4, while individuals with z′ have P (z′) = 0.8. We will have both treated and

5. Or usually directly on k(u), and then we exploit that K(p) =
∫ p
0 k(u)du.
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untreated individuals in both these groups. For untreated individuals with Z = z, we
know that their resistance UD > P (z) = 0.4. Therefore, the average outcome among
these people informs us of the average of the dashed line between 0.4 and 1, depicted by
the long dash dot line. In contrast, the treated individuals with Z = z have resistance
UD ≤ P (z) and therefore inform us about the average of Y1 for people with UD between
0 and 0.4, depicted by the short dash dot line. Likewise, the people with Z = z′

inform us about the average of Y1 from 0 to 0.8 (dash dot line) and the average of Y0
from 0.8 to 1 (long dash line). With a continuous instrument, we will have propensity
scores all over the (0, 1) interval, and we can identify nonlinear functions in u, but this
illustration shows that a binary instrument identifies a linear MTE model. We need only
four averages from the groups composed of the treated and untreated individuals with
the instrument switched on and off (Brinch, Mogstad, and Wiswall 2017).

In practice, this means specifying some function for the conditional expectations of
the error terms and then estimating the conditional expectations of Y1 and Y0 in the
sample of treated and untreated separately:

E(Y1|X = x,D = 1) = xβ1 + E(U1|UD ≤ p) = xβ1 +K1(p) (5)

E(Y0|X = x,D = 0) = xβ0 + E(U0|UD > p) = xβ0 +K0(p) (6)

I follow the notation in Brinch, Mogstad, and Wiswall (2017) and control selection via
the control functions Kj(p). Note that this is the specification we are using when fitting
selection models; depending on the specification of Kj(p), this amounts to, for example,
Heckman selection or a semiparametric selection model.

To estimate the MTE, we estimate the conditional expectation of Y in the sample of
treated and untreated separately using the regression

Yj = Xβj +Kj(p) + ε

Based on the assumptions on the unknown functions kj(u), we can infer the func-
tional form of the control function Kj(p) as summarized in table 1. Alternatively, when
using semiparametric methods, estimate (5)–(6) using partially linear models as sum-
marized in table 2. In the implementation, this is estimated in a stacked regression to
allow for some coefficients to be restricted to be the same in the treated and untreated
state. After estimating Kj(p), we can construct the kj(u) functions and find the MTE

estimate from

MTE(x, u) = E(Y1|X = x, UD = u)− E(Y0|X = x, UD = u)

= x(β1 − β0) + k1(u)− k0(u)

where kj(u) = E(Uj |UD = u)
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Ỹ

o
n
p
in

trea
ted

a
n
d
u
n
trea

ted
sa
m
p
les,

sa
v
in
g
lev

el
K̂

j (p
)

a
n
d
slo

p
e
K̂

′j (p
)

C
o
n
stru

ct
k

k̂
(u

)
=

K̂
′(p

)
k̂
1
(u

)
=

K̂
1
(p
)
+

p
K̂

′1
(p
)

k̂
0
(u

)
=

K̂
0
(p
)−

(1−
p
)K̂

′0
(p
)

C
o
n
stru

ct
M
T
E

M̂
T
E
(x

,u
)
=

x (
̂

β
1 −

β
0 )

+
k̂
(u

)
M̂
T
E
(x

,u
)
=

x (
̂

β
1 −

β
0 )

+
k̂
1
(u

)−
k̂
0
(u

)

N
o
te
:
S
te
p
s
in

th
e
e
stim

a
tio

n
o
f
se
m
ip
a
ra

m
e
tric

M
T
E

m
o
d
e
ls

u
sin

g
lo
c
a
l
IV

s
o
r
th

e
se
p
a
ra

te
a
p
p
ro

a
ch

.
T
o
se
e
th

e
re
la
tio

n
b
e
tw

e
e
n

k
j
(u

)
a
n
d

K
j
(p

),

n
o
te

th
a
t
K

1
(p

)
=

E
(U

1 |U
D

≤
p
)
=

1
/
p ∫

p0
E
(U

1 |U
D

=
u
)d

u
⇒

K
′1
(p

)
=

−
(1

/
p
)K

1
(p

)
+

(1
/
p
)k

1
(u

),
w
h
ich

le
a
d
s
to

k
1
(u

)
=

K
1
(p

)
+

p
K

′1
(p

).

W
e
c
a
n

fi
n
d

sim
ila

r
e
x
p
re
ssio

n
s
fo
r
k
0
(u

).

In
p
rin

c
ip
le
,
it

is
p
o
ssib

le
to

c
o
m
b
in
e
th

e
se
m
ip
a
ra

m
e
tric

a
n
d

th
e
p
o
ly
n
o
m
ia
l
a
p
p
ro

a
ch

b
y
fi
rst

e
stim

a
tin

g
th

e
β

c
o
e
ffi
c
ie
n
ts

fro
m

th
e
p
o
ly
n
o
m
ia
l

m
o
d
e
l
a
n
d

th
e
n

u
sin

g
se
m
ip
a
ra

m
e
tric

m
e
th

o
d
s
to

fi
n
d

K
.
T
h
is

is
th

e
se
m
ip
a
ra

m
e
tric

p
o
ly
n
o
m
ia
l
M
T
E

m
o
d
e
l,

im
p
le
m
e
n
te
d

if

p
o
l
y
n
o
m
i
a
l
(
)
a
n
d
s
e
m
i
p
a
r
a
m
e
t
r
i
c
a
re

sp
e
c
ifi
e
d

to
g
e
th

e
r
in

m
t
e
f
e
.
A
lth

o
u
g
h

c
o
m
p
u
ta

tio
n
a
lly

fa
r
le
ss

c
o
m
p
le
x
,
th

e
re

is
little

th
e
o
ry

to
th

in
k

th
a
t
th

e
se
m
ip
a
ra

m
e
tric

e
stim

a
te

o
f
th

is
m
o
d
e
l
sh

o
u
ld

b
e
a
n
y
b
e
tte

r
th

a
n

th
e
M

T
E

c
o
n
stru

c
te
d

fro
m

th
e
p
a
ra

m
e
tric

e
stim

a
te
s.



M. E. Andresen 127

2.3 Estimation using maximum likelihood

In the case where we assume joint normality of (U0, U1, V ), the MTE can be estimated
using maximum likelihood like a Heckman selection model. It is straightforward to infer
the log-likelihood function. For details, see appendix A.4 or Lokshin and Sajaia (2004).

2.4 Treatment-effect parameters and weights

MTEs unify most common treatment-effect parameters and allow us to recover the pa-
rameters from the MTEs. Given that we have estimated MTE(x, u), we need only esti-
mates of the distribution of UD given x in a particular population to obtain estimates
of the ATE for that population.

In practice, common treatment-effect parameters can be expressed as some weighted
average of a particular MTE curve (Heckman and Vytlacil 2007). For the ATE condi-
tional on the event A = a that defines the population relevant for the parameter of
interest and X = x, we have

Ta(x) = E(Y1 − Y0|A = a,X = x) =

∫ 1

0

MTE(x, uD)ωa(x, u)duD

where ωa(x, u) = fUD|A=a,X=x(u)

where f is the conditional density of UD. Because of the additive separability given by
Assumption 2 and the linear forms of μj(X), this simplifies to

Ta(x) = x(β1 − β0) +

∫ 1

0

k(uD)ωa(u)duD

where ωa(u) = fUD|A=a(u)

In principle, we can calculate the treatment-effect parameters Ta(x) for any value
of x, but we are usually interested in the unconditional parameter in the population.
In general, we need to integrate over all values of X,6 but because of the additive
separability implied by Assumption 2, we can estimate the average x in the population
of interest separately and calculate the unconditional treatment-effect parameters as

Ta = E(Y1 − Y0|A = a) = xa(β1 − β0) +

∫ 1

0

k(uD)ωa(u)duD

where ωa(u) = fUD|A=a(u)

and xa = E(X|A = a)

We can estimate xa using the weighted average 1/N
∑
κai xi, where κ

a
i is an estimate

of the relative probability that event a happens to person i, {P (A = a|Z = zi)}/{P (A =
a)}. In practice, we can estimate both the weighted average xa and ωa(u) by using
sample analogs from data on p, Z, and D as summarized in table 3.

6. Note, however, that in cases where the propensity score model is misspecified, the weighted av-
erage of the conditional weights may differ from the unconditional weights. See, for example,
Carneiro, Heckman, and Vytlacil (2011) and Carneiro, Lokshin, and Umapathi (2017).
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The ATT is the average effect of treatment for the subpopulation that chooses treat-
ment. When one calculates the weighted average of the X in this population, this
parameter will weight people with high propensity scores more precisely because they
have a higher probability of choosing treatment. Likewise, the weights ωATT will weight
points at the lower end of the UD distribution higher because a larger share of the
population at these values of UD will choose treatment—they have lower resistance.

In contrast, the ATUT weights individuals with low propensity scores higher when
calculating the weighted average of the X. This is precisely because these people, all
else the same, have higher probability to be untreated. ωATUT weights high values of
UD more because these people have high resistance.

A LATE is the average effect of treatment for people who are shifted into (or out of)
treatment when the instrument is shifted from z to z′. These are people with UD in the
interval (P (z), P (z′)). To be in the complier group, an individual must have resistance
between P (z) and P (z′). Note how, when z − z′ is infinitesimally small, the LATE

converges to the MTE, and an MTE is thus a limit form of LATE (Heckman and Vytlacil
2007).

Similarly to the way we can estimate the probability of being a complier in a tradi-
tional IV analysis, we can estimate the weights of the linear IV or two-stage least squares
(2SLS) parameter. With a continuous instrument, IV is a weighted average over all possi-
ble LATEs composed of all z−z′ pairs (Angrist and Imbens 1995). Heckman and Vytlacil
(2007) show the derivation of these weights; see also section A.6 in the appendix and
Cornelissen et al. (2016). In sum, the IV parameter uses a weighted average of X, in
which people with large positive or negative values of υ̂, a measure of how much the
instrument affects propensity scores for each individual, are given more weight. These
are precisely the people who have higher probabilities of having their treatment status
determined by the instrument. Likewise, values of UD where people have υ̂ above the
average, and thus are more likely to be compliers, get a higher weight ωIV(u).

Assuming policy invariance (see Heckman and Vytlacil [2007] for a formal defini-
tion), we can calculate the PRTE for a counterfactual policy that manipulates propensity
scores. This is the expected treatment effect for the people that are shifted into treat-
ment by the new policy relative to the baseline. If the policy is a shift in the instruments
themselves, it is natural to use the estimated first stage to evaluate the shift in propen-
sity scores, but propensity scores could be manipulated directly as well. Note that if the
policy is a particular set of instrument values z′, and the baseline is another set z, the
PRTE and LATE are the same. In practice, the PRTE parameter weights the treatment
effect of people who are affected more strongly by the alternative policy relative to the
baseline.

Lastly, we can use the estimated MTEs to calculate marginal policy relevant treat-
ment effects (MPRTEs), which can be interpreted as average effects of making marginal
shifts to the propensity scores. MPRTEs are fundamentally easier to identify than PRTEs
(Carneiro, Heckman, and Vytlacil 2010), particularly because they do not require full
support; marginal changes to propensity scores will not drive the scores outside the
common support.
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Carneiro, Heckman, and Vytlacil (2011) suggest three ways to define distance to
the margin. The first MPRTE, labeled MPRTE1 in table 3, defines the distance in terms
of the differences between the index γZ and the resistance V and corresponds to a
marginal change in a variable entering the first stage such as an instrument. MPRTE2

defines the margin as having propensity scores close to the normalized resistance UD and
corresponds to a policy that would increase all propensity scores with a small amount.
MPRTE3 defines marginal as the relative distance between the propensity score and UD

and corresponds to a policy that increases all propensity scores by a small fraction.

What we can see from the expressions in table 3 is that an absolute shift in propensity
scores uses the observed density of the propensity scores as the weight distribution,
while a relative shift will place more weight on the upper part of the UD distribution
precisely because a relative shift increases the propensity scores of people with high
initial propensity scores more.

3 The mtefe package

3.1 Syntax

As outlined in the introduction, mtefe contains many improvements over earlier MTE

packages such as margte. The basic syntax of the mtefe command mimics that of
Stata’s ivregress and other IV estimators, while the syntax for many of its options
resemble the same options in margte. All independent variable lists also accept Stata’s
categorical variables syntax i.varname. fweights and pweights are supported.

mtefe depvar
[
indepvars

]
(depvart = varlistiv)

[
if
] [

in
] [

weight
] [

,

polynomial(#) splines(numlist) semiparametric restricted(varlist)

link(string) separate mlikelihood trimsupport(#) fullsupport

prte(varname) bootreps(#) norepeat1 vce(vcetype) level(#) degree(#)

ybwidth(#) xbwidth(#) gridpoints(#) kernel(string) first second

noplot omit(varlist) savefirst(string) savepropensity(newvar) savekp

saveweights(string) mtexs(matrixlist)
]

3.2 Options

The most important options that determine which model is fit and how are the following:

polynomial(#) specifies polynomial MTE models of degree #. In contrast to margte,
to ensure consistency between estimation procedures, this is the degree of k(u) and
in turn the MTE, not the degree of K(p). Although most restrictive, to ensure
consistency with margte, the default if polynomial() is not specified is the joint
normal model.
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splines(numlist) adds second-order and higher splines to k(u) at the points specified
by numlist. Use this only for polynomial models of degree ≥ 2. All points in numlist
must be in the interval (0, 1).

semiparametric fits K(p) or Kj(p) using semiparametric methods as described in ta-
ble 2. This amounts to the semiparametric model if polynomial is not specified or
the semiparametric polynomial otherwise.

restricted(varlist) specifies that variables in varlist be included in both the first and
second stages but are restricted to have the same effect in the two states.

link(string) specifies the first-stage model. string may be probit, logit, or lpm. The
default is link(probit).

separate fits the model using the separate approach rather than local IVs.

mlikelihood fits the model using the maximum likelihood rather than local IVs. This
is appropriate only for the joint normal model.

The command allows many other options, for which I refer the reader to the help
file. The mtefe package additionally contains the command mtefeplot, which plots
one or more MTE plots—optionally including treatment parameter weights—based on
stored or saved MTE estimates from mtefe. The command mtefe gendata generates
the data in the following examples and Monte Carlo simulations.

By default, mtefe reports analytical standard errors for the coefficients, treatment-
effect parameters, and MTEs. These ignore the uncertainty in the estimation of the
propensity scores by treating these as fixed in the second stage of the estimation as
well as the means of X and the treatment-effect parameter weights that are used for
estimating treatment effects. For matching, Abadie and Imbens (2016) show that ignor-
ing the uncertainty in the propensity score increases the standard errors for the ATE,
while the impact on other treatment-effect parameters is ambiguous. To the best of
my knowledge, we do not know how this omission affects the standard errors in MTE

applications, so careful researchers should therefore bootstrap the standard errors using
the bootreps() option, which reestimates the propensity scores, the mean of X, and
the treatment-effect parameter weights for each bootstrap repetition.

3.3 Example output from mtefe

To illustrate the use of mtefe and for Monte Carlo simulations in appendix B, let’s
imagine the following problem: We are interested in the monetary returns to a college
education. Unfortunately, college education is endogenous, for example, because higher-
ability people do better in the labor market and have more education. Furthermore,
people choose education based partly on knowledge about their own gains from college.
Thus, the problem exhibits selection on both levels and gains.

Consider distance to college, thought to be a cost shifter for college education. Al-
though traditional in the returns to education literature, there are reasons to doubt the
exclusion restriction for this instrument (Carneiro and Heckman 2002). To fix ideas,
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suppose that the average distance to college in a district, a measure of rurality, is cor-
related with average outcomes in the labor market. For example, more rural labor
markets could provide worse average employment opportunities, particularly for college
jobs. However, if these differences work at the district level, the instrument is valid,
conditional on district fixed effects that control for the average variation in distance to
college. Thus, the remaining within-district variation in distance to college is a valid
instrument for college attendance.

To implement this thought experiment, I draw the average labor market quality for
college and noncollege jobs and the average distance to college for each district from a
joint normal distribution. The observed distance to college is equal to this district-level
average plus some random normal variation, so the within-district variation in distance
is a valid instrument. In addition, I generate the error terms U0, U1, and V from either
a joint normal or a polynomial error structure, where the three errors are correlated
and thus generate selection on both levels and gains. Controls X include experience
uniformly distributed on (0, 30) and its square. These affect both the selection equation
and the outcomes in the two states. The full data-generating process is described in
appendix B.

. set seed 1234567

. mtefe_gendata, obs(10000) districts(10)

. mtefe lwage exp exp2 i.district (col=distCol)

Parametric normal MTE model Observations : 10000
Treatment model: Probit
Estimation method: Local IV

lwage Coef. Std. Err. t P>|t| [95% Conf. Interval]

beta0
exp .0278374 .006707 4.15 0.000 .0146903 .0409844

exp2 -.0004643 .0002097 -2.21 0.027 -.0008753 -.0000534

district
2 -.3713221 .061335 -6.05 0.000 -.4915511 -.2510932
3 -.0308218 .06261 -0.49 0.623 -.15355 .0919065
4 .6884756 .0866584 7.94 0.000 .5186077 .8583435
5 .0262556 .0642906 0.41 0.683 -.0997671 .1522782
6 .4946678 .0633903 7.80 0.000 .37041 .6189255
7 -.2666547 .0613036 -4.35 0.000 -.386822 -.1464873
8 .2437004 .0580991 4.19 0.000 .1298145 .3575864
9 .115046 .0598625 1.92 0.055 -.0022965 .2323885
10 .027915 .0602922 0.46 0.643 -.0902699 .1460999

_cons 3.105918 .0659863 47.07 0.000 2.976572 3.235265
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beta1-beta0
exp -.0231842 .0100974 -2.30 0.022 -.0429771 -.0033914

exp2 .0006458 .0003238 1.99 0.046 .0000111 .0012804

district
2 .0529143 .1010226 0.52 0.600 -.1451104 .250939
3 .0531692 .1038045 0.51 0.609 -.1503086 .256647
4 -.0521345 .1184164 -0.44 0.660 -.2842546 .1799855
5 .1319906 .1028638 1.28 0.199 -.0696432 .3336243
6 .0141403 .1050543 0.13 0.893 -.1917872 .2200679
7 .0021696 .1019711 0.02 0.983 -.1977144 .2020536
8 -.4022728 .1008029 -3.99 0.000 -.5998667 -.2046788
9 -.2616856 .1026346 -2.55 0.011 -.4628702 -.0605009

10 -.2654738 .1029734 -2.58 0.010 -.4673225 -.063625

_cons .5889556 .0967044 6.09 0.000 .3993954 .7785157

k
mills -.5492868 .0595307 -9.23 0.000 -.665979 -.4325946

effects
ate .3627266 .0239355 15.15 0.000 .3158082 .409645
att .6166828 .0388462 15.87 0.000 .5405364 .6928291

atut .0735471 .036977 1.99 0.047 .0010647 .1460295
late .340083 .0238033 14.29 0.000 .2934237 .3867424

mprte1 .3567228 .0249318 14.31 0.000 .3078514 .4055941
mprte2 .3133149 .0239501 13.08 0.000 .2663677 .360262
mprte3 -.0568992 .0483759 -1.18 0.240 -.1517257 .0379273

Test of observable heterogeneity, p-value 0.0000
Test of essential heterogeneity, p-value 0.0000

Note: Analytical standard errors ignore the facts that the propensity score,
the mean of X and the treatment effect parameter weights are estimated objects
when calculating standard errors. Consider using bootreps() to bootstrap the
standard errors.

Using the data-generating process outlined above, the code uses the commands mtefe
and mtefe gendata to generate data with a normal error structure and estimate them
using the joint normal MTE model and local IVs. mtefe first reports the estimated
coefficients β0, β1 − β0, and ρ1 − ρ0; then it reports the treatment-effect parameters as
shown in the output. Lastly, mtefe reports the p-values for two statistical tests: a joint
test of the β1 − β0, which can be interpreted as a test of whether the treatment effect
differs across X, and a test of essential heterogeneity. The latter is a joint test of all
coefficients in k(u).7

7. Or, in the case of semiparametric models, a test of whether all MTEs are the same.
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Based on the output from mtefe, we can straightforwardly evaluate the impact of
covariates. Average differences in outcomes across covariates can be interpreted directly
from the β0, just like a regular control variable. For instance, the coefficient for expe-
rience in the first panel of the output table indicates that one more year of experience
translates into approximately 2.8% higher wages, although the effect is nonlinear, and
we cannot say that it is the extra experience that causes the higher wages without strong
exogeneity assumptions on X.

Similarly, the β1 − β0 can be interpreted as differences in treatment effects across
covariate values, just like an interaction between treatment status and a covariate in
an ordinary least-squares regression. The coefficient on experience in the second panel
of the output table thus indicates that a person with one more year of experience has
2.3% lower gains from college, but again, we cannot give this a causal interpretation,
and we must account for the nonlinear effect.

In addition, mtefe plots the MTE curve with associated confidence intervals as well as
the density of the estimated propensity scores separately for the treated and untreated
individuals so that the researcher can evaluate the common support. Examples of these
plots are found in figures 2a and 2b. We see that the estimated MTE in this example is
downward sloping, with relatively high treatment effects above 1 at the beginning of the
UD distribution, eventually declining to negative effects below −0.5 at the right end of
the distribution. This implies an ATE of around 0.36, and the downward sloping pattern
is consistent with positive selection on unobservable gains as predicted by a simple Roy
model.

Alternatively, we can use the polynomial MTE model and the separate estimation
approach or the semiparametric model to relax the joint normal assumption. mtefe

fits these models if you specify the polynomial(2) or the semiparametric option,8

respectively. When one fits MTE models, it is useful to plot several MTE curves in the
same figure. This can be done using mtefeplot, specifying the names of the saved
or stored MTE estimates. An example of this plot is provided in figure 2c for the
normal, polynomial, and semiparametric MTE models. MTEs are downward sloping and
relatively similar in all three specifications.

As discussed in section 2.4, mtefe also estimates the treatment parameter weights
and the parameters themselves. One way of illustrating why, for example, the LATE9

differs from the ATE is by depicting the weights that LATEs put on different parts of
the X and UD distribution. This can be done using mtefeplot with the late option.
The resulting plot is found in figure 2e. Because the MTE curve at the average of X
and the MTE curve for compliers practically overlap, it does not seem like the people
induced to enroll because of the instrument have different values of X—this is hardly
surprising given the data-generating process. Instead, the weight distribution reveals

8. For semiparametric models, the option gridpoints() will greatly improve computational speed by
performing the first local linear regression at # points equally spaced over the support of p rather
than at each and every observed value of p in the population.

9. The term is used somewhat ambiguously here to refer to the linear IV estimate as a weighted
average over all possible LATEs from all combinations of two values of the instrument, in line with
much of the literature using continuous instruments.
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that compliers have a much higher probability to have unobserved resistance in the
middle part of the distribution. These people have MTEs slightly below the average,
so when taking a weighted average over the MTE curve for compliers, we find that the
LATE is lower than the ATE. The compliers to the instrument are people with slightly
below-average gains from college.

Furthermore, we can exploit the fact that when using the separate estimation pro-
cedure, we identify both k1(u) and k0(u). After first fitting the polynomial model using
the separate option to use the separate approach rather than local IVs, we can plot
the resulting potential outcomes using the separate option of mtefeplot. Because the
MTE is simply the difference between Y1 and Y0, we can investigate whether the down-
ward sloping trend in the MTE is generated by upward sloping Y0, downward sloping
Y1, or a combination. From figure 2d, we see that Y0 is relatively flat, while Y1 is clearly
downward sloping. This indicates that people who have low resistance to treatment do
much better than their high-resistance counterparts with a college degree, but relatively
similar without. Therefore, these people have higher effects of treatment.

As a last example, consider a hypothetical policy that mandates a maximum distance
of 40 miles to the closest college. To estimate the effect of such a policy, we predict the
propensity scores from the probit model using the adjusted distance to college:

. qui probit col distCol exp exp2 i.district

. generate temp=distCol

. replace distCol=40 if distCol>40

. predict double p_policy

. replace distCol=temp

. mtefe lwage exp exp2 i.district (col=distCol), pol(2) prte(p_policy)
(output omitted )

The results of this exercise are depicted in figure 2f. First, note how the MTE curve for
the policy compliers practically overlaps the MTE curve at the mean; policy compliers do
not seem to have X-values that give them different gains from college than the average.
Next, notice the distribution of weights; policy compliers come exclusively from the
lower part of the UD distribution. This is not surprising, given that the people most
affected by the reform are people with low propensity scores (driven by high distance to
college) before the reform. To be affected by the reform, these people must be untreated
under the baseline and thus have UD’s above those low propensity scores. Compared
with the people with higher propensity scores, the average UD for these people are
relatively low, generating high weights on the lower part of the UD distribution. Thus,
the potential policy compliers have low UD’s and, subsequently, high treatment effects.
Therefore, the expected gain from the reform is larger than the ATE.

. mtefe lwage exp exp2 i.district (col=distCol)

. estimates store normal

. mtefe lwage exp exp2 i.district (col=distCol), polynomial(2) separate

. estimates store polynomial

. mtefe lwage exp exp2 i.district (col=distCol), semiparametric gridpoints(100)

. estimates store semipar

. mtefeplot normal polynomial semipar, memory
> names("Normal" "Polynomial" "Semiparametric")
. mtefeplot polynomial, separate memory
. mtefeplot polynomial, late memory
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Figure 2. Example figures from mtefe and mtefeplot
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Lastly, we might be interested in the pattern of selection on observable gains. Is it the
case that covariates that positively impact treatment choices also positively impact the
gains from treatment? It is if γ×(β1−β0) > 0, which happens either if both coefficients
are positive or if both are negative. As an example, there is positive selection on the
covariate experience in the example reported in figure 2; more experience is associated
both with less college (not shown) and with lower treatment effects.

3.4 Postestimation using mtefe

Because mtefe saves results in e(), estimates are readily available for postestimation.
As an example, expected treatment effects can be predicted for every individual with
characteristics X, D, and p, using that

E(Y1 − Y0|X,D, p)
= x(β1 − β0) +DE(U1 − U0|UD ≤ p) + (1−D)E(U1 − U0|UD > p)

= x(β1 − β0) +
D − p

p(1− p)
K(p)

where I use the fact that both U1 and U0 are normalized to have mean zero. Because
all these objects are estimated by mtefe, we can predict treatment effects for each
individual. Use options savekp and savepropensity() to save the propensity scores
and the relevant variables of theK(p) function, then estimate expected treatment effects
from the expression above. The resulting variable contains the expected treatment effect
given treatment status, propensity scores, and X for each individual. Summarizing this
predicted treatment effect among the treated and untreated separately closely matches
the ATT and ATUT, respectively.

This procedure highlights the relationship between selection models and MTE—but
note how both the ATT and ATUT could be recovered without specifying Kj(p), only
the expected difference K(p).

When we use the separate approach, potential outcomes can be predicted directly
because both K(p) and K0(p) are estimated:

E(Y1|X,D, p) = xβ1 +
D − p

1− p
K1(p)

E(Y0|X,D, p) = xβ0 +
p−D

p
K0(p)

where K1(p) =
K(p)− (1− p)K0(p)

p

These expressions can be calculated by predicting Kj(p) and constructing the expected
value of the outcome for each individual from the expressions above. The difference
between these predicted outcomes closely matches the predicted treatment effect from
above and treatment-effect parameters calculated by mtefe as weighted averages over
the appropriate MTE curves.
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4 Conclusion

MTEs are increasingly becoming a part of the toolbox of the applied econometrician
when the problem at hand exhibits selection on both levels and unobserved gains. In
contrast to traditional linear IV analysis, MTEs uncover the distribution of treatment
effects rather than a LATE, which is often of little interest. In practice, this typically
comes at the cost of stricter assumptions.

In this article, I outlined the MTEs framework, the relationship to traditional se-
lection models, and three different methods for fitting these models. The documented
package, mtefe, contains many improvements over existing packages. Among these are
support for fixed effects, estimation using both local IVs, the separate approach and
maximum likelihood, a larger number of parametric and semiparametric MTE models,
support for weights, speed improvements when running semiparametric models, more
appropriate bootstrap inference, and improved graphical output. In addition, mtefe cal-
culates common treatment-effect parameters such as LATEs, ATT and ATUT, and PRTEs
for a user-specified shift in propensity scores to allow the user to exploit the potential
of the MTEs framework in understanding treatment-effect heterogeneity.

The Monte Carlo simulations detailed in appendix B show that MTE estimation can
be sensitive to function form specifications and that wrong functional form assumptions
may result in too high rates of rejection. Note that the two data-generating processes
used and the functional form choices made in these simulations are very restrictive, and
it is perhaps not surprising that a second-order polynomial cannot approximate a nor-
mal very well or the other way around. Nonetheless, they illustrate two things: First,
applied researchers should base the choice of functional form on detailed knowledge
about the case at hand—what might plausibly constitute the unobservable dimension
and economic arguments for how these factors might affect the outcome. Second, re-
searchers should strive to probe the robustness of their results to the functional form
choices, using less restrictive models to guide the choice of specification.
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A Estimation algorithms

The mtefe package is inspired by Heckman, Urzua, and Vytlacil (2006a,b) and Brave
and Walstrum (2014). The following sections describe the main steps of the estimation
using this program:

A.1 First stage and common support

1. Estimate the first stage using a linear probability model, a probit or a logit model
of D on Z. In principle, this step could be made more flexible by using, for
example, a semiparametric single index model such as Klein and Spady (1993),
which is not currently implemented in mtefe.

2. Predict the propensity score, p̂.

a. If using the linear probability, manually adjust propensity scores below 0 to
0 and above 1 to 1.

3. Construct the common support matrix:

a. If trimming the sample using trimsupport():

i. Estimate the density of the propensity scores separately in the two sam-
ples.

ii. Remove points of support with the lowest densities until the specified
share of each sample has been removed.

iii. Construct the common support as the points of overlapping support
between the two samples.

iv. Remove observations with estimated propensity scores outside the com-
mon support from the estimation sample.

v. Fit the baseline propensity score model on the trimmed sample again.

b. If not trimming:

i. If using a parametric model, use the full support in 0.01 intervals from
0.01 to 0.99.

ii. If using a semiparametric model, use all points of overlapping support in
the treated and untreated samples, from 0.01 to 0.99 in intervals of 0.01.

4. Plot the distribution of propensity scores in the treated and untreated samples,
including the trimming limits if used, to visualize the common support.

5. Compute weights for the ATT, ATUT, LATE, MPRTEs, and, if specified, PRTE pa-
rameter weights as described in section 2.4.

A.2 Local IV estimation

1. Construct K(p), which depends on your choice of parametric or semiparametric
model—see tables 1 and 2.
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2. Estimate the conditional expectation of Y given X and p as

Y = Xβ0 +X(β1 − β0)p+K(p) + ε

3. From these estimates, recover k(u) = K ′(u).

4. Construct the MTE as the derivative of the conditional expectation:

̂MTE(x, u) = x(β̂1 − β0) + k̂(u)

A.3 Separate approach

1. Construct K1(p) and K0(p), depending on your specification; see tables 1 and 2.

2. Estimate the conditional mean of Y from the stacked regression:

Y = Xβ0 +KD(p) +D{X(β1 − β0) +KD(p)}+ ε

where KD(p) =

{
K1(p) if D = 1

K0(p) if D = 0

3. From these estimates, recover the kj(u) functions.

4. Construct the estimates of the potential outcomes and the MTE as

Ŷj(x, u) = xβ̂j + k̂j(u)

̂MTE(x, u) = Ŷ1(x, u)− Ŷ0(x, u)

A.4 Maximum likelihood estimation

Relevant only for the joint normal model, the mlikelihood option implements the
maximum likelihood estimator described in Lokshin and Sajaia (2004). The individual
log-likelihood contribution is

�i = Di

[
ln {F (η1i)}+ ln

{
1

σ1
f

(
U1i

σ1

)}]
+ (1−Di)

[
ln {F (−η0i)}+ ln

{
1

σ0
f

(
U0i

σ10

)}]
where ηji =

(
γZi + ρj

Uji

σj

)
1√

1− ρ2j

where f is the standard normal density. This log likelihood can be maximized to give
the coefficients γ, β0, β1, σ0, σ1, ρ0, and ρ1. These parameter estimates can be used to
construct the MTE and treatment-effect parameters as detailed in table 1.
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A.5 Standard errors

When using parametric models, mtefe by default calculates standard errors for the
MTEs and the treatment-effect parameters from the estimated variance of β1 − β0 and
the parameters of k(u). This ignores the fact that the propensity score and the means
of X themselves are estimated objects. Little is known of the effect of this omission,
although Abadie and Imbens (2016) show that ignoring the fact that the propensity
scores are estimated when matching increases the standard errors of the ATE, but the
effect on other parameters is ambiguous. Alternatively, and preferably, standard errors
should be estimated using the bootstrap. Implement this using the bootreps() option,
or alternatively, use vce(cluster clustvar) if cluster bootstrap is appropriate. This
procedure reestimates the propensity score, the mean of X, and the treatment-effect
parameter weights for each bootstrap replication and so accounts for the uncertainty
from the first stage unless the option norepeat1 is specified.

A.6 IV weights

To estimate the IV weights, we need measures of the impact of the instrument on
each individual conditional on X. We are looking at partitioning the linear first-stage
regression

D = XβD + γZ− + ε

1. Remove the impact of covariates on D and Z− by regressing them separately on
X and saving the residuals in εD and εZ− .

2. Regress the residualized treatment εD on εZ− (without a constant) to recover the
first-stage estimate of the impact of the instrument on treatment conditional on
controls by the Frisch–Waugh–Lowell theorem.

3. The predicted values from this regression, υ̂, contains the individual impact of
the instrument on treatment conditional on controls. Note how we can recover
the first-stage estimate from cov(D, υ̂), the reduced-form estimate from cov(Y, υ̂),
and the traditional 2SLS estimate from {cov(Y, υ̂)}/{cov(D, υ̂)}.

4. Compute the weights

κ̂LATE
i =

(
υ̂i − υ̂

) (
Di −D

)
cov(D, υ̂)

Note how κLATE weights treated individuals with positive υ̂ and untreated individ-
uals with negative υ̂ more—these are individuals who are more strongly affected
by the instruments and so are more likely to be compliers.

5. Compute

ω̂LATE(u) =
{E(υ̂|p > u)− E(υ̂)}P (p > u)

s× cov(D, υ̂)
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by replacing expectations and probabilities with sample analogs. This puts more
weight on the values of UD above which people have higher υ̂—precisely the people
who are more affected by the instruments and so are more likely to be compliers.

This procedure recovers the weights from Cornelissen et al. (2016).

B Monte Carlo simulations

To investigate the properties of the different MTE estimators and models implemented
by the mtefe package, I simulate data from a data-generating process based on the
example described above and detailed in section B.1. For each of the data-generating
processes (joint normal or polynomial error structure), I draw 10,000 observations for
each of 500 repetitions, randomly allocating each observation to one of 10 districts. The
first-stage model that determines selection into treatment is either a linear probability
or probit model.

For each repetition, I calculate the difference between the estimated and the true
parameter, the estimated analytic and bootstrapped standard errors, and the rejection
rates for the true parameter. I fit all models using the separate approach and local IVs
to compare any differences.

B.1 Data-generating process

This algorithm determines the data-generating process implemented by mtefe gendata

that is part of the mtefe package and used in the Monte Carlo simulations and examples
in this article. This data-generating process generates selection on both levels and gains
as well as a continuous instrument that is valid only conditional on fixed effects.

1. In a sample of N individuals, randomly allocate each to one of G districts with
equal probability.

2. Draw average labor market quality Πj in the college and noncollege labor mar-
kets and average distance to college in each district AvgDist from a joint normal
distribution:

Π0,Π1,AvgDist ∼ N (0,Σf )

Σf =

⎧⎨⎩ 0.1
0.05 0.1

−0.05 −0.1 10

⎫⎬⎭
In the simulations, I draw these once rather than repeat for each simulation to
have a true value to compare the estimated coefficients with, but by default,
mtefe gendata draws these for each replication unless you specify the parameters.
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3. Generate individual distance to college distCol as AvgDist plus N(40, 10).

4. Draw exp from U(0, 30) and construct exp2 as its square.

5. Construct the error terms U0, U1, and V from one of two error structures:

Normal Draw randomly from a joint normal model:

U0, U1, V ∼ N (0,Σ)

Σf =

⎧⎨⎩ .5
.3 .5
−.1 −.5 1

⎫⎬⎭
Polynomial Generate Uj as second-order polynomials of UD with mean zero:

a. Draw UD = U(0, 1) and generate V = F−1(UD).

b. Generate Uj =
∑2

l=1 πjl[U
l
D − {1/(l + 1)}] + ε, where ε ∼ N(0, 0.2):

i. using π11 = 0.5, π12 = −0.1

ii. and π01 = 2, π12 = −1.

6. Construct the potential outcomes as

Yj = Xβj +Πj + Uj

X = exp exp2 1
β0 = 0.025 −0.0004 3.2
β1 = 0.01 0 3.6

7. Determine treatment using one of two binary choice models:

Probit

D = � [γZ > V ]

Z = distCol exp exp2 1
γ = −0.125 −0.08 0.002 5.59

LPM

D = � [γZ > UD]

Z = distCol exp exp2 1
γ = −0.015 −0.01 0.00025 1.17375

8. Determine the observed outcome lwage as DY1 + (1−D)Y0.
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B.2 A well-specified baseline

To establish a baseline, I first investigate the case where both the first stage and the
polynomial model for k(u) are correctly specified.

The results from these exercises are displayed in table 4. Unsurprisingly, and in
line with theory and Monte Carlo evidence from Brave and Walstrum (2014), mtefe
does a good job at estimating both the coefficients of the outcome equations and the
MTEs when both the first stage and the parametric model are correctly specified. The
difference between the estimated and true coefficients center at 0 and have low standard
deviations. The estimated analytical standard errors come close to the standard devia-
tions of the coefficient. Furthermore, even though the analytical standard errors ignore
the fact that the propensity score itself is an estimated object, they fall very close to the
bootstrapped standard errors that account for this by reestimating the propensity scores
for each bootstrap replication. Note that bootstrapped standard errors are not always
higher than analytic standard errors. Rejection rates vary somewhat from parameter
to parameter but lie around 0.05 as they should.
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Comparing the results from local IV estimates with the results from the separate
approach reveals one important difference; across the model specifications, estimates
seem to be more precise using the separate approach. Both the standard deviations of
the coefficients and the estimated standard errors are lower than estimates from local
IV, as illustrated for a range of parameters in figure 3. This is surprising, given that
more parameters are estimated when using the separate approach than local IV. I have
no good explanation for this result, but it warrants more research.
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(b) Polynomial model

Note: Kernel density plots of estimated coefficients using local IV (solid), the separate approach (dashed) for
selected parameters of the MTE models. Well-specified baseline model. 500 Monte Carlo simulations from
the normal (a) and polynomial (b) models.

Figure 3. Efficiency of the two estimation methods



M. E. Andresen 151

B.3 Misspecification of k(u)

The above experiment focused on the case where both the first-stage model and the
parametric model for k(u) was correctly specified. To illustrate how the estimators do
when one of the two are misspecified, I keep the assumption that the first-stage model
is correctly specified but use a misspecified MTE model. In table 5, I generate data from
the normal model and estimate the MTE using the polynomial model of second order
and vice versa.

Both models do a relatively good job at estimating the coefficients of the outcome
equations, and rejection rates for the true β0 and β1 − β0 coefficients are close to 0.05,
as they should be. Note, however, that the bootstrap now outperforms the analytic
standard errors, yielding rejections rates closer to 5% than the analytic standard errors
in most cases.

The MTE estimates, and in turn the ATE, are severely overrejected. Bootstrapping
the standard errors and accounting for the uncertainty in the estimates of p produce
lower rejection rates, but these are still above 5%. The problem seems to be driven by
inconsistent estimates rather than too-low standard errors. The result of this is large
rates of overrejection when the functional form is misspecified; average rejection rates
are far above 0.05 for a 5% test. The polynomial model seems to do a better job at
approximating the normal model than the other way around, as is apparent by the lower
rejection rates.

This illustrates the importance of using the correct parametric model and working
with flexible specifications. In this case, a higher-order polynomial or a polynomial with
splines could have generated a better fit to the underlying model.
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B.4 Misspecification of P(Z)

Next, I move on to investigate the specification of the first stage. To focus on the
problem of misspecification of the first stage, assume that the parametric model for
k(u) is correct and second-order polynomial. Instead, I let the functional form of the
selection equation be either linear or probit when generating data, and I use the other
functional form when fitting the model.

The results from this exercise are provided in table 6. The β parameters are some-
what consistently estimated with rejection rates around 0.05, but there is larger variation
across parameters than for the previous experiments. The MTEs, ATE, and parameters
of the k(u) function are severely overrejected. Again, this does not seem to be driven
by underestimation of standard errors if we compare them with the standard deviation
of the estimated coefficients. Rather, it seems to be the coefficients themselves that do
not center at 0.

As an alternative misspecification, consider the case where the functional form is cor-
rect but where the experience controls are not included in either the first- or the second-
stage estimation. This should affect the precision of the coefficients in the propensity
score model, but because the omitted regressors are orthogonal to everything else, it
should not bias the estimates of other parameters except the constant. The results
from this exercise are found in table 7, and fortunately, we see that the results are not
sensitive to this sort of omission of variables as long as the exclusion restriction holds.

In conclusion, specification of the propensity score generally receives relatively little
attention from articles, but it turns out to be important. Careful researchers should
evaluate the robustness of their MTE models using various and flexible first-stage models.
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