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Abstract. The calibration belt is a graphical approach designed to evaluate the
goodness of fit of binary outcome models such as logistic regression models. The
calibration belt examines the relationship between estimated probabilities and ob-
served outcome rates. Significant deviations from the perfect calibration can be
spotted on the graph. The graphical approach is paired to a statistical test, syn-
thesizing the calibration assessment in a standard hypothesis testing framework.
In this article, we present the calibrationbelt command, which implements the
calibration belt and its associated test in Stata.
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1 Introduction

Statistical models that estimate the probability of binary outcomes are extremely com-
mon in many research areas. In particular, logistic regression is probably the most
widely used method to generate such models. The reliability of binary outcome models
requires two properties to be satisfied (Hosmer, Lemeshow, and Sturdivant 2013). First,
a model must be able to distinguish between subjects within the two outcome levels.
This property is the “discrimination”, which is usually evaluated with the area under
the receiver operating characteristic curve. Second, the probabilities estimated by the
model must accurately match the true outcome experienced in the data. This second
property is the “calibration”, and it is the focus of the procedure described here.

The calibration belt is a graphical method that has been recently proposed to eval-
uate the calibration of binary outcome models. The methodology and its usefulness
for calibration assessment are thoroughly described in previous works (Finazzi et al.
2011; Nattino, Finazzi, and Bertolini 2014b, 2016a). In this article, we describe the
calibrationbelt command, which implements the calibration belt approach.

The calibration belt is a plot depicting the relationship between the model’s fit prob-
abilities and the observed proportions of the response. Providing information about the
statistical significance of the deviations, the calibration belt outperforms the commonly
used graphical approaches such as locally weighted smoothers and plots of observed-
expected events across deciles (Nattino, Finazzi, and Bertolini 2014a).

The information conveyed by the graphical approach is synthesized in a formal sta-
tistical test. Extensive simulations have shown good performances of the test under
several scenarios (Nattino, Finazzi, and Bertolini 2014b, 2016a). Taken together, the
calibration belt and the test statistic provide useful information when evaluating the
performance of predictive models.

Notably, most of the calibration assessment methods have different assumptions in
the internal and external validation settings (that is, whether the model has been fit to
the same dataset upon which it is evaluated). The calibration belt approach is not an
exception; two different procedures are used for the two contexts, and it is important
to apply the correct method to identify model performance.

The rest of the article is organized as follows: In section 2, we explain the distinction
between internal and external validation settings in assessing a model’s calibration. In
section 3, we briefly describe the methodology to generate the calibration belt and the
associated statistical test. In section 4, we describe the calibrationbelt command
and apply it to a dataset of intensive care unit (ICU) patients. Finally, in section 5, we
summarize the presented material.

2 Internal and external calibration assessment

The calibration of a model can be evaluated in two different settings. First, the model
can be evaluated on the same dataset used to fit the model. This internal assessment
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is an important step in the process of model development. Second, performance of
an existing model can be evaluated in a new dataset unrelated to the original model
development. Assessment of model calibration in a new independent sample is known
as external validation.

It is important to distinguish these two frameworks because many calibration as-
sessment procedures use different assumptions in the two cases. For example, con-
sider the Hosmer—Lemeshow C' test to evaluate the calibration of logistic regression
models. If the data are partitioned into g groups, the statistic is distributed as a x?
with g — 2 degrees of freedom when models are evaluated on the developmental sam-
ple (Hosmer and Lemeshow 1980). However, when one applies models to independent
samples, the degrees of freedom are g (Hosmer, Lemeshow, and Sturdivant 2013).

Like the Hosmer—Lemeshow test, the calibration test and belt have different assump-
tions in the two cases. The most important difference is in the type of models that can
be evaluated with the proposed approach. Indeed, the calibration belt and test can be
used to evaluate any kind of binary outcome model on external samples. However, only
logistic regression models can be evaluated with these methods on the developmental
dataset (Nattino, Finazzi, and Bertolini 2016a).

The second difference is in the functional form imposed by the proposed procedure.
As will be described in section 3, the calibration belt and test are based on a polynomial
regression. The degree of the polynomial link depends on whether the calibration is
internally or externally evaluated. Further details are provided in the following section
and in Nattino, Finazzi, and Bertolini (2016a).

It is therefore extremely important to recognize the setting where the model is going
to be evaluated and to select the options of the calibrationbelt command accordingly.

3 The calibration belt and test

In this section, we provide an overview of the methodology behind the calibration belt
approach. We consider a sample of size n, where each subject i is characterized by a
binary outcome Y; and by an estimate p; of P(Y; = 1), the true probability of the positive
outcome. We are interested in assessing the calibration of the model, that is, evaluating
whether the estimates p; are compatible with the true probabilities P(Y; = 1).

The way the probabilities p; are generated depends on the setting. In the internal
assessment case, the probabilities are the result of a model developed on the same
sample. On the other hand, such probabilities are defined according to an independently
developed model in the external validation case.
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The approach is based on the estimation of the relationship between the predictions
p; and the true probabilities P(Y; = 1) with a polynomial logistic regression. In particu-
lar, the logit transformation of the predictions p; is considered, and a logistic regression
of the form

logit { P(Y; = 1)} = Bo + Bilogit(p;) + - - - + B {logit(p;)}™ (1)

is fit. The logit function is defined as logit(p) = In{p/(1 — p)}.

Notably, the relationship assumed in (1) requires the specification of the degree m
of the polynomial. This is an important choice. The assumed relationship could be too
simple to describe the real link between predictions and true probabilities if m were
fixed at too small a value. Conversely, fixing m too high would lead to the estimation
of several useless parameters whenever the relationship is well described by lower-order
polynomials.

To overcome the problems associated with a fixed m, we base the procedure on a
data-driven forward selection. A low-order polynomial is initially fit, and a sequence
of likelihood-ratio tests is used to forwardly identify the degree m. In particular, the
degree of the starting model depends on whether the calibration is evaluated internally
or on an independent sample. In both cases, the simplest possible polynomial is con-
sidered in this stage. This corresponds to the first-order polynomial in the assessment
of external calibration but not in the assessment of the developmental dataset. A first-
order polynomial is not informative in the latter scenario, because its parameters [
and (7 would always assume the values 0 and 1, regardless of the calibration of the
model (Nattino, Finazzi, and Bertolini 2016a). Therefore, the forward selection starts
by fitting a second-order polynomial.

Once m is selected, the fit relationship provides information about the calibration of
the predictions p;. Indeed, by definition, a model is perfectly calibrated if p; = P(Y; = 1)
for each ¢ = 1,...,n. Under the link assumed in (1), this identity corresponds to the
configuration of the parameters 8y = 3 = -+ = f,, = 0 and 1 = 1. The idea of the
approach is to compare the relationship estimated by fitting the model in (1) with the
perfect-calibration link corresponding to the aforementioned choice of the parameters.
This comparison can be performed statistically or graphically.

A likelihood-ratio test evaluating the hypothesis Hy: (8o, f1, B2, -- -, 8m) = (0,1,0,
..., 0) versus the complementary alternative can be used to formally test the calibration
of the model. Notably, the distribution of the likelihood-ratio statistic must account for
the forward process used to select m. Nattino, Finazzi, and Bertolini (2014b, 2016a)
provide the derivation of the distribution of the statistic in the external and internal
calibration assessment, respectively.

To graphically assess the calibration, we can represent the fit relationship between
the predictions p; and the true probabilities P(Y; = 1) with a curve. This curve can be
compared with the line associated with the identity of the two quantities, that is, the
bisector of the quadrant (45-degree line). A confidence band around the curve, namely,
the calibration belt, reflects the statistical uncertainty about the estimate of the curve
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and allows for the evaluation of the significance of the deviations from the line of perfect
calibration.

Because the statistical test is based on a likelihood-ratio statistic, the most natural
way to define the confidence band is to invert this type of test. Such inversion guarantees
the ideal parallelism between the formal statistical test and calibration belt. However,
the calculations involved in the inversion of the likelihood-ratio test are computationally
intensive for large samples. Fortunately, likelihood-ratio and Wald confidence regions are
asymptotically equivalent, and the computations to construct Wald confidence regions
are much simpler (Cox and Hinkley 1974). Thus, the construction of the calibration belt
plot is implemented using two different algorithms depending on the sample size. If the
sample is smaller than 10,000 records, the confidence band is based on the inversion of
the likelihood-ratio test, so the same statistical framework is considered for the statistical
test and confidence region in small-moderate samples. For samples of 10,000 units or
larger, the confidence region is based on the computationally simpler Wald confidence
region.

4 The calibrationbelt command

4.1 Syntax

The calibrationbelt command is invoked with the following syntax:

calibrationbelt [varlist] [zf] [, devel(string) cLevell(#) cLevel2(#)
nPoints (#) maxDeg(#) thres(#)]

The command generates the calibration belt plot and computes the associated sta-
tistical test. There are two ways to apply the procedure.

The first way is to pass the variables corresponding to the binary response and to
the predicted probabilities of the outcome in the varlist (in this order). In this case, the
option devel (string) must be specified, reporting whether the predictions have been fit
on the dataset under evaluation (devel ("internal")) or if the assessment consists of an
external, independent validation (devel ("external")). For example, if the variables Y
and phat store the dependent variable of the model and the predicted probabilities fit
on the same sample where the calibration assessment is performed, the command can
be run with

calibrationbelt Y phat, devel("internal")

The second way to use calibrationbelt is after fitting a logistic regression model
(using either the logit or logistic command). In this case, it is possible to simply
run calibrationbelt without specifying the argument wvarlist or any other option.
The command automatically considers the dependent variable and the predictions of
the logistic regression fit as the arguments to be used. Moreover, the procedure assumes
that the setting is the assessment of internal calibration.
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4.2 Options

devel (string) specifies whether the calibration is evaluated on the same dataset used to
fit the model (devel("internal")) or is evaluated on external independent samples
(devel("external")). Depending on whether the varlist argument is passed to the
command or not, the program may force the user to specify the setting. For further
details about internal and external assessment, see section 2.

cLevell(#) sets one of the confidence levels to be considered in the calibration belt
plot. A second confidence level can be set with the argument cLevel2(#). The
defaults are cLevel1(95) and cLevel2(80). A single calibration belt (that is, a
plot with a single confidence level) can be generated by specifying only the first
argument. For example, setting cLevell(0.99) produces a single calibration belt
with confidence level 99%. A double calibration belt with customized pairs of con-
fidence levels can be produced by providing both optional arguments, cLevell (#)
and cLevel2(#).

cLevel2(#) is described above; see cLevell (#).

nPoints (#) specifies the number of points defining the edges of the belt. The default
is nPoints(100). Reducing the number of points can substantially speed up the
production of the plot in large datasets. However, this number also affects the
estimate of the probabilities where the belt crosses the bisector (that is, the limits
of the intervals reported in the table on the plot). Indeed, the greater the value of
nPoints (), the higher the precision in the estimate of these values. If the production
of the belt is too slow, but the analysis requires an iterative construction of many
belts, for example, in exploratory analyses, a possible strategy is to decrease the
number of points to values much smaller than the default (say, 20 or 50), accounting
for the larger uncertainty in the interpretation of the plots. Finally, when the analysis
is set up, the number of points can be increased to the default value to achieve more
accurate estimates of the potential deviations from the bisector.

maxDeg(#) fixes the maximum degree of the polynomial function used to evaluate the
model. The default is maxDeg(4). For further information, see section 3.

thres (#) sets the threshold parameter involved in the construction of the polynomial
function used to evaluate the model. This parameter corresponds to one minus
the significance level used when testing the increase of the polynomial order in the
forward selection (see section 3 for further details). The default is thres(0.95),
specifying a forward selection ruled by a sequence of classic 0.05-level tests. Greater
values of thres () correspond to more conservative scenarios, where low-order poly-
nomials are preferred to high-order ones. Calibration belts based on lower thres()
values are more likely to be based on high-order polynomials.
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4.3 An example: ICU data from the GiViTl network

To provide an example of applying the calibrationbelt command, we use a dataset
of 1,000 ICU patients admitted to Italian 1CUs. This dataset is a subsample of the
cohort of patients enrolled in the Margherita-PROSAFE project, an international obser-
vational study established to monitor the quality of care in ICU. The ongoing project
is based on the continuous data collection of clinical information in about 250 units.
This collaborative effort was promoted by the GiViTI network (Gruppo Italiano per la
valutazione degli interventi in Terapia Intensiva, Italian Group for the Evaluation of the
Interventions in Intensive Care Units).

The variables of the dataset include hospital mortality and the 15 covariates that
compose the simplified acute physiology score, a widely used prognostic model for hospi-
tal mortality in ICU patients (Le Gall, Lemeshow, and Saulnier 1993). The 15 variables
include patient demographic information, comorbidities, and clinical information. The
actual values of the variables have been modified to protect subject confidentiality.

In the example described in the following sections, we use the available sample to fit
a logistic regression model using these predictors. The dataset is randomly split in 750
records for model development and 250 patients for external validation. First, we fit the
model on the developmental sample, and we evaluate the internal calibration with the
calibration belt approach (section 4.4). Then, that model is applied to the validation
sample, and the external calibration is assessed (section 4.5).

4.4 calibrationbelt for internal validation

The dataset was randomly split into developmental and validation subsets of 750 and
250 patients, respectively. The logistic regression model with the available predictors is
fit to the developmental sample.

. use icudata
(ICU patients from the international GiViTI network)

. set seed 101

. generate random = runiform()

. sort random, stable

. generate extValidation = (_n>750)

. quietly logit outcome ib3.adm ibl.chronic ibl.age ibb5.gcs

> ib3.BP ib3.HR ibl.temp ib3.urine ibl.urea
> ib2.WBC ib2.potassium ib2.sodium ib3.HCO3
> ibl.bili ibl.paFiIfVent if extValidation ==

Considering the demonstrative purposes of this example, we evaluate only the calibra-
tion of the fit model, without considering the other fundamental model-building steps.
The calibration belt and the related test for the internal assessment can be produced
using the second method described in section 4.1 by simply typing calibrationbelt
after fitting the model.
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. calibrationbelt

GiViTI Calibration Belt

Calibration belt and test for internal validation:
the calibration is evaluated on the training sample.

Sample size: 750
Polynomial degree: 2
Test statistic: 1.54
p-value: 0.2142

Type of evaluation: internal
Polynomial degree: 2

Test statistic: 1.54

.81 p-value: 0.214

n: 750
< 67
(5}
<
(0]
[%2]
o)
O .44
24
Confidence Under Over
level the bisector __the bisector
80% NEVER NEVER
04 m_ 95% NEVER NEVER
T T T T T T
0 2 4 .6 .8 1

Expected

Figure 1. Calibration belt plot on the developmental sample

The output of the program reports the value of the statistic (1.54) and the p-value
(0.21) of the test. These results suggest that the hypothesis of good calibration is not
rejected (at the classically adopted 0.05 level). Similar conclusions can be drawn from
the interpretation of the produced plot, reported in figure 1. We note that both the 80%
and 95% calibration belts encompass the bisector over the whole range of the predicted
probabilities. This suggests that the predictions of the model do not significantly deviate
from the observed rate in the developmental sample (that is, that the model’s internal
calibration is acceptable).

4.5 calibrationbelt for external validation

The calibration of the fitted model is then evaluated on the records set aside for the
external validation of the model. We generate the predicted probabilities resulting
from the model fit in section 4.4, and we run the calibrationbelt command on the
external sample using the if qualifier. Here we use the first method described in sec-
tion 4.1 to invoke the command, that is, passing the variables containing the binary
response (outcome) and the predicted probabilities (phat) to the program. The option
devel("external") specifies the setting of external calibration assessment.
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. predict phat, pr

. calibrationbelt outcome phat if extValidation==1, devel("external")

GiViTI Calibration Belt

Calibration belt and test for external validation:
the calibration is evaluated on an external, independent sample.

Selection: extValidation==

Sample size: 250
Polynomial degree: 1
Test statistic: 26.30
p-value: 0.0000

Type of evaluation: external
Polynomial degree: 1

Test statistic: 26.30

.81 p-value: <0.001

n: 250

Observed

Confidence Under Over

level the bisector __the bisector
80% 0.37-0.97 0.01-0.17
0+ m 95% 0.42-0.97 0.01-0.13
T T T T T T
0 2 4 .6 .8 1
Expected

Figure 2. Calibration belt plot on the external sample

The output suggests that the fitted model is not well calibrated in the validation
sample. The p-value is extremely small (less than 0.0001), which rejects the hypothesis of
satisfactory fit even with very conservative significance levels. The produced calibration
belts (reported in figure 2) provide interesting information. Because they lie above
and do not include the bisector for small predictions, the predictions of the model
significantly underestimate the actual risk in the low range of probabilities. With 95%
and 80% confidence, the mortality rates are underestimated for estimated probabilities
smaller than 0.13 and 0.17, respectively (see the table in the bottom-right corner of
the plot). However, the model also overestimates the mortality rates for high predicted
probabilities. Indeed, the calibration belts are below the bisector for probabilities higher
than 0.42 and 0.37 with 95% and 80% confidence, respectively.

These results suggest that this model performed poorly in a sample different from
the one on which the model was developed. A careful application of the recommended
model-building steps would be necessary to achieve a better-fitting model.
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5 Discussion

We presented the calibrationbelt command, which implements the calibration belt
approach to provide important information about the calibration of binary outcome
models. The calibration belt plot spots any deviation from the perfect fit, pointing
out the direction of possible miscalibrations. Conveying information about the statis-
tical significance of the deviations, the method outperforms the existing approaches to
graphically evaluate binary outcome models (Nattino, Finazzi, and Bertolini 2014a).

The graphical method is paired to a statistical test, resulting in a p-value reflect-
ing the model under consideration. Tests and belts often return concordant outputs:
nonsignificant tests are often associated with the belt encompassing the 45-degree lines
and significant tests with the belt deviating from the bisector. However, there are cases
where the output of belt and test can disagree. Whenever the (1 — ) 100%-calibration
belt deviates from the bisector, the statistical test is always significant at the a-level
(that is, the p-value is smaller than «). On the other hand, a significant test at the
a-level might correspond to a belt that does not deviate significantly from the 45-degree
line at any point. The reason for the potential disagreement is the difference between
the two approaches in terms of power. The calibration belt is a two-dimensional projec-
tion of the multidimensional polynomial relationship used to test the fit of the model.
Being assessed in the multidimensional parameter space, the statistical test takes ad-
vantage of the full information available. On the other hand, the calibration belt, as
a graphical projection, is associated with a loss of information and lower power. A
simulation study investigating the agreement between test and belt is described by
Nattino, Finazzi, and Bertolini (2014b). The results confirmed this theoretical expla-
nation, showing that the calibration belt behaves slightly more conservatively than the
test. In particular, the chances of having a discordant output between belt and test
increase with the increase of the polynomial order.

Despite the usefulness of the statistical method, the procedure has been implemented
only in an R package so far (Nattino et al. 2016b). The calibrationbelt command
provides a user-friendly way to generate the calibration belt in Stata. The informative-
ness of the plot generated with the easy-to-use command can be an invaluable tool in
developing better models.
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