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Abstract. Receiver operating characteristic (ROC) curves are an established
method for assessing the predictive capacity of a continuous biomarker for a binary
outcome. However, in some cases, outcomes are time dependent. Although the
literature has proposed packages for performing ROC analysis of time-independent
outcomes, a package is not yet available for analyzing the predictive capacity of
continuous biomarkers when the binary outcome is time dependent. In this article,
we present stroccurve, a new command for performing ROC analysis within a
survival framework.
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1 Introduction

Receiver operative characteristic (ROC) curves are a well-known method for assessing the
predictive accuracy of a continuous biomarker. They provide estimates of sensitivity and
one minus specificity of every possible cutoff in the biomarker distribution for a binary
outcome. For an introduction to ROC curves, see Pepe, Longton, and Janes (2009).

While packages estimating the ROC curve for time-independent outcomes have al-
ready been developed for Stata users—that is, the roccurve package by Pepe, Longton,
and Janes (2009)—a command that allows users to obtain sensitivity and specificity
measure within a failure-time (survival) data framework is not yet available.

To this end, we present a new command for Stata users, stroccurve, that can assess
the classification accuracy of a continuous biomarker when failures occur at different
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points in time and when observations are subject to censoring. stroccurve is mainly
based on the contribution of Heagerty, Lumley, and Pepe (2000).

This article is organized as follows: Section 2 illustrates the methods for assessing
the predictive accuracy of a continuous biomarker within a survival framework, section 3
describes the syntax of the new command, and section 4 provides examples to outline
the use of stroccurve.

2 Estimation of time-dependent ROC curves

Heagerty, Lumley, and Pepe (2000) defined two approaches to estimate ROC curves for
failure-time data. The first applies Bayes’ theorem and the Kaplan–Meier (KM) survival
estimator (Kaplan and Meier 1958), while the second smooths the conditional survival
function through the method provided by Akritas (1994).

In this section, the notation is the following:

• n: number of individuals

• Ti: failure time for individual i

• Xi: marker value for individual i

• Ci: censoring time for individual i

• Zi = min(Ti, Ci): follow-up time for individual i

• di: censoring indicator for individual i. di = 1 if Ti ≤ Ci and di = 0 if Ti > C

• Di(t): failure status prior to time t. Di(t) = 1 if Ti ≤ t and Di(t) = 0 if Ti > t

• Tn(t): unique levels of Zi for observed events Di = 1 in Zi ≤ t

• S(t) = P (T > t): the survival function

2.1 KM method

The estimates of sensitivity (true positive rate, TP) and specificity (true negative rate,
TN) for each possible value c of the biomarker X can be derived through Bayes’ theorem,

TP(c, t) = P{X > c|D(t) = 1} = P (X > c){1− S(t|X > c)}
1− S(t)

TN(c, t) = P{X ≤ c|D(t) = 0} = P (X ≤ c)S(t|X ≤ c)

S(t)

where P (X ≤ c) is estimated by the biomarker empirical cumulative distribution
FX(Xi) = 1/n

∑
i 1(Xi ≤ c), while the estimates of the survival function S(t) and of
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the conditional survival function S(t|X > c) are produced relying on the KM estimator
SKM(t). The KM estimator is defined as

ŜKM(t) =
∑

s∈Tn(t)

{
1− 1(Zj = s)δj

1(Zj ≥ s)

}

Therefore, the estimates of sensitivity and specificity are calculated as follows:

T̂PKM(c, t) =
{1− FX(c)}

{
1− ŜKM(t|X > c)

}
1− ŜKM(t)

TNKM(c, t) =
FX(c)ŜKM(t|X ≤ c)

ŜKM(t)

However, this approach produces sensitivity and specificity functions that may not be
monotone with respect to the marker values, because the estimator P (X > c, T >

t) = {1 − FX(c)}{1 − ŜKM(t|X > c)} does not provide a valid bivariate distribution.
Moreover, the KM-based estimator has a potential problem arising from the assumption
that the censoring process is independent from X, which might be violated in practice.

2.2 Nearest-neighbor estimation

To overcome the violation of the monotonicity of the ROC curve with respect to the
biomarker and accommodate the possibility that the censoring process is not indepen-
dent from the marker values, Heagerty, Lumley, and Pepe (2000) provided an alterna-
tive method for estimating valid sensitivity and specificity functions using the estimator
provided by Akritas (1994),

̂Sλn
(c, t) =

1

n

∑
i

Ŝλn
(t|X = Xi)1(Xi > c)

where Ŝλn
is a smoothed estimator of the conditional survival function depending on

parameter λn:

Ŝλn
(t|X = Xi) =

∑
s∈Tn(t)

{
1−

∑
j Kλn

(Xi, Xj)1(Zj = s)dj∑
j Kλn

(Xi, Xj)1(Zj ≥ s)

}

This parameter defines the binary nearest-neighbor kernel Kλn
(Xi, Xj), representing

the percentage observations included in each neighborhood,

Kλn
(Xi, Xj) = 1 {|FX(Xi)− FX(Xj)| < λn}

2λn ∈ (0, 1)
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where λn = O(n−1/3) is sufficient to provide a weakly consistent estimator of the bi-
variate function in a practical situation (Heagerty, Lumley, and Pepe 2000). Hence,
estimates of sensitivity and specificity can be obtained using

T̂Pλn
(c, t) =

1− FX(c)− Ŝλn
(c, t)

1− Ŝλn
(−∞, t)

T̂Nλn
(c, t) =

Ŝλn
(c, t)

Ŝλn
(−∞, t)

where Ŝλn
(−∞, t) = 1/n

∑
i{1(Xi > c)(1− Sλn

(t|X = Xi)}.

2.3 Estimation of the optimal cutpoint

Along with ROC curves, it is often necessary to establish a single cutpoint for stratifying
individuals into risk categories. For this purpose, the literature provides three decision
criteria for defining an optimal cutpoint when the outcome is binary. Such criteria are
based on the accuracy measures provided by ROC curves. There are three main strategies
for cutpoint estimation based on selecting a biomarker value c∗ from its distribution,
such that

i) the Youden function (Youden 1950), namely, the sum of sensitivity and specificity
minus one, is maximized, which is equivalent to optimizing the biomarker’s classi-
fication accuracy if sensitivity and specificity have the same weight in the decision
maker’s perspective;

ii) the distance between the selected point and the point representing perfect classi-
fication (FP = 0, TP = 1) is minimized (Perkins and Schisterman 2006); and

iii) the concordance probability function (defined as the product of sensitivity and
specificity [Liu and Jin 2015]) is maximized.

3 The stroccurve command

3.1 Syntax

The user is required to use stset before using stroccurve. The syntax of the command
is

stroccurve markervar
[
if
] [

in
]
, timepoint(#)

[
nne lambda(#) km

genrocvars replace nograph liu youden nearest
]

where markervar is the continuous biomarker variable for which the time-dependent
ROC curve is to be calculated.



M. Cattaneo, P. Malighetti, and D. Spinelli 1019

3.2 Options

timepoint(#) specifies the time point for which the ROC curve is to be calculated.
timepoint() is required.

nne calculates the time-dependent ROC curve with 0/1 nearest-neighbor kernel smooth-
ing of the conditional survival function, the default.

lambda(#) specifies the percentage of observations to be included in each neighborhood
if the nearest-neighbor estimator of the survival function method is used. It has to
be included in the (0, 0.5) interval. The default is lambda(0.25*n^1/3), where n is
the number of observations.

km calculates the time-dependent ROC curve with the KM method.

genrocvars generates new specificity and sensitivity variables for markervar, FP R, and
TP R corresponding to their marker values.

replace requests genrocvars to overwrite the existing FP R and TP R variables.

nograph suppresses the plot.

liu estimates the cutoff by maximizing the concordance probability.

youden estimates the cutoff by maximizing the Youden function.

nearest estimates the closest cutpoint to (0, 1).

3.3 Stored results

stroccurve stores the following in e():

Scalars
e(AUC) returns the area under the ROC curve
e(youden) returns the cutpoint maximizing the Youden criterion if the youden option is

specified
e(liu) returns the cutpoint maximizing the concordance probability if the liu option

is specified
e(nearest) returns the nearest cutpoint to (0, 1) if the nearest option is specified

Matrices
e(rocmat) returns an m× 3 matrix, where m is the number of unique marker values; the

first column includes marker values; the second and third columns report the
estimates of sensitivity and one minus specificity for such marker values

Functions
e(sample) marks the estimation sample
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4 Examples

We use primary biliary cirrhosis data from Fleming and Harrington (1991).

. use pbc.dta
(PBC data, 3 sources)

. quietly stset survtime, failure(censdead==1)

Example 1

We calculate the survival ROC curve for survival at 2,000 days, with the Kaplan–
Meier estimator of the survival function.

. stroccurve ln_bilirubin, timepoint(2000) km
Time dependent ROC curve at time: 2000
Survival Function Estimation Method: Kaplan Meier
N= 312
Area under the ROC Curve: 0.868
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Example 2

We calculate the nearest-neighbor ROC curve for survival at 2,000 days, with the
smoothing parameter equal to 0.25×N1/3.

. stroccurve ln_bilirubin, timepoint(2000)
Smoothing parameter automatically set at 0.25*N^(-1/3)
Time dependent ROC curve at time: 2000
Survival Function Estimation Method: Nearest Neighbor
Smoothing parameter: 0.037
N= 312
Area under the ROC Curve: 0.858
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Example 3

We calculate the nearest-neighbor ROC curve for survival at 3,000 days, with the
smoothing parameter equal to 0.25×N1/3, and request the optimal cutpoint according
to Perkins and Schisterman (2006).

. stroccurve ln_bilirubin, timepoint(3000) nearest
Smoothing parameter automatically set at 0.25*N^(-1/3)
Time dependent ROC curve at time: 3000
Survival Function Estimation Method: Nearest Neighbor
Smoothing parameter: 0.037
N= 312
Area under the ROC Curve: 0.816

OPTIMAL CUTPOINTS:

Nearest point to (0,1)
Optimal cutpoint: 3.245
Sensitivity at optimal cutpoint: 0.734
Specificity at optimal cutpoint: 0.742
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