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Abstract. In this article, we review some recent advances in testing for serial cor-
relation, provide code for implementation, and illustrate this code’s application to
market risk forecast evaluation. We focus on the classic and widely used portman-
teau tests and their data-driven versions. These tests are simple to implement for
two reasons: First, the researcher does not need to specify the order of the tested
autocorrelations, because the test automatically chooses this number. Second, its
asymptotic null distribution is chi-squared with one degree of freedom, so there is
no need to use a bootstrap procedure to estimate the critical values. We illustrate
the wide applicability of this methodology with applications to forecast evaluation
for market risk measures such as value-at-risk and expected shortfall.
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1 Introduction

Testing for serial correlation has held a central role in time-series analysis since its in-
ception (see the early contributions by Yule [1926] and Quenouille [1947]). Despite the
many proposals and variations since the seminal contribution of Box and Pierce (1970),
the so-called portmanteau tests are still the most widely used. In its simplest form, the
employed statistic is just the sample size times the sum of the first p-squared sample
autocorrelations, which is compared with critical values from a chi-squared distribution
with p degrees of freedom (with a correction if the test is applied to residuals). The basic
Box–Pierce statistic has been slightly modified to improve its finite sample performance;
see Davies, Triggs, and Newbold (1977); Ljung and Box (1978); Davies and Newbold
(1979); or Li and McLeod (1981). The properties of the classical Box–Pierce tests have
been extensively studied in the literature; see, for example, the monograph by Li (2004)
for a review of this literature. Much of the theoretical literature on Box–Pierce tests
was developed under the independence assumption and hence is generally invalid when
applied to dependent data (the asymptotic size of the test is different from the nominal
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level); see Newbold (1980) or, more recently, Francq, Roy, and Zaköıan (2005) for valid
tests. This limitation of classical Box–Pierce tests is by now well understood. In this
article, we focus on a different limitation: the selection of the employed number of auto-
correlations is arbitrary. We review the contribution of Escanciano and Lobato (2009),
who proposed a data-driven portmanteau statistic where the number of correlations is
not fixed but selected automatically from the data. In this article, we give a synthe-
sis of this methodology, introduce new general assumptions for its validity, review new
applications in risk management, and provide code for its implementation.

2 Automatic portmanteau tests: A synthesis

Given a strictly stationary process {Yt}t∈Z with E(Y 2
t ) <∞ and μ = E(Yt), define the

autocovariance of order j as

γj = Cov(Yt, Yt−j) = E {(Yt − μ)(Yt−j − μ)} , for all j ≥ 0

and the jth order autocorrelation as ρj = γj/γ0. We aim to test the null hypothesis

H0 : ρj = 0, for all j ≥ 1

against the fixed alternative hypotheses

HK
1 : ρj �= 0, for some 1 ≤ j ≤ K

and some K ≥ 1.

Suppose we observe data {Yt}nt=1. γj can then be consistently estimated by the
sample autocovariance

γ̂j =
1

(n− j)

n∑
t=1+j

(
Yt − Y

) (
Yt−j − Y

)
, j = 0, . . . , n− 1

where Y is the sample mean, and we can also introduce ρ̂j = γ̂j/γ̂0 to denote the jth
order sample autocorrelation.

The Box–Pierce Qp statistic (Box and Pierce 1970) is just

Qp = n

p∑
j=1

ρ̂2j

which is commonly implemented via the Ljung and Box (LB, 1978) modification

LBp = n(n+ 2)

p∑
j=1

(n− j)−1ρ̂2j

When {Yt}nt=1 are independent and identically distributed (i.i.d.), both Qp and LBp

converge to a chi-squared distribution with p degrees of freedom, or χ2
p. When {Yt}nt=1
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are serially dependent, for example, when Yt is a residual from a fitted model, the
asymptotic distribution of Qp or LBp is generally different from χ2

p and depends on the
data-generating process in a complicated way; see Francq, Roy, and Zaköıan (2005) and
Delgado and Velasco (2011).

In this section, we synthesize the AQ test methodology that was suggested in Escan-
ciano and Lobato (2009) and extend the methodology to other situations. The main
ingredients of the methodology are 1) the following asymptotic results for individual
autocorrelations: for j = 1, . . . , d, where d is a fixed upper bound,

√
n (ρ̂j − ρj)

D−→ N(0, τj) (1)

for a positive asymptotic variance τj > 0, with1

τ̂j
P−→ τj (2)

and 2) a data-driven construction of p, given below. For i.i.d. observations, τj = 1, and
trivially, we can take τ̂j = 1, but in other more general settings with weak dependence
or estimation effects, we will have an unknown τj �= 1 that needs to be estimated. Our
definitions of portmanteau tests allow for general cases. Define

Q∗p = n

p∑
j=1

ρ̃2j

where ρ̃j = ρ̂j/
√

τ̂j is called a “generalized autocorrelation” here. Then, the AQ test is
given by

AQ = Q∗p̃ (3)

where
p̃ = min{p : 1 ≤ p ≤ d;Lp ≥ Lh, h = 1, 2 . . . , d}

with
Lp = Q∗p − π(p, n, q)

π(p, n, q) is a penalty term that takes the form

π(p, n, q) =

{
p log n, if max1≤j≤d

√
n |ρ̃j | ≤

√
q log n

2p, if max1≤j≤d
√
n |ρ̃j | >

√
q log n

(4)

and q = 2.4. The penalty term in (4) has been proposed by Inglot and Ledwina (2006b)
for testing the goodness of fit for a distribution. The value of q = 2.4 is motivated
from extensive simulation evidence in Inglot and Ledwina (2006a) and Escanciano and
Lobato (2009). The value of q = 0 corresponds to the Akaike information criterion
(AIC); see Akaike (1974). The value of q =∞ corresponds to the Bayesian information
criterion (BIC); see Schwarz (1978). In the context of testing for serial correlation, AIC

1. In this article, we use
D−→ and

P−→ to denote convergence in distribution and in probability,
respectively.



904 Automatic portmanteau tests

is good at detecting nonzero correlations at long lags but leads to size distortions. In
contrast, BIC controls the size accurately and is good for detecting nonzero correlations
at short lags. As shown empirically in figures 1 and 2 in Escanciano and Lobato (2009),
the choice of q = 2.4 provides a “switching effect” in which one combines the advantages
of AIC and BIC. Thus, we recommend q = 2.4 in applications. The upper bound d does
not affect the asymptotic null distribution of the test, although it may have an impact on
power if it is chosen too small. The finite sample performance of the automatic tests is
not sensitive to the choice of d for moderate and large values of this parameter, as shown
in table 5 of Escanciano and Lobato (2009) and table 6 of Escanciano, Lobato, and Zhu
(2013). Extensive simulation experience suggests that the choice of d that is equal to
the closest integer around

√
n performs well in practice.

Theorem 1 Under the null hypothesis, (1) and (2), AQ
D−→ χ2

1.

This theorem justifies the rejection region

AQ > χ2
1,1−α

where χ2
1,1−α is the (1 − α) quantile of the χ2

1. The following theorem shows the con-
sistency of the test.

Theorem 2 Assume ρ̂j
P−→ ρj for j = 1, . . . , d, and let (2) hold. Then, the test based

on AQ is consistent against HK
1 , for K ≤ d.

Note that joint convergence of the vector of autocorrelations is unnecessary, in con-
trast to much of the literature. Thus, the methodology of this article does not require
estimation of large dimensional asymptotic variances.

The proofs of both theorems follow from straightforward modification of those in
Escanciano and Lobato (2009) and are hence omitted.

Remark 1. The methodology can be applied to any setting where (1) and (2) can
be established. This includes raw data or residuals from any model. There is an
extensive literature proving conditions such as (1) and (2) under different assumptions;
see examples below.

Remark 2. The reason for the χ2
1 limiting distribution of the AQ test is that under

the null hypothesis, limn→∞ P (p̃ = 1) = 1. Heuristically, under the null hypothesis,
Q∗p is small, and π(p, n, q) increases in p, so the optimal choice selected is the lowest
dimensionality p = 1 with high probability.

3 Applications to risk management

We illustrate the general applicability of the methodology with new applications in
risk management. There is a very extensive literature on the quantification of market
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risk for derivative pricing, for portfolio choice and for risk management purposes. This
literature has long been particularly interested in evaluating market risk forecasts, or
the so-called backtests; see Jorion (2007) and Christoffersen (2009) for comprehensive
reviews. A leading market risk measure has been the value at risk (VAR), and more
recently, expected shortfall (ES). VAR summarizes the worst loss over a target horizon
that will not be exceeded at a given level of confidence called “coverage level”. ES is
the expected value of losses beyond a given level of confidence.2 We review popular
backtests for VAR and ES and derive automatic versions using the general methodology
above.

Let Rt denote the revenue of a bank at time t, and let Ωt−1 denote the risk manager’s
information at time t−1, which contains lagged values of Rt and possibly lagged values
of other variables, say, Xt. That is, Ωt−1 = {Xt−1, Xt−2, . . . ;Rt−1, Rt−2, . . .}. Let
G(·,Ωt−1) denote the conditional cumulative distribution function of Rt given Ωt−1,
that is, G(·,Ωt−1) = Pr (Rt ≤ ·|Ωt−1) . Assume G(·,Ωt−1) is continuous. Let α ∈ [0, 1]
denote the coverage level. The α-level VAR is defined as the quantity VARt(α) such that

Pr {Rt ≤ −VARt(α)|Ωt−1} = α (5)

That is, the −VARt(α) is the αth percentile of the conditional distribution G,

VARt(α) = −G−1(α,Ωt−1) = − inf {y : G(y,Ωt−1) ≥ α}
Define the α-violation or hit at time t as

ht(α) = 1 {Rt ≤ −VARt(α)}
where 1(·) denotes the indicator function. That is, the violation takes the value 1 if the
loss at time t is larger than or equal to VARt(α), and it takes the value 0 otherwise.
Equation (5) implies that violations are Bernoulli variables with mean α and, moreover,
that centered violations are a martingale difference sequence (MDS) for each α ∈ [0, 1];
that is,

E {ht(α)− α|Ωt−1} = 0 for each α ∈ [0, 1]

This restriction has been the basis for the extensive literature on backtesting VAR. Two
of its main implications, the zero mean property of the hit sequence {ht(α)−α}∞t=1 and
its uncorrelation, led to the unconditional and conditional backtests of Kupiec (1995)
and Christoffersen (1998), respectively, which are the most widely used backtests. More
recently, Berkowitz, Christoffersen, and Pelletier (2011) have proposed the Box–Pierce-
type test for VAR,

CVAR(p) = n

p∑
j=1

ρ̂2j

with ρ̂j = γ̂j/γ̂0 and γ̂j = 1/(n − j)
∑n

t=1+j{ĥt(α) − α}{ĥt−j(α) − α}, and where

{ĥt(α) = Rt ≤ −V̂ARt(α)}nt=1, for an estimator of the VAR, V̂ARt(α). An automatic
version of the test statistic in Berkowitz, Christoffersen, and Pelletier (2011) can be

2. Other names for ES are conditional VAR, average VAR, tail VAR, or expected tail loss.
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computed following the algorithm above with τj = 1. This test is valid only when there
are no estimation effects. If T is the in-sample size for estimation and n is the out-of-
sample size used for forecast evaluation, the precise condition for no estimation effects
in backtesting VAR and ES is that both T →∞ and n→∞ at a rate such that n/T → 0
(that is, the in-sample size is much larger than the out-of-sample size). More generally,
Escanciano and Olmo (2010) provided primitive conditions for the convergences (1) and
(2) to hold in a general setting where there are estimating effects from estimating VAR.
When estimation effects are present, τj no longer equals 1, but Escanciano and Olmo
(2010) provide suitable estimators, τ̂j , satisfying (2). Let ACVAR denote the AQ version
of CVAR(p).

More recently, there has been a move in the banking sector toward ES as a suitable
measure of market risk able to capture “tail risk” (the risk coming from very big losses).
ES is defined as the conditional expected loss given that the loss is larger than VARt(α),
that is,

ESt(α) = E {−Rt|Ωt−1,−Rt > VARt(α)}
Definition of a conditional probability and a change of variables yield a useful represen-
tation of ESt(α) in terms of VARt(α),

ESt(α) =
1

α

α∫
0

VARt(u)du (6)

Unlike VARt(α), which contains information only on one quantile level α, ESt(α) contains
information from the whole left tail by integrating all VARs from 0 to α. As we did with
(6), we define the cumulative violation process,

Ht(α) =
1

α

α∫
0

ht(u)du

Because ht(u) has mean u, then by Fubini’s theorem,Ht(α) has mean 1/α
∫ α

0
udu = α/2.

Moreover, again by Fubini’s theorem, the MDS property of the class {ht(α) − α : α ∈
[0, 1]}∞t=1 is preserved by integration, which means that {Ht(α) − α/2}∞t=1 is also an
MDS. For computational purposes, it is convenient to define ut = G(Rt,Ωt−1). Because
ht(u) = 1{Rt ≤ −VARt(u)} = 1(ut ≤ u), we obtain

Ht(α) =
1

α

α∫
0

1(ut ≤ u)du

=
1

α
(α− ut)1(ut ≤ α)

Like violations, cumulative violations are distribution free because {ut}∞t=1 comprises
a sample of i.i.d. U [0, 1] variables (see Rosenblatt [1952]). Cumulative violations have
been recently introduced in Du and Escanciano (2017). The variables {ut}∞t=1 necessary
to construct {Ht(α)}∞t=1 are generally unknown because the distribution of the data G
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is unknown. In practice, researchers and risk managers specify a parametric conditional
distribution G(·,Ωt−1, θ0), where θ0 is some unknown parameter in Θ ⊂ Rp, and proceed
to estimate θ0 before producing VAR and ES forecasts. Popular choices for distributions
G(·,Ωt−1, θ0) are those derived from location-scale models with Student’s t distributions,
but other choices can be certainly entertained in our setting. With the parametric model
at hand, we can define the “generalized errors”

ut(θ0) = G(Rt,Ωt−1, θ0)

and the associated cumulative violations

Ht(α, θ0) =
1

α
{α− ut (θ0)} 1(ut(θ0) ≤ α)

As with VARs, the arguments above provide a theoretical justification for backtesting ES

by checking whether {Ht(α, θ0)− α/2}∞t=1 have zero mean (unconditional ES backtest)
and whether {Ht(α, θ0)− α/2}∞t=1 are uncorrelated (conditional ES backtest).

Let θ̂ be an estimator of θ0 and construct residuals

ût = G(Rt,Ωt−1, θ̂)

and estimated cumulative violations

Ĥt(α) =
1

α
(α− ût)1(ût ≤ α)

Then, we obtain

γ̂j =
1

n− j

n∑
t=1+j

{
Ĥt(α)− α/2

}{
Ĥt−j(α)− α/2

}
and ρ̂j =

γ̂j
γ̂0

Du and Escanciano (2017) construct the Box–Pierce test statistic

CES(p) = n

p∑
j=1

ρ̂2j

and derive its asymptotic null distribution. In particular, they establish conditions for
(1) and (2) to hold and provide expressions for the corresponding τ̂j . Let ACES denote
the AQ version of CES(p).

Compared with the existing backtests, these automatic backtests select p from the
data and require only estimation of marginal asymptotic variances of marginal correla-
tions to obtain known limiting distributions.

4 Implementation

We introduce the dbptest command to implement the AQ test (3). Notice that τj = 1
for i.i.d. observations and for backtesting VAR and ES without estimation effects.
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We also provide the rtau command to estimate τj for more general cases, including
MDS as in Escanciano and Lobato (2009), as well as backtests for VAR and ES with
estimation effects as in Escanciano and Olmo (2010) and Du and Escanciano (2017),
respectively.

4.1 Syntax

Automatic Q test

dbptest varname
[
if
] [

in
] [

, mu(#) q(#) tauvector(matname) nlags(#)
]

Estimating τ j

rtau varname
[
if
] [

in
]
, nlags(#) seriestype(type)

[
cl(#) nobs(#)

]
4.2 Options

Automatic Q test

mu(#) specifies the mean of the tested variable. The default is the variable’s sample
mean.

q(#) is a fixed positive number to control the switching effect between the AIC and
BIC. The default is q(2.4).

tauvector(matname) specifies a column vector containing variances of the autocorre-
lations. The default is a vector of 1s.

nlags(#) specifies the maximum number of lags of autocorrelations. The default is the
closest integer around

√
n, where n is the number of observations. If it is larger than

the dimension of tauvector(), it will be replaced by the dimension of tauvector().

Estimating τ j

nlags(#) specifies the number of lags of autocorrelations. nlags() is required.

seriestype(type) specifies one of the following types: mds, var, or es. seriestype()
is required.

seriestype(mds) specifies varname to be an MDS as in Escanciano and Lobato
(2009).

seriestype(var) corresponds to backtesting VAR. varname assumes a first-order
autoregressive mean model and a conditional variance model with squared resid-
uals with lags of order 1 and variance components with lags of order 1 [AR(1)–
GARCH(1,1)] model with Student’s t innovations when deriving the estimation
effects.
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seriestype(es) corresponds to backtesting ES, and varname assumes an AR(1)–
GARCH(1,1) model with Student’s t innovations when deriving the estimation
effects.

cl(#) specifies the coverage level of VAR and ES. The default is cl(0.05).

nobs(#) specifies the in-sample size when backtesting VAR and ES.

4.3 Remarks

One needs to tsset the data before using dbptest and rtau.

Automatic Q test

dbptest implements a data-driven Box–Pierce test for serial correlations. The test
automatically chooses the order of autocorrelations. The command reports not only
the usual outputs of the Box–Pierce test as wntestq, that is, the Q statistics and the
corresponding p-value, but also the automatic number of lags chosen.

Estimating τ j

rtau estimates the asymptotic variances of autocorrelations when necessary. This in-
cludes

1. MDS data; and

2. backtesting ES and VAR with estimation effects.

cl(#) and nobs(#) are required only when seriestype(var) or seriestype(es)
is specified.

4.4 Stored results

Automatic Q test

dbptest stores the following in r():

Scalars
r(stat) Q statistic r(lag) the number of lags
r(p) probability value

Estimating τ j

rtau stores the following in e():

Matrix
e(tau) variances of autocorrelations
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4.5 Example

To illustrate the use of the two commands, we consider the DAX Index return data
from January 1, 1997, to June 30, 2009 as in Du and Escanciano (2017). The in-sample
period is from January 1, 1997, to June 30, 2007. The out-of-sample period is from July
1, 2007, to June 30, 2009, which is the financial crisis period.

We use the in-sample data to fit an AR(1)–GARCH(1,1) model with Student’s t inno-
vations. After getting the estimates for ut, ht(α), and Ht(α) using the out-of-sample
data, we implement the conditional backtests for VAR and ES using the new dbptest

command.

Without estimation effects

Here we carry out the AQ test (3) without considering the estimation effects, that is,
τj = 1.

. set matsize 509

. import delimited "dax.csv", varnames(1)
(3 vars, 3,168 obs)

. scalar nin = 2658

. scalar nout= 509

. scalar ninout = nin + nout

. keep lret date

. drop in 1
(1 observation deleted)

. generate sin = (_n <= nin)

. generate sout= (_n > nin & _n<=ninout)

. keep if _n<=ninout
(0 observations deleted)

. generate date_num=_n

. tsset date_num
time variable: date_num, 1 to 3167

delta: 1 unit

. arch lret if sin==1, noconstant arch(1) garch(1) ar(1) distribution(t)

(output omitted )

. matrix define awab=e(b)

. matrix define covm=e(V)

. scalar ahat = awab[1,1]

. scalar alphat = awab[1,2]

. scalar bethat = awab[1,3]

. scalar omghat = awab[1,4]

. scalar vhat = round(e(tdf))

. predict resin, residuals

. generate resout = resin if sin==0
(2,658 missing values generated)

. replace resin=. if sin==0
(509 real changes made, 509 to missing)
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. predict convar, variance

. generate fith = convar if sin==0
(2,658 missing values generated)

. replace convar=. if sin==0
(509 real changes made, 509 to missing)

. generate fitsig = sqrt(fith)
(2,658 missing values generated)

. generate epsj = resout/fitsig
(2,658 missing values generated)

. generate utj = t(vhat, epsj*sqrt(vhat/(vhat-2)))
(2,658 missing values generated)

. scalar jalp = 0.1

. generate h = (utj <= jalp) if sout==1
(2,658 missing values generated)

. generate utalp = utj - jalp if h == 1
(3,108 missing values generated)

. replace utalp=0 if utalp==. & sout==1
(450 real changes made)

. generate H =-utalp/jalp
(2,658 missing values generated)

. dbptest H, mu(0.05)

Automatic Portmanteau test for serial correlation

Variable: H

Portmanteau (Q) statistic = 2.8417
Prob > chi2(1) = 0.0918
The number of lag(s) (from 1 to 23) = 1

The displayed results are for cumulative violations at a 10% coverage level, that is,
Ht(0.1). Under the correct model specification, we have E{Ht(α)} = α/2, so we set
mu() to be 0.05. We get an AQ statistic of 2.8417 and a p-value of 0.0918. Hence, the ES

model is rejected at a 10% significance level. It also reports the number of lags chosen,
which is 1 in this case.

Likewise, we carry out the conditional backtest for VAR using ht(α). Following the
rule of thumb that the coverage level for ES is twice (or approximately twice) that of
VAR, we examine the autocorrelations of ht(0.05).
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. capture drop h

. scalar jalp=0.05

. generate h = (utj <= jalp) if sout==1
(2,658 missing values generated)

. dbptest h, mu(0.05)

Automatic Portmanteau test for serial correlation

Variable: h

Portmanteau (Q) statistic = 0.7972
Prob > chi2(1) = 0.3719
The number of lag(s) (from 1 to 23) = 1

We now get an AQ statistic of 0.7972 and a p-value of 0.3719, so we fail to reject the
VAR model.

With estimation effects

To account for the estimation effects, we use the rtau command to estimate τj before
we run the dbptest command.

. rtau lret, nlags(15) seriestype(es) cl(0.1) nobs(2658)

Asymptotic Variances of Autocorrelations

Order Tau for ES
1 1.0027636
2 1.0192228
3 1.0192343
4 1.004399
5 1.0030891
6 1.0021455
7 1.0137747
8 1.0016341
9 1.0094143
10 1.0012676
11 1.0011319
12 1.0080588
13 1.0077699
14 1.0033674
15 1.0017961

. matrix Tau_ES = e(tau)

. dbptest H, mu(0.05) tauvector(Tau_ES)

Automatic Portmanteau test for serial correlation

Variable: H

Portmanteau (Q) statistic = 2.8338
Prob > chi2(1) = 0.0923
The number of lag(s) (from 1 to 15) = 1
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. rtau lret, nlags(15) seriestype(var) cl(0.05) nobs(2658)

Asymptotic Variances of Autocorrelations

Order Tau for VaR
1 1.01014
2 1.0029985
3 1.0023986
4 1.0023737
5 1.0027832
6 1.0021056
7 1.001556
8 1.0014201
9 1.0011457
10 1.0009844
11 1.001431
12 1.0013224
13 1.0013889
14 1.0009824
15 1.0011676

. matrix Tau_VaR = e(tau)

. dbptest h, mu(0.05) tauvector(Tau_VaR)

Automatic Portmanteau test for serial correlation

Variable: h

Portmanteau (Q) statistic = 0.7892
Prob > chi2(1) = 0.3743
The number of lag(s) (from 1 to 15) = 1

Notice that the in-sample size here is 2,658. The AQ test statistics for ES and
VAR here are slightly lower than those without estimation effects. The test conclusions
remain the same, although the p-values are slightly higher than before.
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