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Abstract. Since Royston and Altman’s 1994 publication (Journal of the Royal
Statistical Society, Series C 43: 429–467), fractional polynomials have steadily
gained popularity as a tool for flexible parametric modeling of regression relation-
ships. In this article, I present fp select, a postestimation tool for fp that allows
the user to select a parsimonious fractional polynomial model according to a closed
test procedure called the fractional polynomial selection procedure or function se-
lection procedure. I also give a brief introduction to fractional polynomial models
and provide examples of using fp and fp select to select such models with real
data.
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1 Introduction

Since Royston and Altman’s 1994 publication, fractional polynomials (FPs) have steadily
gained popularity as a tool for flexible parametric modeling of regression relationships
in both univariable and multivariable settings. A recent inquiry in Google Scholar (17
January 2017) yielded 1,289 citations of Royston and Altman (1994) to date. For those
unfamiliar with FPs, I provide a brief introduction below. For a much wider view, please
see Royston and Sauerbrei (2008), the multivariable fractional polynomials website at
http://mfp.imbi.uni-freiburg.de, and the articles cited therein.

An FP is a special type of polynomial that might include logarithms, noninteger
powers, and repeated powers. Every time a power repeats in an FP function of x, it is
multiplied by another ln (x). One may write an FP in x as

x(p1,p2,...,pm)′β

where the positive integerm is known as the degree or dimension of the FP. For example,
an FP in x with powers (−1, 0, 0.5, 3, 3) and coefficients β has the following form:

x(−1,0,0.5,3,3)′β = β1x
−1 + β2 ln (x) + β3x

0.5 + β4x
3 + β5x

3 ln (x)

In the above example, the dimension of the FP is m = 5.

Despite their somewhat dry definition, FPs are not just a mathematical abstraction.
With a suitable range of powers, they provide a considerable range of functional forms in
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x that are useful in regression models of real data. The default set of powers from which
FP powers are selected is {−2,−1,−0.5, 0, 0.5, 1, 2, 3}, with 0 signifying log (that is, ln).
In practice, even FP1 and FP2 functions (FPs of dimension 1 and 2) offer much more
flexibility than polynomials of the same degree, that is, linear or quadratic functions.
See, for example, figure 1, which shows schematically some FP2 functions with various
powers (p1, p2) and coefficients (β1, β2).

(2, 3)
(2, 3)

(0, 0)

(−2, −1)

(−0.5, 0.5)

(0, 2)

f(x)

0
x

Figure 1. Examples of some functional forms available with FP2 functions with various
powers (p1, p2)

The aim of flexible regression models for a single continuous covariate x is to provide
a succinct and accurate approximation of the relationship between x and a response
y without resorting to “categorization” (discretization) of the covariate into groups.
Further material on FPs, including a discussion of the pitfalls of categorization and
the motivation and potential advantages of FPs, may be found at http://mfp.imbi.uni-
freiburg.de/fp, along with a real example.

Univariable FP regression models have been available in official Stata for two decades
following the release of the fracpoly command in Stata 5 (1997). After a ground-up
rewrite, the current official implementation of univariable FPs as fp appeared in Stata 12
(2011). Using a revised command syntax and FP search algorithm, fp extended the types
of regression model in which FPs could be fit.
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An important concept in flexible regression modeling is “parsimony”: the need to
remove “dead wood” from a model, mainly to avoid overfitting and improve the inter-
pretability of the selected model. An example of dead wood in univariable FP modeling
is the inclusion of high-dimensional FP terms not supported by the data. Such terms
would likely produce “wiggly” fit curves that exhibit uninterpretable local features (rec-
ognized as an issue also when fitting standard polynomials of high dimension). For an
example of the curve instability that can result from overfit spline models (another type
of smoother), see Royston and Sauerbrei (2008) figure 3.3.

With FP modeling, one can use the function selection procedure (FSP), which, if
possible, simplifies an FP model to one of lesser complexity by appropriate statistical
testing. In this article, I outline how the FSP works and introduce a new fp postes-
timation command, fp select, that implements the FSP. I illustrate fp select in an
example with real data.

2 The FSP

An important (default) option of fp is compare. The table of FP model comparisons
presented with compare contains all the elements needed to select a preferred model
according to the FSP, an ordered sequence of hypothesis tests. The FSP has the flavor of a
closed test procedure (Marcus, Peritz, and Gabriel 1976) that (approximately) protects
the “familywise” type 1 error probability for selecting an FP transformation of x at
some nominal value, α, such as 0.05. For further details of the closed test aspect,
see the description of the FSP in Ambler and Royston (2001), there called “procedure
RA2”. Although fp (and fracpoly) supply the necessary information on which the FSP

operates, neither program actually indicates which model the FSP would choose at a
given α level.

The FSP starts with an FP model of maximal allowed complexity, defined by its
dimension, say, m0. By default in fp, m0 = 2, that is, an FP2 (FP of dimension or
degree 2). The FSP attempts to simplify the model to an FP1 or linear function of x
by applying a specific sequence of tests. The sequence of tests for m0 = 2 is described
under the heading Methods of FP model selection in the Stata manual entry for mfp

(see [R] mfp). See also Royston and Sauerbrei (2008, 82–84).

In general terms, the FSP has two parts. The maximum permissible FP degree, m0,
is chosen by the analyst a priori and is usually 2. The first part of the FSP is a test
for including an FP-transformed continuous covariate x in the model. Let us call the
corresponding significance level αselect. Conventionally, if αselect = 1, no test occurs and
x (possibly FP transformed) is included in the model anyway, with the final choice of
the functional form being determined by the subsequent steps of the FSP. If αselect < 1,
the best-fitting FPm0 model is tested against the model omitting x on 2m0 degrees
of freedom (d.f.) at significance level αselect. If the test is significant, the algorithm
continues as described below; otherwise, x is “omitted” (taken as uninfluential) and the
procedure ends.



622 FP model selection

Let the critical significance level for the tests of functional form in the FSP be α
(0 < α < 1). Assuming the inclusion test at level αselect is “passed”, the remaining
steps for general m0 ≥ 1 are as follows:

1. Test FPm0 against linear (a straight line) in x on 2m0 − 1 d.f. at level α. If
significant, continue; otherwise, stop, with the chosen model for x being a straight
line.

2. If m0 > 1, test FPm0 against FP1 on 2 (m0 − 1) d.f. at level α. If significant,
continue; otherwise, stop, with the chosen model for x being FP1.

3. If m0 > 2, test FPm0 against FP2 on 2 (m0 − 2) d.f. at level α. If significant,
continue; otherwise, stop, with the chosen model for x being FP2.

4. Continue in this manner until the test of FPm0 against FP(m0 − 1). If significant,
the selected model is FPm0; otherwise, it is FP(m0 − 1). This is the end of the
procedure.

In some situations, one might have reason to vary the significance levels αselect and
α, the two “tuning” constants of the FSP. In an observational study, for example, where
possible overfitting of the variables in a confounder model is not necessarily a critical
issue, one might choose αselect = 1 and α = 0.2 to select the functional form for a
continuous confounder.

3 Example

3.1 Data and preliminary analysis

As an example, I use the IgG data (Isaacs et al. 1983), which may be loaded into Stata
by typing webuse igg. The aim is to model y = sqrtigg, the square root of the serum
immunoglobulin-G (IgG) concentration in 298 children as a function of x = age, a
child’s age in years. I square-root transform the response to stabilize the variance and
normalize the residuals.
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Figure 2 is a smoothed scatterplot of y against x.

1
2

3
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95% CI lpoly smooth: Square root of IgG
predicted sqrtigg Square root of IgG

Figure 2. IgG data with local polynomial and FP smoothing

The solid line is a local polynomial fit created by Stata’s lpolyci graph subcommand
with a relatively narrow bandwidth of 0.2, hence the rather “wiggly” curve. Neverthe-
less, a visual indication of nonlinearity is present. The dashed line is the best-fitting
FP2 curve as computed by the fpfit subcommand. The commands that created the
figure are as follows:

. webuse igg

. set scheme sj

. graph twoway (lpolyci sqrtigg age, bwidth(0.2)) (fpfit sqrtigg age)
> (scatter sqrtigg age, msymbol(o) msize(*0.75))

A biological argument suggests that because IgG is a blood protein reflecting the
maturity of the immune system from birth on, the underlying curve should be monotone
increasing. The fit FP2 curve is in fact monotone. It indicates a rapid rise in IgG in the
youngest children followed by a gentler rate of increase. By contrast, the “nonparamet-
ric” local polynomial fit is nonmonotone, with local features that evidently are present
in the data but are unlikely to be real in the population.
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3.2 FP model selection

I now consider FP model selection for the IgG dataset. Below is the output from running
fp with the default dimension(2) setting.

. fp <age>: regress sqrtigg <age>
(fitting 44 models)
(....10%....20%....30%....40%....50%....60%....70%....80%....90%....100%)

Fractional polynomial comparisons:

age df Deviance Res. s.d. Dev. dif. P(*) Powers

omitted 0 427.539 0.497 108.090 0.000
linear 1 337.561 0.428 18.113 0.000 1
m = 1 2 327.436 0.421 7.987 0.020 0
m = 2 4 319.448 0.416 0.000 -- -2 2

(*) P = sig. level of model with m = 2 based on F with 293 denominator dof.

Source SS df MS Number of obs = 298
F(2, 295) = 64.49

Model 22.2846976 2 11.1423488 Prob > F = 0.0000
Residual 50.9676492 295 .172771692 R-squared = 0.3042

Adj R-squared = 0.2995
Total 73.2523469 297 .246640898 Root MSE = .41566

sqrtigg Coef. Std. Err. t P>|t| [95% Conf. Interval]

age_1 -.1562156 .027416 -5.70 0.000 -.2101713 -.10226
age_2 .0148405 .0027767 5.34 0.000 .0093757 .0203052
_cons 2.189242 .0473835 46.20 0.000 2.095989 2.282495

As seen for m = 2 in the table titled Fractional polynomial comparisons, the best-
fitting FP2 powers of age are (−2, 2). This FP2 transformation of age is represented by
the two variables age 1 and age 2 that appear in the table of regression estimates.

Although the results are suggestive, the output is not explicit as to whether an
FP2 model is really needed or whether a simpler model (FP1 or linear) would suffice at
significance level 0.05. Using fp select (described in section 4) with αselect = α = 0.05
immediately after fp, we obtain the following result:

. fp_select, alpha(.05) select(.05)

selected FP model: powers = (-2 2), df = 4
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The output confirms that when m0 = 2, an FP2 model is selected at the 0.05 sig-
nificance level. The selected model can be fit as follows using results (best FP powers)
stored by fp select in ‘r(powers)’:

. fp <age>, fp(`r(powers)´) replace: regress sqrtigg <age>
-> regress sqrtigg age_1 age_2

Source SS df MS Number of obs = 298
F(2, 295) = 64.49

Model 22.2846976 2 11.1423488 Prob > F = 0.0000
Residual 50.9676492 295 .172771692 R-squared = 0.3042

Adj R-squared = 0.2995
Total 73.2523469 297 .246640898 Root MSE = .41566

sqrtigg Coef. Std. Err. t P>|t| [95% Conf. Interval]

age_1 -.1562156 .027416 -5.70 0.000 -.2101713 -.10226
age_2 .0148405 .0027767 5.34 0.000 .0093757 .0203052
_cons 2.189242 .0473835 46.20 0.000 2.095989 2.282495

Because in this case the FP2 model was not simplified by fp select, the result is
the same as that reported by fp for the default m0 = 2 model.

3.3 Impact of complexity on model selection

Let us see what happens if a more complex model with m0 = 4 is taken as the starting
point for model selection:

. fp <age>, dimension(4) replace: regress sqrtigg <age>
(fitting 494 models)
(....10%....20%....30%....40%....50%....60%....70%....80%....90%....100%)

Fractional polynomial comparisons:

age df Deviance Res. s.d. Dev. dif. P(*) Powers

omitted 0 427.539 0.497 109.795 0.000
linear 1 337.561 0.428 19.818 0.007 1
m = 1 2 327.436 0.421 9.692 0.149 0
m = 2 4 319.448 0.416 1.705 0.798 -2 2
m = 3 6 319.275 0.416 1.532 0.476 -2 1 1
m = 4 8 317.744 0.416 0.000 -- 0 3 3 3

(*) P = sig. level of model with m = 4 based on F with 289 denominator dof.

Source SS df MS Number of obs = 298
F(4, 293) = 32.63

Model 22.5754541 4 5.64386353 Prob > F = 0.0000
Residual 50.6768927 293 .172958678 R-squared = 0.3082

Adj R-squared = 0.2987
Total 73.2523469 297 .246640898 Root MSE = .41588



626 FP model selection

sqrtigg Coef. Std. Err. t P>|t| [95% Conf. Interval]

age_1 .8761824 .1898721 4.61 0.000 .5024962 1.249869
age_2 -.1922029 .0684934 -2.81 0.005 -.3270044 -.0574015
age_3 .2043794 .074947 2.73 0.007 .0568767 .3518821
age_4 -.0560067 .0212969 -2.63 0.009 -.097921 -.0140924
_cons 2.240866 .1019331 21.98 0.000 2.040252 2.44148

The m0 = 4 model has powers (0, 3, 3, 3). Next, we apply model selection:

. fp_select, alpha(0.05) select(0.05)

selected FP model: powers = (0), df = 2

Instead of FP2, the selected model is now an FP1 with power (0), that is, β0+β1 ln (x).

Table 1 shows p-values from the FSP with increasing maximum complexity. Taking
αselect = α = 0.05, it shows model comparisons in the FSP pathways for m0 = 1, 2, 3, 4.

Table 1. p-values and selected models arising from FP model comparisons with the IgG
data

Comparisons with Maximum FP complexity, m0

FPm0 model 1 2 3 4

Not in model 0.000 0.000 0.000 0.000
Linear 0.002 0.000 0.003 0.007
m = 1 − 0.020 0.092 0.149
m = 2 − − 0.919 0.798
m = 3 − − − 0.476

Selected model m = 1 m = 2 m = 1 m = 1

For all four values of m0, the test of FPm0 against x “Not in model” is highly
significant (p < 0.0005)—see the third row of table 1. This confirms that sqrtigg is
associated with age. All tests of FPm0 against linear (fourth row) are also significant,
providing evidence that the relationship is nonlinear.

With maximum complexity m0 = 2, the test of FP2 against FP1 is significant at the
5% level, resulting in the selection of an FP2 model (as already seen). This is not the
case for m0 = 3 and m0 = 4, where an FP1 model is chosen instead. However, there is
no evidence that more complex models with dimension 3 or 4 fit better than FP2. For
example, a test of m = 3 against m = 2 has p = 0.919, and a test of m = 4 against
m = 2 has p = 0.798 (see table 1).

The reason why an FP1 function, rather than an FP2 function, is selected when m0

> 2 is presumably an increase in the type 2 error probability (that is, reduced statistical
power) because of redundant parameters being estimated in the models with dimensions
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greater than 2. See Royston and Sauerbrei (2008, sec. 4.16) for further discussion of the
power issue.

4 The fp select command

4.1 Syntax

The syntax of fp select is as follows:

fp select, alpha(#)
[
select(#)

]
You must run fp to fit FP models before using fp select.

4.2 Description

Taking the results from the most recent run of fp, fp select tries to simplify the most
complex reported FP model by applying an ordered sequence of significance tests. The
aim is to reduce possible overfitting. The sequence, known as the FSP, approximates a
closed test procedure. See the foregoing sections for further details.

4.3 Options

alpha(#) defines the significance level for testing less complex models against the most
complex FP model that was fit, FPm0. A typical value of # might be 0.05 or 0.01.
alpha() is required.

select(#) defines the significance level for testing whether the covariate is influential.
Specifically, if m0 is the dimension (degree) of the most complex fit FP model, the
test is of FPm0 against the “null” model that omits the covariate. If the covariate
is not significant at level # < 1, the procedure terminates. Otherwise, testing
continues. The default is select(1), meaning the selection test is not performed
and the covariate is automatically included.

4.4 Examples

Fit default FP2 model:

webuse igg

fp <age>: regress sqrtigg <age>

fp_select, select(0.05) alpha(0.05)

display "`r(powers)´"
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Fit a more complex FP model:

fp <age>, dimension(4) replace: regress sqrtigg <age>

fp_select, alpha(0.2)

display "`r(powers)´"

A multiequation example:

sysuse auto

fp <weight>: sureg (price foreign <weight> length) (mpg foreign <weight>) ///
(displ foreign <weight>)

fp_select, select(0.05) alpha(0.05)

display "`r(powers)´"

5 Comments

fp select fills a gap in the ability of fp to select a parsimonious model. It removes
the need to use mfp (searching on one continuous covariate) to select such a model.
Note that fp requires that a model return a log likelihood, whereas mfp can fit some
additional models (see help on mfp).
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