%‘““‘“\N Ag Econ sxes
/‘ RESEARCH IN AGRICUITURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

‘l) Check for updates

The Stata Journal (2017)
17, Number 4, pp. 962-971

A simple command to calculate travel distance
and travel time

Sylvain Weber Martin Péclat
University of Neuchatel University of Neuchéatel
Institute of Economic Research Institute of Economic Research
Neuchatel, Switzerland Neuchatel, Switzerland
sylvain.weber@unine.ch martin.peclat@unine.ch

Abstract. Obtaining the routing distance between two addresses should not be
a hassle with current technology. Unfortunately, this is more complicated than it
first seems. Recently, several commands have been implemented for this purpose
(traveltime, traveltime3, mqtime, osrmtime), but most of them became obso-
lete only a few months after their introduction or appear complicated to use. In
this article, we introduce the community-contributed command georoute, which
retrieves travel distance and travel time between two points defined either by their
addresses or by their geographical coordinates. Compared with other existing com-
mands, it is simple to use, efficient in terms of computational speed, and versatile
regarding the information that can be provided as input.

Keywords: dm0092, georoute, georoutei, geocoding, travel distance, travel time

1 Introduction

The demand for calculating routing distance between two geographical points is grow-
ing. Researchers in energy economics (such as the authors of this article) might be
interested in knowing the travel distance between two places for various reasons. Nu-
merous applications in spatial econometrics also rely on such data. The development of
large surveys containing addresses (for example, of homes and workplaces) has increased
the usefulness of systems allowing to retrieve distances based on such information.

In this article, we follow a series of publications on the topic of geocoding in the
Stata Journal (Ozimek and Miles 2011; Voorheis 2015; Huber and Rust 2016) and sev-
eral community-contributed commands available via Statistical Software Components
(Anderson 2013; Ansari 2015; Hef8 2015; Picard 2010; Zeigermann 2016). However,
because the geocoding field is progressing quickly, most of these commands are now
obsolete (see Huber and Rust [2016] for a detailed account about what commands are
obsolete and why).

In this article, we introduce the community-contributed command georoute, which
retrieves travel distance and travel time between two points defined by their addresses
or their geographical coordinates. Travel distance is the number of miles (or kilometers)
one should drive by car to join the first point to the second. Travel time is how long
it takes to drive the latter distance under normal traffic conditions. These definitions
clarify that the purpose of georoute is to provide relevant information for socioeconomic

© 2017 StataCorp LLC dm0092

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1536867X1801700411&domain=pdf&date_stamp=2018-01-01

S. Weber and M. Péclat 963

research. Other existing commands, such as geodist (Picard 2010), calculate straight-
line distance between two geographical coordinates, which might be relevant in different
contexts.

The command georoute is close to mqtime (Voorheis 2015), which is principally
also capable of retrieving travel distances and geographical coordinates from addresses.
However, mqtime does not always function correctly. Huber and Rust (2016) appar-
ently tested mgqtime on a bad day and concluded that “mgtime no longer works”. The
inconsistency of mqtime is probably due to MapQuest’s open application programming
interface (API), which previously allowed for an unlimited number of requests but has
now altered its policy. For requests facing problems with MapQuest’s Open API, mqtime
uses the HERE API as an alternative to try to retrieve a distance. In georoute, we rely
directly and only on the HERE API, which is managed by a commercial provider but of-
fers free plans that allow large numbers of requests per month. Thus, georoute is many
times faster than mqtime. georoute cannot be guaranteed to remain operational in the
long run, because it depends on the stability of the HERE API. The risk of depreciation
is minimized by forcing users to create and use their own HERE accounts.

Our command is also closely related to osrmtime, implemented by Huber and Rust
(2016), but there are two major differences: First, osrmtime accepts only geographi-
cal coordinates (latitude, longitude) as input, while georoute also accepts addresses.
Second, we argue that osrmtime is quite complicated to use. Indeed, before running
osrmtime, the user has to follow a series of prerequisites (particularly downloading and
preparing the map files), some of which are quite involved and imply a substantial up-
front time investment from the user.! Contrarily, georoute is user friendly and delivers
reliable results. Starting from a database of addresses, a user simply needs a one-line
command. The only prerequisites are to register for a HERE account and obtain an
App ID and an App Code.

2 The georoute and georoutei commands

2.1 Prerequisite: Get an HERE account

To use georoute, one needs a HERE account (https://developer.here.com/). HERE is
a commercial provider, but it offers a 90-day free trial of its entire platform, which
permits 100,000 requests per month, and a free public basic plan, which is not limited
in time and permits 15,000 requests per month.? Such accounts should be largely
sufficient for most researchers and most empirical applications. However, georoute

1. When we tried to osrmprepare the maps for Europe as a whole, the process got stuck while trying
to extend the external memory space... and then froze completely while building node id
map Preparing the maps for a single country (in our case, a small one, Switzerland) was less
problematic. Nevertheless, osrmtime yielded some strange (not to say harmful) outcomes when
coordinates outside the country were specified. Instead of excluding such observations, osrmtime
calculated a clearly incorrect travel distance and duration. The return code, supposed to signal
any issue, was nevertheless set as 0K for these observations.

2. Moreover, in our experience, it is possible to reactivate a new 90-day free trial once it expires, using
the same HERE account.

https://developer.here.com/

964 Travel distance and travel time

will make three requests for computing a single routing distance when addresses are
provided (one geocoding request per address plus one routing request for calculating the
distance between the two points). Thus, the maximal number of travel distances that
can be calculated in this case is one-third of the above-mentioned limits. If geographical
coordinates are directly specified instead of addresses, only one routing request will be
necessary.

After registering in HERE, the user should create a project and get an App ID and
App Code (“JavaScript /REST”). These two elements are necessary for georoute.” Note
that a delay of around two hours may occur between the creation of the HERE project
and its activation.

2.2 The georoute command

Syntax

The syntax of georoute is as follows:

georoute [Zf] [m] , hereid(string) herecode(string)
{startaddress(varlist) | startxy (varlist) }
{endaddress (varlist) | endxy (varlist)} [km distance(newvar) time(newvar)

diagnostic(newvar) coordinates(str! str2) replace herepaid timer pause]

Options

hereid(string) and herecode (string) indicate the App ID and App Code of the user.
hereid() and herecode() are required.

startaddress(varlist) and endaddress (varlist) specify the addresses of the starting
and ending points. Addresses can be inserted as a single variable or as a list of vari-
ables. Alternatively, startxy() and endxy() can be used. Either startaddress()
or startxy() is required. Either endaddress() or endxy() is required. Note that
the presence of special characters (for example, French accents) in addresses might
cause errors in the geocoding process. Such characters should be transformed before
running georoute, for example, using subinstr().

startxy (varlist) and endxy (varlist) specify the coordinates in decimal degrees of the
starting and ending points. They can be used as an alternative to startaddress()
and endaddress (). Two numeric variables containing = (latitude) and y (longitude)
coordinates of the starting and ending points should be provided in startxy() and

3. The App ID should be a 20-character series such as BfSfwS1KMCPHj5WbVJ1g, and the App Code a
22-character series such as bFw1UDZM3Zgc4QM8lyknVg. We find it useless to provide our own App ID
and App Code, because the maximal number of requests would be exceeded quickly if these were
made available to all Stata users.

S. Weber and M. Péclat 965

endxy (). Note that = (latitude) must be between —90 and 90 and that y (longitude)
must be between —180 and 180. Examples:

United States Capitol: 38.8897, —77.0089

Eiffel Tower: 48.8584, 2.2923

Cape Horn: —55.9859, —67.2743

Pearl Tower: 31.2378, 121.5225

km specifies that distances should be returned in kilometers. The default is to return
distances in miles.

distance (newvar) creates a new variable containing the travel distances between pairs
of addresses or geographical points. By default, travel distances will be stored in a
variable named travel_distance.

time (newvar) creates a new variable containing the travel times (by car and under
normal traffic conditions) between pairs of addresses or geographical points. By
default, travel times will be stored in a variable named travel time.

diagnostic(newwvar) creates a new variable containing a diagnostic code for the geocod-
ing and georouting outcome of each observation in the database: 0 = 0K, 1 =
No route found, 2 = Start and/or end not geocoded, 3 = Start and/or end
coordinates missing. By default, diagnostic codes will be stored in a variable
named georoute_diagnostic.

coordinates(strl str2) creates the new variables stri_x, stri_y, strimatch, str2.x,
str2_y, and str2match, which contain the coordinates and the match code of the
starting (strlx, strl.y, strlmatch) and ending (str2.x, str2.y, str2match) ad-
dresses. By default, coordinates and match codes are not saved. The match code
indicates how well the result matches the request in a 4-point scale: 1 = exact,
2 = ambiguous, 3 = upHierarchy, 4 = ambiguousUpHierarchy.

replace specifies that the variables in distance (), time(), diagnostic(), and
coordinates () be replaced if they already exist in the database. It should be used
cautiously because it might cause some data to be lost.

herepaid allows the user who owns a paid HERE plan to specify it. This option will
simply alter the URL used for the API requests to comply with HERE policy (see
https://developer.here.com/rest-apis/documentation/geocoder/common /request-
cit-environment-rest.html).

timer requests that a timer be printed while geocoding. If specified, a dot is printed for
every geocoded centile of the dataset, and the number corresponding to every decile
is printed. If distances are calculated based on addresses (and not geographical coor-
dinates), two different timers will appear successively: one while geocoding addresses
and one while geocoding routes. When geocoding large numbers of observations, this
option will inform the user on the expected end time.

966 Travel distance and travel time

pause can be used to slow the geocoding process by asking Stata to sleep for 30 seconds
every 100th observation. This could be useful for large databases, which might
overload the HERE API and result in missing values for batches of observations.

2.3 The georoutei command
Syntax

For quick requests for a single pair of addresses or coordinates, we implemented the
immediate command georoutei, where all arguments must be specified interactively.
The syntax of georoutei is

georoutei, hereid(string) herecode (string)
{startaddress(string) | startxy (#x, #y) }
{endaddress (string) | endxy (#x, #y)} [km herepaid |

Options
hereid(), herecode (), km, and herepaid are exactly as described in section 2.2.

startaddress(string) and endaddress(string) specify the addresses of the starting
and ending points. Addresses must simply be typed within the parentheses. Alterna-
tively, startxy () and endxy() can be used. Either startaddress() or startxy()
is required. Either endaddress() or endxy() is required.

startxy (#x, #y) and endxy (#x, #y) specify the coordinates in decimal degrees of the
starting and ending points. They can be used as an alternative to startaddress()
and endaddress(). Coordinates (latitude and longitude) must be specified as two
numbers separated by a comma.

Stored results

georoutei stores the following in r():

Scalars
r(dist) travel distance r(time) travel time

Macros
r(start) coordinates of starting point r(end) coordinates of ending point

S. Weber and M. Péclat 967

3 Examples
To illustrate georoute, let’s build a small dataset:*

. * Starting points
. input str25 strtl zipl strilb cityl strll cntryl

strtil zipl cityl cntryl
1. "Rue de la Tambourine 17" 1227 "Carouge" "Switzerland"
2. "" 1003 "Lausanne" "Switzerland"
3. "" . "Paris" "France"
4. "" 1003 "Lausanne" "Switzerland"
5. end
*

. Ending points
. input str25 strt2 zip2 strild city2 strll cntry2

strt2 zip2 city2 cntry2
"Rue Abram-Louis Breguet 2" 2000 "Neuchatel" "Switzerland"
"" 74500 "Evian" "France"
"" . "New York" "USA"
"" 1203 "Geneva" "Switzerland"

B wWwN =

. *Compute distances using georoute

. georoute, hereid(BfSfwS1KMCPHj5WbVJ1g) herecode (bFwlUDZM3Zgc4QM8lyknVg)

> startad(strtl zipl cityl cntryl)

> endad(strt2 zip2 city2 cntry2) km distance(dist) time(time) coordinates(pl p2)

. format dist time %7.2f
. list cityl cntryl city2 cntry2 dist time

cityl cntryl city2 cntry2 dist time
1. Carouge Switzerland Neuchatel Switzerland 135.68 87.02
2. Lausanne Switzerland Evian France 73.22 77.73
3. Paris France New York USA . .
4. Lausanne Switzerland Geneva Switzerland 64.53 47.12

For the record, the first observation contains the office addresses of the two authors
of this article. Both of them live close to the city where the other works; the outcome
essentially reveals their daily back-and-forth travel distance.

The second observation was chosen to demonstrate an essential feature of georoute.
Both the cities of Lausanne and Evian are located on the shores of Geneva’s Lake:
Lausanne in the north and Evian in the south. By car, one would have to drive around
the lake, a 73.22-kilometer distance. However, connecting these 2 cities by a straight
line would result in 17.75 kilometers, as shown by geodist’s output:

. geodist pl_x pl_y p2_x p2_y, gen(distlin)
. format distlin %7.2f
. format p?_7 %5.2f

4. Be warned that simply introducing the following lines in Stata will result in an error message,
because the App ID and App Code displayed here are invalid. To replicate the results, include
your own App ID and App Code (see section 2.1).

968 Travel distance and travel time

. list cityl pl_x pl_y city2 p2_x p2_y dist distlin

cityl pl_x pl_y city2 p2_x p2_y dist distlin
1. Carouge 46.18 6.14 Neuchatel 46.99 6.94 135.68 109.76
2. Lausanne 46.52 6.63 Evian 46.36 6.65 73.22 17.75
3. Paris 48.86 2.34 New York 40.71 -74.01 . 58562.14
4. Lausanne 46.52 6.63 Geneva 46.21 6.12 64.53 52.17

On the other hand, one may notice with the third observation that no distance is
computed by georoute between Paris and New York (for obvious reasons), but geodist
indicates the geodetic distance as being almost 6,000 km. The purposes of these two
commands are different, and which distance (travel distance from georoute or geode-
tic distance from geodist) to use depends on the goal of the user. In less obvious
cases, where doubts might remain about the reason why no distance was obtained with
georoute, the variable georoute_diagnostic could offer some guidance:

. list cityl city2 georoute_diagnostic

cityl city2 georoute_dia-~c
1. Carouge Neuchatel 0K
2. Lausanne Evian 0K
3. Paris New York No route found
4. Lausanne Geneva 0K

Note also that geodist could be used thanks to the latitudes and longitudes (vari-
ables pl._x, pl.y, p2x, and p2.y) previously produced by georoute with the option
coordinates. In that sense, these two commands are complementary. Furthermore,
note that georoute is quite versatile regarding how addresses can be specified. If
several variables should be combined to produce the entire address, these different vari-
ables, be they string or numeric, can be simply introduced in the startaddress() and
endaddress () options as a variable list.

By comparing the second and fourth observations, we see another interesting fea-
ture of georoute. While routing distances are comparable for Lausanne—Evian and
Lausanne—Geneva, one may notice that travel time is much lower for the latter. This
is because most travel between Lausanne and Geneva can be done on a highway, while
a large share of the travel between Lausanne and Evian takes place on regional roads
with much lower speed limits. Distance and time are thus two different dimensions of
travel, and both might be useful in empirical applications.

Finally, let us assume we want to check one of the results obtained above. In this
case, the immediate command georoutei would be convenient. For instance, one could
obtain the results for the first observation as follows:

S. Weber and M. Péclat 969

. georoutei, hereid(BfSfwS1KMCPHj5WbVJ1g) herecode (bFwlUDZM3Zgc4QM8lyknVg)
> startad(Rue de la Tambourine 17, 1227 Carouge, Switzerland)
> endad(Rue Abram-Louis Breguet 2, 2000 Neuchatel, Switzerland) km

From: Rue de la Tambourine 17, 1227 Carouge, Switzerland (46.17556,6.13906)
To: Rue Abram-Louis Breguet 2, 2000 Neuchatel, Switzerland (46.99382,6.94049)

Travel distance: 135.68 kilometers
Travel time: 87.02 minutes

Given that we also know latitudes and longitudes corresponding to the addresses
from the previous call of georoute, we could provide this information to georoutei:’

. georoutei, hereid(BfSfwS1KMCPHj5WbVJ1lg) herecode (bFwlUDZM3Zgc4QM8lyknVg)
> startxy(46.1761413,6.1393099) endxy(46.99382,6.94049) km

From: (46.1761413,6.1393099)
To: (46.99382,6.94049)

Travel distance: 135.68 kilometers
Travel time: 87.02 minutes

We emphasize that both travel distance and time are the same as before. This is
an important feature of the HERE API: it provides travel time under normal traffic con-
ditions. Said otherwise, the results will not be influenced by current traffic conditions,
which is essential in terms of reproducibility. Whenever georoute and georoutei are
run, results will be identical (unless, of course, roads have been built or closed in the
meantime).

4 Conclusion

The techniques for geocoding evolve at a rapid pace. Consequently, new commands
appear and depreciate rapidly. In this article, we introduce the community-contributed
command georoute, which computes travel distance and time between two points de-
fined by their addresses or their geographical coordinates. Like its predecessors, the
longevity of georoute depends on whether the commercial provider HERE will maintain
its API unchanged or alter its terms of use. Nevertheless, we have tried to minimize the
risk of obsolescence by forcing users to use their own HERE accounts, which are free and
benefit from a substantial number of requests.

Compared with existing commands that have a similar purpose and are still in opera-
tion, georoute possesses several advantages. Compared with mgqtime, it is computation-
ally efficient and versatile regarding how addresses can be specified, and it encompasses
many additional options. Moreover, mqtime does not always work, whereas many checks
have not revealed any inconsistency in georoute. Compared with osrmtime, georoute
is objectively simpler to use and can be used on addresses, while osrmtime can obtain
distances only between coordinates and might thus require a first step to geocode ad-

5. Note that to get strictly identical results when using coordinates instead of addresses, one must
include all available digits in the latitudes and longitudes.

970 Travel distance and travel time

dresses if this is the only information initially available. Hopefully, georoute should aid
researchers for a long time.

5 Acknowledgments

This research was supported by the Swiss National Science Foundation Grant 100018-
144310 and is part of the activities of SCCER CREST, which is financially supported by
the Swiss Commission for Technology and Innovation (CTT).

6 References

Anderson, M. L. 2013. geocodeopen: Stata module to geocode addresses using
MapQuest Open Geocoding Services and Open Street Maps. Statistical Software
Components S457733, Department of Economics, Boston College. https://ideas.
repec.org /¢ /boc /bocode /457733 . html.

Ansari, M. R. 2015. gcode: Stata module to download Google geocode data. Statistical
Software Components S457969, Department of Economics, Boston College. https: //
ideas.repec.org /¢ /boc /bocode /s457969.html.

Hef, S. 2015. geocodehere: Stata module to provide geocoding relying on Nokia’s Here
Maps API. Statistical Software Components S457969, Department of Economics,
Boston College. https: //ideas.repec.org /c /boc /bocode /$458048.html.

Huber, S., and C. Rust. 2016. Calculate travel time and distance with OpenStreetMap
data using the Open Source Routing Machine (OSRM). Stata Journal 16: 416—423.

Ozimek, A., and D. Miles. 2011. Stata utilities for geocoding and generating travel time
and travel distance information. Stata Journal 11: 106-119.

Picard, R. 2010. geodist: Stata module to compute geodetic distances. Statistical
Software Components S457147, Department of Economics, Boston College. https: //
ideas.repec.org / ¢ / boc / bocode /457147 html.

Voorheis, J. 2015. mqtime: A Stata tool for calculating travel time and distance using
MapQuest web services. Stata Journal 15: 845-853.

Zeigermann, L. 2016. opencagegeo: Stata module for forward and reverse geocoding
using the OpenCage Geocoder API. Statistical Software Components S458155, De-
partment of Economics, Boston College. https://ideas.repec.org/c/boc/bocode/
$458155.html.

https://ideas.repec.org/c/boc/bocode/s457733.html
https://ideas.repec.org/c/boc/bocode/s457733.html
https://ideas.repec.org/c/boc/bocode/s457969.html
https://ideas.repec.org/c/boc/bocode/s457969.html
https://ideas.repec.org/c/boc/bocode/s458048.html
https://ideas.repec.org/c/boc/bocode/s457147.html
https://ideas.repec.org/c/boc/bocode/s457147.html
https://ideas.repec.org/c/boc/bocode/s458155.html
https://ideas.repec.org/c/boc/bocode/s458155.html

S. Weber and M. Péclat 971

About the authors

Sylvain Weber is a postdoctoral researcher at the Institute of Economic Research at the Univer-
sity of Neuchéatel (Switzerland). His main field of research is energy economics. In particular,
he studies private mobility, hence his interest for calculating travel distances precisely and
easily.

Martin Péclat is a PhD student at the University of Neuchétel (Switzerland) and at the Geneva
School of Business Administration HES-SO, University of Applied Sciences of Western Switzer-
land (Switzerland). His thesis is about the determinants of spatial diffusion and adoption of
solar photovoltaic technology in Switzerland.

